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FOREWORD

The Conference on Computer Criented Analysis of Shell Structures,

sponsored jointly by Lockheed Missiles & Space Company and Air Force

Flight Dynamics Laboratory, was held at the Lockheed Palo Alto Research

Laboratory in Pa~o Alto, California, on 10-14 August 1970. The primary

objective of the conference was to bring toget-her specialists in the field of

computer analysis of shells and shell-like structu-res for an exchange of

information through the prescntation of paper3, panel discussions aud

i,.formal discussions. Particular emphasis was placed on recent develop-

ments in discrete rrethods for analyzing the static and dynamic response

of shell structures and on the related problems of computer technology,

numerical analysis and applications to engineering problems.

The conference was attended by 161 persons: 85 from industrial

organizations, 45 from universities and 31 from government agencies.

Twenty-seven invited papers were presented at the conference in

13 sessions as indicated on page viii. In addition there were three panel

discussions: Meeting the Dem~ands of Advancing Aerospace Technology,

Finite Elf ment Versus Finite Differences, and the Large General Purpose

Computer Code. Extensive discussions followed each paper and these

were tape recorded. The tapes were later transcribed and edited and

are included in these proceedings following the appropriate paper. The

panel discussions were also tape recorded, transcribed and edited and

ar." also included. Considerable liberties were taken by the editor in

order to condense the discussion, and for that reason most comments and

questions are printed anonymously. Where names are mentioned, tnese

people were given the opportunity to examine and approve the edited ver-

sion.

This report contains the proceedings of the conference. These pro-

ceedings were prepared by th6 Lockheed Palo Alto Research Laboratory,

ii
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Palo Alto, Califoratia, under Air Force Contract No. F33615-69-C-1523.

it was administered under the Structures Division, Air Force Flight

Dynamics Laboratory with Mr. T. N. Bernstein (FDTR) acting as Pro-

ject Ez.gineer. The proceedings were edited by Dr. Richard F. Hartung,

Manager, Structural Mechanics Laboratory, LMSC.

This report has been reviewed and is approved.

Chief, Solid Mechanics Branch
Air Force Flight Dynamics Laboratory
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HAROLD C. MARTIN MEMORIALSt °

It seems espaclall1 appropriate that the present volume, in consideration

of its content, should contain some words of appreciation in memory of

Dr. ,arold C. Martin. Because of his professional involvement over the

past thirty year period in the field of structural engineering - as practicing

engine.r, -Aducator, research worker, author and consultant - it was inevitable

that a symposium devoted to numerical shell analysis should include a large

number of his friends, former students, and co-workers among is participants.

Harold was born in Brooklyn, New York on March 30, 1913. He attended

the public schoo!- in that area through high school and continued his education

at New York University, where, in 1934 and 1937 respectively, he received a

B.S. degree in Mechanical Engineering and a M.S. degree in Aeronautical

Engineering. The next two years were spent at Boeing in Seattle, followed by

two years as a stress analyst at Republic Aviation Its Farmingdale. He returned

to New York U.iversity as Instructor in Aeronautics in 1941, and thereafter

his primary occupation was in engineering education and research. In 1942 he

moved to Princeton as Instructor in Aeronautics. During the period 1944 to 1948

he served as Instructor and Research Assistant in Aeronautics at the California

inst.tute of Technology, while completing most of the requirements for the PhD

degree. In 1948 he b&;an his career at the University of Washington as Associ-

ate Professor in Aeronautical Engineering, and he retalneo his affiliation with

the University until the time of his death on August 23, 1970. After completing

his thesis, "Elastic Instability of Deep Cantilever Struts Under Combined Axial

and Shear Loads at the Free End, " he was awarded the PhD from the California

Institute of Technology in 1950. In 1952 he was promoted to the rank of

Professor at Washingtw, and from 1957 through 1960 he served as Department

Head in Avonautical Engineering. While at Washington, he also served at

various times as Visiting Professor at the University of Hawaii and at Stanford

University. Starting in 1952, he was a technical consultant in structural analysis

at The Boeing Company.
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lhroughout his professional career Harold's interests were concentrated in the area of

Sstructu-oal analysis. These interests did not take the form of a dledication to exact

anc.ysis as an end in itself, but clearly originated from a sincee 61.1::1 in the inherent

*',orth of anal tical effort. Harold was convinced that analytical methods constitute

an lmportai:" ' "o* for solving practical problems and that the social value of engineer-

ing a•rcomplishmrnnts resulti Ng from such endeavor provides a valid mo' A-Lmi for the

work. During the years of World War II and those Immediately following, his research

nnd teaching were muinly concerned with stability analysis and applications of the

the,,Ty of elastlcity. It was a natural cutgrowth of his practical motivation that Harold

eca "- greatly h.rigued by the potentialities of matrix methods in conjunction with

..iph sr d•d dgqital computers fxr the analvsis of complex structures. Subequent to 1953,

I? " -. .. v centrate, principally in this area.

Withn. fte available space i is impossible to give a complete accoiJnt of Harold's

technical accomplishments and publications. Therefore, we shall only mention three

. aportant woks. In 1953 Harold and several colleagues began work on the formulation

and ii, .emewtation of the finite element displacement method. This work led to the

paper, "Stiffness and Deflection Analysis of Complex Structures," published in 1956

in the Journal of The Aeronauticl Sciences, and pioneered the application of tho

finite element structural analysis approach which has had world-wide application in

recent years. Another pcper, "On the Derivation of Stiffness Matrices for the Analysis

of Large Deflection and Stability Problems" (Proceedings of the Conference on Matrix

Methods in Structural Mechanics, Wright-Patterson Air Force Base, 26-28 October,

1965) deals with large deflection and geometrically nonlinear problems in finite element

analysis; it contains a clear exposition of the fundamentcl principles of this subject

and a historical review of its development prior to 1965. The third work is the excel-

lent textbook Introduction to Matrix Methods of Structural Analysis, McGraw-Hill,

1966. The dedication of this book is c€ clear statement of the professional philosophy

of its author; the statement is: "This book is dedicated to the structural engineer who,

by using his talents and knowledge, benefits mankind."

Although he did not often volunteer his opinions on religious matters, it was

apparent to all who knew him well that Harold had sincere Christian convictions

'A



and that these convictions were the primary foundation of his philosophy of

life. He expressed genuine love for human life, and concern ovw the problems

k.cing people today, resulting from the pressure of increasing world population

and from the moral and spiritual degeneration of society. He felt that most of

the problems of man could be solved if men would have true consideration for

others, and if they would approach problems with the conviction that a reasoned

attitude would lead to a reasonable solution. He was disturbed and disappointod

to find that others often did not share these views.

Among the reminiscences of those who knew him well there is the common

message that Harold was a valued friend, one whose passing is felt as a definite

loss. Harold was a stimulating colleague, and it was always a pleasure to be

with him. He was sincerely interested in people, and he took time to listen to

what they had to say. He was loyal to friend and acquaintance alike. Harold's

friends were many; they came from diverse walks of life; and they all valued his

friendship. Harold deeply appreciated his friendships and associations; they

were an essential part of his life.

This memorial is closed with a quotation from the Bible. It was one of Harold's

favorites, and it describes him and his philosophy more clearly than the many

words written above.

Micah 6:8

He has showed you, 0 man, what is good;
and what does the Lord require of you
but to do justice, and to love kindness,
and to walk humbly with your God?
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V OPENIG REMARKS

DR. GRIFFI'TH: Good morning, ladies and gentlemen.

On behalf of the mnanagement and staff of the Lockheed Missiles and Space

Company, it is my privilege to bid you welcome for the five ac1rs of this

conference. We're honored to be your hosts for these meetings at our

Palo Alto Research. Laboratory. Particular note needs to be made of

the instrumental role of the Air Force Flight Dynamics Laboratory in

making this conference possible. Without their foresight and wisdom, it

would have been impossible to hold this conference and we're very grate-

ful to the Flight Dynamics Laboratory for what they have done and what

they will do during the course of our meetings. We must also recognize

the additional role of the Flight Dynamics Laboratory within their own

laboratories and the support that they have given to studies in other parts

of the services, in industry and in our universities for development of the

subject. Without that we wonld have a far less rich topic to cover this
week.

In these acrimonious times we hear a good deal about the "military-industrial

complex, " and I think it is important to note that the weeks' program will

shed some light on this whole subject in terms of what is right and what is

wrong with the charges. Certainly to oversimplify is wrong and I would

claim that in using the term inilitary-industrial, the matter has been over-

simplified. Clearly it should be expanded. As one sees both from the

program and the roster of registrants, the correct descriptor is "military-



industry-university complex"; and I urge you academic representatives to

insist upon your full share of the action. In another regard, however, I

think the designation is indeed correct. Certainly our relationships as

institutions with one another and even arriongst ourselves and the problems

that we work on are certainly complex and we do have a very valid asser-

tion.

In shell analysis there are two fundamental questions which one addresses

himself to. Both of these will be recurring themes through the papers and

the panel discussions and summary remark-. that you will have during the

week. The first question would appear to be: What is the correct mathe-

matical description of a re.al structure and the properties of the materials

from which that structure is made? And the second underlying question

is: How accurately can these mathematical representations be analyzed

at reasonable cost and in reasonable time to predict and understand the

behavior of the structures which the mathematics describes? I believe

that you will find the material to be presented this week will add a great

deal of information and understanding on an approach to answering these

two questions.

COL. J. R. MYERS: The primary objective of this conference is

to present and promote, if you will, the most recent developments in

structural shell analysis. As I understand it, emphasis will be placed on

numerical methods and the associated computer technology required to

apply these analyses to practical engineering problems and, gentlemen,

let me repeat that last phrase- -required to apply these analyses to practi-

cal engineering problemc. Within the last several months we have seen a

_-g1Q



number of new starts within the Air Force. The F15, the Bl advanced

bomber, AWAC, AX, and so on. Now these aircraft as such will be in

environments that are really going to press us and we haven't solved

some of the current problems as yet.

As most of you know, Lockheed has been working under Air Force contract

during the past year in order to assess current shell analysis capability

throughout the Unittd States. Many of the organizations represented here

this morning have been interviewed and this conference is being held so

that you may share the wealth of general information, valuable experience,

unpublished ideas that have been uncovered during this study.

Most of us here today are concerned with research and development needs

and are keenly aware of the current R&D climate which confronts us. In

this regard, I would like !:, q,'ete from rt.narks made by Gen. Ferguson

at the recent Fatigue and Fracture Conference held at Miami Beach last

December (1969).

"The causes for the present anti-military climate are

numerous, divergent and sometimes only marginally re-

lated. Nonetheless, military and military -related activi-

ties present such a large and obvious target that all sorts

of diverse dissatisfactions converge upon the man in uni-

form, and all those in any way associated with it--univer-

sities as well. If nothing succeeds like success, success

in the case of the military R and D would appcar to hava

stýcceeded a little too well. Certainly a strong case coild

be made that the so-salled milita.ry-industrial complex

hat helped the United States to survive, to grow and pros-

per in a hostile world, but the very essence of art, it is

said, is to hid the labor that went into its creation. And

•3
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| so having succeeded so well in countering every threat

to our national secarity, we have perhaps made it seem

that there is no threat. Or that we are internally immune

from any external threats. At a time when the Soviets

are expanding in every area of re3earch, development and

production of weapon systems and Red China is testing

missiles to deliver its nuclear warheads, many elements

in the United States are turning against defense research

and development. "

We in research and development face some lean years in spite of increased

responsibility. We've got to achieve our technological goals for advanced

systems with fewer resources. This will be the real challenge to our

creativeness, ingenuity and resourcefulness. Gentlemen, during the past

several years, I have fostered this business of computer techniques as

applied to shells because, in my own mind as Chief of the Lab, I think that

this is an opportunity for high payoffs to this country. " think you've got

kind of an exciting week ahead of you. Thank you very much for coming.



DESIGN PROELEMS OF SHELL STRUCTURES AND
THE IMPACT OF THE COMPUTER ON SHELL ANALYSIS

By Manuel Stein

NASA Langley Research Center
Hampton, Virginia

SUMMARY

A brief description of the essential nature of shell theory and the shell
equations is followed by a survey, with examplea, of the types of shell
problems that are of important concern to the structural designer and, therefore,
of interest to the shell analyst. The principal approaches to the shell problem
solution are outlined and some of the important effects that the computer has
had on shell analysis and the analyst are discussEA. Deficiencies in shell
technology, requiring additional research, are indicated.

INTRODUCTION

Solutions of problems in shell structures were attempted as early as 1744
by Euler (see ref. 1). Such problems were among those which motivated the
formulation of the general equations of elasticity by Navier in 1821. In 1850
Kirchhoff developed the theory of plates, and this theory was used by Aron in
187T4 to develop the first theory of shells. Some inaccuracies in Aron's theory
were found and corrected by Love in 1888 (see rsf. 2). The theory of shells
based on the hypotheses of Kirchhoff and the development by Love is not unique,
and many other formulations have been developed. In 1960, Koiter (ref. 3)
defined a criterion for judging the accuracy of linear shell theories, and
showed that most other theories differ from Love's by irsignificant terms only.

For the benefit of those people who are not shell experts, this paper gives
the engineering definition of a shell, describes the basic ideas which lead to
the theory of shells, and discusses some important problems facing the designer
of shell structures. A number of examples will be given to illustrate the kinds
of problems involved in the analysis of shells. A second objective is to
characterize the two principal approaches to obtaining solutions to the shell
equations.

Because of the extrene complexity of shell theory, only the simplest cases
could be solved before the advent of the digital computer. However, the
analysis of shell structures has expanded in quantity and scope as the capa-
bilities of the computer have grown•. A study of the journals indicates that

• iuiitially the application of the computer to shell analysis was gradual. In
the early 1960's computers were used for acme problems, but it was not until
the middle 1960's that the words "computer solutiorn appeared in titles and
that the operations involved were tailored for calculations carried out by

L-7225



coiputers rather than those carried out by hand. The third objective of this
paper is to review the tremendous expansion of shell analysis and the corre-
spondirg growing pains associated with computer solutions and to suggest what,
in the author's opinion, is needed for the immediate future.

UIODAMELTALS OF SHELL ANALYSIS

Shell structures appear in a great variety of applications including air-
craft fuselages, launch vehicle tanks and intertank stractires, pressure
vessels, rocket motor cases and nozzles, gas turbine engine cases, submersible
vessels, and ground based storage tanks. Detailed shell wall configurations
may take a wide variety of forms including, for example, isotropic, stiffened
in one or more directions, laminated, and filamentary composite (see Fig. 1).

A shell is defined as a body having one dimension - the thickness - small
compared with the other two dimensions. The general shape of the shell wall
can be represented by a curved surface in space usually termed the reference
surface (see Fig. 2). Thus the shell geometry may be determined from the shape
of the reference surface, the shell wall thickness, and the shape of the
boundary. The analysis of shells is based on the fundamental laws of solid
continuum mechanics. The assumptions listed below (which are called Kirchhoff
assumptions) are generally admissible because of the thinness of the shell wall:

(a) Straight lines normal tc the shell reference surface before deforma-
tion remain straight and normal after deformation, and these lines do not change
in length during deformation of the shell.

(b) Stresses normal to the shell reference surface are negligible in
comparison with the other stresses in the shell wall.

Integration through the thickness permits a two-dimensional formulation of
the theory of shells in terms of the coordinates of the reference surface. This
formulation transfers attention from stresses to forces and moments which are
fundamental quantities in shell analysis.

The quantities which the analyst must determine in order to describe Lhe
behavior of the shell are shown in Figure 2. These quantities are the moments,
rotations, forces, and displacements associated with the reference surface. In
Figure 2, the sketch on the lrer right shows the so-called membrane forces and
the shears and the sketch on the upper right shows the moments and torques
applied to an element of the shell wall. The equations required to determine
the behavior of the shell include equations which define the equilibrium ot
forces (that is, membrane forces and shears, moments and torques) on elements
of the shell wall, equations representing the relations between these forces
and quantities associated with the deformation of the shell wtll called strains,
relations between these strains and the displacements of the shell reference
surface, and the proper boundary, continuity and initial conditions. Equilibrium
equations may be obtained directly from considerations of the forces on an
element or may be derived from a variational principle. The variational



principles which are commonly used in shell theory include the Principles of

Minimum Potential Energy, Minimum Complementary Energy, and Virtual Work, and

Hamilton's Principle. All of these principles stem from fundamental laws of
solid mechanics. Advantages of these variational principles in the derivation
of the equilibrium equations are that they permit certain freedom in selection
of candidate solution functions and that with their use the correct boundary
conditions to pby3ical problems are generated automatically.

One indication of the re-.ative difficulty of solution of shell problems,
perhaps, is represented by the order of the differential equations involved
in the theory. Many dift'icult problems in mathematical physics deal with
equations of second order in the space variables. The equations of plate theory
are fourth order. The equations of shell theory, however, are of eighth order.
Another consideration which may complicate the solution of shell problems is
the fact that nonlinearities are often important. Usually, the elastic deforma-
tion of solid bodies leads to small displacements and linear differential
equations. In shell problems, however, the shell wall may displace several
times its thickness under load, and in this circumstance, even though the
strains may remain small, as is usual in sol.id bodies, they may depend
nonlinearly on displacements.

TYPES OF SHELL ANALYSIS

Various types of problems must be faced by the shell structure designer
and analyst. In general, the strength of the shell structure is of foremost
importance. Assessment of strength requires analysis of the forces or stresses
in the shell wall under all pertinent loading conditions and comparison of
these values with appropriate allowable values. Shells are often subject to
bending and compression and are, therefore, prone to structural instability
(buckling). Where oscillating load inputs are present, knowledge of the
vibration behavior of a shell structure is of vital importance to prevent
resonances which might dama.&g the structure. If the structure is subject to
very suddenly applied (or dynamic) loadings, the transient response might be
of importance. Finally, interaction between aerodynamic forces and structural
deformations may cause flutter problems, or so-called aeroelastic problems,
which play a significant role in the structural design of aerospace vehicles.
In this section, examples of these various types of shell problems are presented
to characterize them and to indicate the kinds of mathematical problems
involved in their analysis.

Stress and Deflection Analysis

The efficient use of space available in launch vehicles sometimes leads
designers to toroidal shell configurations for the purpose of containing high
pressure fluids. Such shells present especially interesting stress analysis
problems. Results of stress and deflection analysis of a toroidal shell under
internal pressure are shown in Figure 3 (from ref. 4). The crown of this shell
(identified in Fig. 3) is a special location, markirng the boundary between the
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outer region of the shell, where the principal curvatures of the reference
surface are both positive, from the inner region where one curvature is
negative. While many pressure vessels are designed on the basis of the
simplest form of shell theory - linear membrane theory - application of this
theory to the torus leads to a discontinuity of displacements at the crowns an
obviously nuiacceptable result. The use of bending shell theory, on the other
hand, yield6 physically reasonable results. The comparison is shown at the
right in Figure 5, where the linear membrane result has been taken from
reference 5. On the left in Figure 3 is plotted an outer fiber stress distribu-
tion, that is a direct stress at the shell wall thickness surface, as a function
of the angular coordinate as calculated by both linear membrane theory .and
linear berding theozy. Note that the simple membrane theory yields stresses
which differ from the bending results by only 20 percent. It should be pointed
out that the geometric parameters of this relatively simple example have been
chosen so that linear bending theory indeed gives accurate results. It is
imoortant to further note that, for thinner toroidal shells, even linear bending
theory is not sufficiently accurate and nonlinearity must be introduced.

Buckling

Because the shell wall thickness is small relative to the other dimensions,
shell structures are susceptible to a mode of failure termed structural
instati2ity or buckling. Buckling occurs in shell structures in two forms. In
one form a gradual increase in normal or lateral deflections may occur with
increase in external loading until a maximum load level is reached. In the
other form (bifurcation), there occurs an abrupt change in configuration at a
load level where rhe initial equilibrium configuration becomes unstable. These
two forms of backling are illustrated in Figure 4 in which a characteristic
load parameter is plotted as a function of the corresponding displacement
measure. The maximum load type buckling problem is illustrated in Figure 4(a);
the analysis required involves increasing the loading in a stress and deflection
calculation until a situation is reached in which additional displacement occurs
accompanied by no increase in load. A nonlinear shell theory is required for
such calculations. The bifurcation type buckling is illustrated in Figrt', 4(b);
in this case a stress and deflection analysis provides a solution which must be
examined for stability by studying small excursions from it. The origins of
alternate paths (the bifurcation points) occur at the eigenvalues of a system of
homogeneous linear differential equations derived from the general equilibrium
equations, %nd, of course, the eigenvalues are the buckling loads and they depend on
the prebuckling solution. In bifurcation buckling problems, the prebuckling solution
may be obtained from either a l1 ear or nonlinear stress and deflection analysis.

Both types of buckling behavior are exhibited by a shallow spherical cap under
uniform lateral pressure. The shallow spherical cap mi ght represent the nose of a
planetary entry vehicle or heat shield of a manned space capsule. Results
for this problem are shown in Figure 5. The buckling pressure is plotted as a
function of a geometric parameter which measures the ratio of the rise of the
shell to its wall thickness. For very shallow shells, maximum-load type buckling
occurs with the deformation pattern ,ymmetric about the axis of the cap. For
values of rise .thickness parameter greater than 5, bifurcation buckling occurs; the
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symmetric prebuckling configuration becomes'unstable and an asymmetric buckle
pattern appears. The number of waves in the asymmetric buckle pattern which is
appropriate to each value of the rise-thickness parameter is indicated on the
curves.

Vibration

Shell structures for launch vehicles and spacecraft, for example, may be
subjected to h.Lgh frequency oscillating loads from rocket engines. To avoid
resonant conditions whidh might cause structural damage, it is important to
know the natural vibration behavior of such shells. The equations required to
determiroe vibration behavior of shell structures are linear and homogeneous
and, in fact, are quite similar to the equations required for bifurcation
buckling calculations. The eigenvalues of the system are now the natural
frequencies of vibration; one key difference between the vibration and the
bifurcation buckling problem lies in the fact that several natural frequenc4 es
are of importance to the designer whereas, generally only the lowest buckling
load is of interest.

Some illustrative results for vibration of a shell structure are shown
in Figure 6 (from r.f. 6) where natural frequencies for a simply supported
cylindrical shell are plotted as a function of tOie number of axial half waves, m.
Each value of m, the numbers of axial half waves, and n, the number of
circumferential waves, determine a natural frequency for the cylinder. For this
simple problem elementary functions satisfy the differential equations and the
boundary corn.itions and exact results are easy to obtain.

For particular values of the axial wave number parameter, the natural
frequencies tend to cluster together; in this case they cluster near the lowest
frequency. For more complex shells where numerical methods are required, the
closeness of the eigenvalues can lead to numerical difficulties •uch as slow
convergence or failure to determine all frequencies in the range of inte.'est.
Another consideration which may increase computational difficulties in shell
vibration problems is also illustrated in Figure 6. Note that the lowest
frequencies do not necessarily correspond to the lowest wave numbers in
contrast to the behavior of simpler structures such as beams and plktes where
the lowest frequencies almost always are associated with the simplest wave
forms.

Transient Response

Shell structures are sometimes subjected to very suddenly applied or
dynamic loads. In such cases the inertia of the shell may be important, and
calculation of the transient response of the structure may be necessary to
determine whether or not stresses or deflections remain within acceptable
limits. In transient response problems an additional independent variable,
time, is introduced. The shallow spherical she]l cap, hinged at the boundary,
under a distributed lateral pressure loading provides an illustrative example
for these problems. Solutions were obtained in reference 7 for a lateral
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pressure with a step variation in time and having a linear variation across the
chord diameter starting from zero at one point on the boundary. Transient
response results based on nonlinear shell theory are sho in Figure 7 where
the change in volume under the shell (a measure of the average lateral displace-
ment) is plotted as a function of time. The various curves in Figure 7(a)
are for different values of the magnitude of the average step pressure loading.
The maximum volume changes from the response curves in Figure 7(a) are
plotted in Figure 7(b) as a function of the magnitude of the average step
pressure. With increasing magnitude of the pressure, the curve in Figure 7(b)
changes abruptly at a value of the average pressure parameter equal to
about 0.27. The loads at which such behavior is exhibited in shell structures
have been termed "dynamic buckling" loads in a rough analogy to the maximum
load type of static buckling discussed previously. From the computational
standpoint, a significant feature of transient response problems in shells
is that, effectively, a complete static stress and deflection analysis must
be performed at each time increment, and often many time increments must be
taken to establish meaningful results. Computation times for transient
response problems are, therefore, substantially longer than for corresponding
problems in static stress analysis, buckling, or vibrations.

Flutter

Fluld flow along the surface of a shell structure zw.y cause a
self-induced oscillation termed "flutter." The flutter phenomenon involves
an interaction between the deformations of the shell structure and time-
dependent or unsteady aerodynamic forces, and the resulting physical system
turns out to be nonconservative. Flutter is essentially an instability in
the noncor.nervative system, and its calculation involves the determination of
complex eigenvalues of complex matrix equations. The usual requirement is to
determine a stability or flutter boundary by finding under what conditions
the real part of a complex eigenvalue changes from negative to positive. In
order to accomplish this task, a whole spectrum of complex eigenvalue problems
must be soived on the computer.

The form which one of these solutions takes is illustrated by results for
a circular conical shell in supersonic flow shown in Figure 8. Given in the
figure is an equation for the deflection w of the shell defining its
dependence on the complex eigenvalue X. Real and ima~itary parts of the
eigenvalue are plotted as a function of the velocity, and the flutter velocity
is indicated at the point where Re ('A) becomes positive anu, hence, w
increases exponentially with time. At velocities less than the flutter
velocity, oscillations with frequencies associated with the imaginary part of
X deray, due to aerodynamic damping.

METHODS OF SHELL ANALYSIS

In problems as complicated as those dealing with shells, almost all methods
of analysis will involve numerical calculations. Fcr the purposes of this
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* paper, shell analysis methods will be classified either as (1) analytical
methods if the differential equations are attacked classically and reduced to

algebraic equations which are then solved numerically or (2) numerical methods
Swhere the differential equations are first replaced by their numerical counter-
part and then solved directly.

Analytical Methods

Analytical methods in shell analysis usually result in closed-form solu-
tions or series solutions. Closed-form solutions are sometimes exact solutions
of the differential equations, but they may also be identified with so-called
boundary-layer techniques. In boundary-layer techniques, the equations are
broken into a set of simple equations for the interior of a shell structure and
a more complicated set for a zone near the boundary. Such techniques can be
t.ilered to study the behavior of shells for loadings and boundary conditions
ir. whi •h all important deformations occur in a narrow zone near the shell
boundary. Series solutions, on the other hand, are identified usually with
approximation techni.-ues such as the Galerkin or Ritz methods or Fourier expan-
sions of the differential equations. Such methods, if carried far enough, lead
to an accurate solution at any point within a shell contour.

The advantages of analytical methods stem from having available explicit
equations to examine which, in themselves, may give the analyst important
information on shell behavior as design changes are made. The equations may be
manipulated so that limiting cases may be determined precisely in order to check
the solution. Parameters natural to the problem may be identified and they may
be varied conveniently to determine rapidly the e& %2ntial behavior of the shell
over a wide range of values.

Analytical methods have two distinct disadvantages. First, they require a
knowledge of a variety of sophisticated solution techniques of ordinary or
partial differential equations. Second, a given form cf analytical solution is
invariably limited to shells of simple geometric shape such as cylindrical,
conical, or spherical, and subject to simple loadings.

Numerical Methods

There are three important approaches in numerical methods of shell
analysis: the finite element method, the finite difference method, and the
forward integration method. In the finite element approach, the structure is
broken up into a finite number of relatively simple physical elements and the
set of equations for each element is solved approximately except for a group of
constants. These constants are determined to satisfy conditions of continuity
and/or equilibrium amcng the elements. Use of a variational procedure
automatically provides a best choice of the finite el.ement equations governing
a structure within the limits assumed for element models. In the finite dif-
ference approach, derivatives in the equations are simply replaced by difference
expressions and integrals by sums. In the forward integration method, the
problem is corverted into an initial value problem and the solution is projected
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forward in space by a technique such as the standard Runge-Kutta method. A
comparison of the characteristics of the forward integration and the finite dif-
ference methods along with their-advantages and disadvantages is presented in
reference 8 for shells of revolution. All three approaches give solations
approaching the exact solution if enough properly defined elements or enough
difference or integration stations are used.

Numerical methods have the advantage of very general application; that is,
a formulation may be applied to wide varieties of problems with minor modifica-
tions. Practical shell problems invariably have complications such as variable
thickness, wall stiffening, a variety of loading conditions or combinations of
loads, a variety of boundary conditions or complicated shapes not easily
specified by equations. Such complications arc almost impossible to handle by
analytical methods, but can be handled in almost routine fashion by numerical
methods.

There are some disadvantages to numerical methods. Obviously, there must
be a computer of adequate capacity available to the analyst. The output of a
computer using nv.ierical methods is often a vast array of numbers, and this
situation sometimes obscures trends that might be obvious from an algebraic
formula. Finally, numerical methods are sometimes difficult to check, and
limiting cases may not be as easily obtained as with the use of analytical
methods.

TTHE IMPACT OF THE COMPUTER

Numerical methods could not be used extensively until computer capability
had been increased to present-day levels. Only nog are we able to use general
purpose computer programs that will handle wide classes of shell configurations.
Of course, t .e computer has also expanded our analytical capability. In the
sections that follow, some of the consequences of the use of the computer will
be examined.

The Effect of the Computer on Solution Techniques

The use of the computer requires all analyses to be reduced to a set of
algebraic equations. Solution techniques as used here are those sequences of
operations required to solve these algebraic equations.

Analytic solution techniques.- The impact of the digital computer on
analytic techniques has been modest. Primarily, it has allowed more terms to
be taken in series solutions so that solutions with slowly converging series are
now feasible. The computer has also permitted accepted standards for the
accuracy of such solutions to improve. The computer does not appear to have
stimulated the development of new analytic solution techniques.
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Numerical solution techniques.- By contrast, the availability of highL-speed
digital ccmputers has spurred a number of advances in numerical solution
procedures. For example, for nonlinear problems involving many equations, the
powerful Newton-Raphson solution technique has been developed for numerical use.
Hybrid combinations of Newton-Raphson and other nonlinear solution techniques
have also been developed with great success. Because of their -rcat capability
for repetitive application of simple operations, and because of their great
speed, computers also admit numerical methods that were too cumbersome previously,
such as the method of forward integration. Similarly, the computer has given
finite difference and finite element methods great significance by admitting
problems of great scope involving large numbers of simultaneous equations.

Shell Analysis and Design

This section will present a discussion of the recent expansion of shell
studies, the effect of this expansion on the analyst and designer, new ccmmunica-
tion problems of the analyst and designer, and, finally, some missing links which
are limiting the potential for computer analysis of shell structures.

Expansion of shell analysis and design capability. - Numerical methods have
led to the general purpose shell computer program so that almost any problem can
be solved with minimum idealization of the shell's structural detail. For
example, the effects of discrete stiffening attached to one side of a shell can
be included in the analysis instead of considering the overall, sme4-ed out,
effect of stiffening. This point is illustrated further by the fact that a
"complicated" problem solved 10 years ago was the nonlinear axisymmetric buckling
of a 2herical cap of uniform thickness (refs. 9 and 10), whereas a "complicated"
problem solved Just recently is illustrated in Figure 9 taken from reference 11.
In the older problem, numerical methods were used with even station spacing,
together with an iteration technique. In the newer problem, the axisymmetric
shell structure of Figure 9 was symmetrically and nonsymmetrically loaded and
is a layered orthotropic, longitudinally stiffened shell reinforced by rings
which were treated as discrete structures. A general purpose computer program
was us;, which was formulated from the energy with the method of finite dif-
fe-ences. Different station spacing was used in different segments. Maximum
stresses and buckling loads and configurations were determined. This general
program can work the 10-year-old problem routinely and with ease. This is a
fairly dramatic extension of analysis capability.

With on-the-shelf general purpose programs available, the designer can
quickly check out a wide variety of design systems or design changes in order
to investigate the impact on weight. In fact, such programs wi.U be an
integral part of direct synthesis programs for minimum weight shells. Develop-
ments of this type have already begun. A program for the automated design of
integrally stiffened cylinders inder combined loads is already operational and a
program for the automated design of stiffened cones is essentially complete.
Result: from the latter program are shown in Figure 10* where it has been

e_-.thr- in in"•d•. a O d -. o . A. ±u.rZ'oenl, .irkson College, for this example.
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&pp.• ad to the design of a minimum weight conical shell subject to a given
external pressure. The shell is clamped at its small end and assumed to have
an essentially inextensible ring at its large :.id. Four design variables, the
shell thickness, and the thickness, diameter, and spacing of tubular rings, have
been determined for minimum weight subject to a number of constraints. These
include sheet minimm gages, skin and ring yielding, panel buckling, ring
buckling, and general shell instability. Design results are sh.,n on the lower
left. The margins of safety at the lower right reveal that skin yielding, gross
buckling, and panel buckling were the important considerations.

The most difficult aspect of this analysis is the accurate calculation of
general shell instability. In marn previous synthesis programs such as for
cylinders, simple analytic expressions were used that could not be extended
with accaracy to more complicated geometries that might result in the least
weight. This program makes use of a general shell of revolution computer
program indicating that extension of synthesis problems to more general shapes
yet retaining necessary accuracy is feasible.

With the present expansion of shell analysis, it is logical to assume that
interdisciplinary analysis will increase in importance. Aeroelastic analysis
and coupled bydroelastic or thermoelastic analysis are exampleo of types of
analysis which will become more prominent. Figure 11 presents a sample of some
results in a coupled hydroelastic analysis (ref. 12). These results were
obtained by the numerical solution of the rather complicated combined hydrody-
namic and shell equations. The pressure results for axisymnetric impact of
shells on water are compared with the pressure obtained if the shell Vere a
rigid body. Such an impact loading may be a critical design conc.tion and
obviously serious errors (not necessarily conservative) in stress and buckling
results would occur if the interaction were not included.

Influence on the analyst and designer.- One clear Impact of the computer
has been the growth of perspective of the shell analyst. The day of the
specialist who devotes a lifetime of research to a narrow class of shell problems
and solution techniques is gone. The power to examine a broad spectrum of shell
structures and problems, which the computer has provided, forces the analyst to
a broader outlook and probably brings his outlook and that of the designer closer
together. Of course, the shell synthesis program represents a unity of these two
viewpoints.

But computerized shell analysis can have a powerful hypnotic effect, too.
The lazy analyst is tempted tz rely too heavily on the machine and to accept
inefficient bolutioh techniques, and there is the danger of total reliance on
numerical computer results to the neglect of the analyst's intuitive judgment
of the physical nature of the problem. Another danger for the unwary analyst
is inherent in the nature of the usual computer output - a blizzard of numbers.
Errors in the solution are thus often difficult to detect. Automated plotting
and other visual displays of results tend to remedy this problem; however, these
devices awe often neglected in computer program development and there is a need
to implem nt methods in new programs for the most effective display of results
so that the physical meaning is understood and errors are easily detected.
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Comamication.- Program documents usually contain a writeup of basic theory
and a user's manual including a listing of the program. The process of assimi-
lating this information is usually difficult and laborious. Often, the analyst
would rather set up his own less general program than try to fathom an available
program which was devised to do essentially his problem. This duplication and
wasted effort can only be avoided if the program is easy to use with relatively
simple input and the documentation accompanying the program is completep clear,
and concise so it offers the user an advantage in investing his time in learning
the new program.

It is worthwhile for the developer, as well as the receiver, that the
do'..,wi"ntation and the computer program itself be frequently updated. For
exaxple, errors may be found in parts of the program that were not used
previously. Algorithms in weak parts of the program may be improved. New
limitations of the program may be determined. Moreover, use of a program helps
debug it and improve it; thus, use increases the value of the program. Proprie-
tary programs which lie unused may thus stagnate and become obsolete. The
author believes that shared programs, with their greater potential for frequent
use, will grow in their solution power and pay bigger dividends to the developer
and, through sharingj the q,..lity of the analysis of shells will rise to the
level of the best engineering talent.

In a similar vein, the value of a computer program to a designer is propor-
tional to its use. The designer will be able to apply intuitive judgment for
problems involving geometry and loads within his previous experience, but would
probably have difficulty for problems beyond his previous experience. A wider
scope of experience can be provided if development of each new computer program
is immediately followed by a limited parameter study leading to published
charts. Each study should explore a new parameter regime made accessible by
the development of the program. This would automatically lead to extension of
the shell designer's knowledge of shell behavior and contribute to safer, more
efficient designs. Therefore, the author strongly recommends that every new
general purpose program be accompanied by such parameter studies.

Influence on shell theory and experimc t.- The computer analysis of shells
will be no more accurate than the theory on which the analysis is based. There-
fore, a few major weaknesses of theory should be mentioned. A criterion for
establishing relative merits of various versions of linear theory exists
(ref. 3), but a corresponding criterion for establishing the relative merits of
the various versions of nonlinear shell theory has not been derived to the
author's knowledge. With the number of such theories growing and their extreme
cumplexity undiminished, the analyet needs some convenient basis for a rational
choice.

The buckling load of thin shclls is often considerably lowered by the
presence of small imperfections in shape. The present method of studying
imperfection sensitivity is by analysis of the initial postbuckling behavior of
perrect shells. This approach has been partl4 successful, but needs much more
development before it is ready for practical application by the analyst in sup-
port of shell design. The capacity for brute force account of known imperfections
in shape by nonlinear, general-shell computer programs is emerging, but is
likely to be very costly for the foreseeable future. Especially difficult will
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be development of methods to account (perhaps statistically) for probable
imperfections in shells before their manufacture.

Experimental research has not kept up with our ability to solve theoretical
shell problems of great complexity. For example, the computer has made possible
the analysis of end ring stiffness requirements for shells of revolution. This
is mignificant advancement in design capability, but there is, as yet, no
experimental verification of these methods. Mterefore, their application by
the practical designer will be inhibited by his natural reluctance to use
unproven methods. There is an obvious deficiency here, and the author strongly
rec-omends that experimental programs be accelerated to study the limitations
of computerized methods.

CONCLUDING REMARKS

For the benefit of those who are not shell experts, this papir has reviewed
the complexity of thin-wallt Whell structures, described the basic ideas lead-
ing to shell theories, and surveyed the important kinds of shell bihavior and
shell problems of interest to the designer.

The aysilabill.ty of the elec':ronic, digital computer has greatly affected
the capacity of the analyst to de,Ui with shell problems. It has stimulated the
development of numerical solution techniques and greatly increased the analyst's
solution power. A principal impact is the new capacity to obtain solutions for
very general shell configurations incorporating structural details that occur
in practical design. The computes: has forced the analyst to learn a new
language to prepare for its effective use and hab greatly increased his perspec-
tive, bringing it closer to that of the designer. The great complexity of
computer programs makes them difficult to communicate and their output difficult
to interpret.

The consideration of these factors has led to a number of recommendations.
Program documentation should be precise, complete, and frequently updated;
programs should be freely shared because of their tendency to improve with use
to the beaefit of all. New programs should be applied to parametric analyses
for generation of design charts to help extend the shell designer's knowledge.
Certain missing links in shell theory should be developed, criteria for a
proper choice of nonlinear shell theories should be established, and methods
for account of imperfections in buckling analysis need further development.
Findlly., experimental programs must be accelerated to verify computerized shell
analysis methods so that they merit the designer's confidence.
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Figure 9.- Wall construction of complex nozzle structure (ref. ii).
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(a) CHOSEN VALUES AND UNSPECIFIED PARAMETERS

MAGNESIUM MARGINS OF SAFETY

ts, -048" SKIN YIELDING .0044-

tR -010" (Min. Ga.) RING YIELDING .276

d 1.02" RING BUCKLING .497

s * 1.83" GROSS BUCKLING .027+-

WEIGHT - 52.7 Ib PANEL BUCKLING .057#-

(b) FINAL DESIGN

Figure 1.0.- Automated design of a stiffened conical shell.
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Figure ll.- Time history of pressure at the shell apex for axisymmetric
impact of shells on water (ref. 12).

23



QUESTIONS AND COMMENTS FOLLOWING STEIN'S PAPER

QUESTION: Would you care to comment on how we might avoid

the generation of (xcessive output from the computer? If we don't put

the results on the printed page, where do we put it and in what form?

STEIN: One of the recommendations in my paper was that

plotting techniques should be used. Computer programs should be planned

so that those quantities which are imnportant to the analyst or other program

user can be plotted.

QUESTION: We are all aware of the difficulties encountered in

getting a program which was developed on one piece of hardware to work on

another piece of hardware. If we go one step further and incorporate plot

routines in the program, do you anticipate greater problems; or should

each user organization have their own plotting routines and then put those

into the program?

STEIN: One of the principal uses for plotting is in the

development stage where it is great for debugging and checkout. When

it comes time to share the program with users having different equipment,

there will, of course, be problems. However, these are by no means

insurmountable.

COMMENT: It has been my experience that it requires considerably

more effort to make a computer program user oriented than it does to

develop the program. A tremendous amount of effort is associated witlh
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documentation, checkout, parameter studies and. eparation of user's

manuals. Historically, funding agencies have not provided the funds

necessary to do much more than develop the code. As a result, many

such codes have never realized their full potential. I think we are going to

have to face up to the fact that it costs money to make new technology

user oriented.

COMMENT: You touched on the reluctance of analysts to accept

for use programs with which they are not familiar. Because it takes so

much time to learn a new program, he may not use the most efficient

program for his problem, or he may derive a special program for his

particular problem. In cases where a number of people a an organization

are occupied with shell analysis, it might be a good idea to have a specialist

on computer programs who learns the new programs as they come out,

and if he thinks they are worthwhile, he can implement them and act as a

consultant to others who may use them.

COMMENT: Two comments: first, I liked your remark on

generating design charts with any new program cf general nature, buL i•:s

practically impos3ible to find anybody who is willing to put up with the

bulk of computer time that is required for such studies. Second, we find

that it's possible to eliminate much unnecessary computer printout by

simply not even generating printed output the first shot. Instead, :re look

at the plotted output. It's very much easier to plot stress isobars on any

shape you have, look at tVem and then select and print out only the areas of

interest for your highest stress and so forth. We do that routinely.
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COMMENT: First, I want to say that at Ford we are using computer

graphics quite extensively for structural analysis on a production basis.

Basically, the engineer picks out what he wants from a graphical display

and has hard copy plots made. This includes input and output data, checking,

and so forth and so on. I also have a question with regard to the automatic

design example you consider in Figure 10. Did you use a special purpose

algorithm for optimization for this specific problem or was a general

purpose optimization routine used to find the minimum weight?

STEIN: The computer program that was used in this work

was for an axisymmetric shell. I believe the parameters were chosen

and computer algorithms were then used to find minimum weight.

QUESTION: Were these general purpose algorithms, or were

they for this specific problem? In other words, do you use a general

purpose optimization technique coupled with a general purpose structural

program?

STEIN: The example was based on a problem solved by

Bill Thornton who is at Clarkson University. I believe he used a Fletcher

Powell algorithm or something of that sort. That's all the information I

have on the problem.

COMMENT: I believe that some of the excessive computer output

which has been discussed here today is caused by dumps requested by

the user "just in case. " In order to minimize this, I can conceive of

employing an auxiliary storage facility connected to the computer on which

a dump would be made automatically in the event of an error. The dump
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could then be requested by the user for a period of up to 24 hours after

the run if he felt it was necessary. After that time the dump would be

scratched without ever having been printed.

COMMENT: I've heard several comments here today to the

effect that more money should be spent to generate design charts and per-

form parameter studies. It seems to me that no matter how many charts

we generate, you never seem to be able to find the particular problem you

have amongst those included in the charts. This is especially true for

multiparameter problems. Thus, you vnd up having to generate the

answer to your problem anyway. In my opinion, it's much better to forego

the parametric studies and design charts and develop a well documented

computer code which can be given to others so that they can generate the

answers to their own specific problems.

COMMENT: I think we're missing the boat a little bit on

the parameter study. The principal value is not the charts that c .ie out;

certainly they're helpful but I think it's the exercise that the code goes

through in generating the charts that is valuable. It helps us find the

bugs and make the code more reliable. So I really don't think the previous

comment is valid.

One further remark and that is that plots are not always the answer. Ive

gotten rolls of plots that are just as bad as stacks of output. It seems that

invariably the plot I want is in the middle of the roll or at the end. I would

like to see the rolls done away with and have the plots produced in flatfold

form in the same way the output is so that you can thumb through and go to

the middle or the back and not have to roll it all out on your desk.
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COMMENT: We sponsor quite a few parameter studies at

Oakridge National Laboratories and have found the results to be very

useful. People in the pressure vessel field, for example, save a lot of

money using design charts and more could be saved if parameter studies

were available for the analysis of many off-the-shelf items.

COMMENT: I refer again to this question of parameter studies.

I think that one important aspect that really hasn't been brought forward

here is that when you have a general purpose code developed and operational

many people tend to think that all of the problems in engineering have been

solved and that when a new problem comes up all you do is run to that code

and get the answer. In fact, we have found that even when using our general

purpose codes which are debugged and are reliable, it takes often many

months or as much as a year to solve complex problems. Having para-

metric studies performed by the engineers who will use the code gives a

great deal more insight so that the next time around you could use the

code much more efficiently, avoid many of the pitfalls in modeling and

many other pitfalls which lead to poor results. I think that parameter

studies are also very useful when you c, sider trying to solve a new class

of problems. So I think these parametric Etudies have a lot of value that

is really being overlooked here.
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ABSTRACT

This paper reviews the numerical methods used to analyze shell structures.
For presentation purposes, shell configurations are classified according to
the number of directions in which the shell must be discretized in order to
determine a solution. One-, two-, and three-dimensional shell configurations
are then discussed for each numerical method presented. The paper limits
detail discussion to the finite difference, numerical integration, and finite
element methods. Major advantages and disadvantages of each method are given,
and areas which need further study are outlined. The paper concludes with a
discussion of the types of problems solved by all three methods. It is pointed
out that all three methods have been successfully used to solve many shell
problems and each has a definite place in shell analysis.
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1. INTRODUCTION

During the past decade great strides have been made in the design and
analysis of shell structures. These advances have been made possible by
application of discrete numerical analysis methods using high speed digital
computers. By using these numerical methods it is possible to obtain solu-
tions to shell problems involving such complexities as irregular surfaces,
variable thicknesses, anisotropic material properties, and nonlinear behavior.

This paper is being presented at this shell conference to define ard
compare the most widely used numerical discrete shell analysis methods. In
particular the paper will solely be concerned with the finite difference
(1-71* numerical integration (8-12], and finite element displacement methods
[13-43]. It is recognized that other numerical methods (e.g., collocation
[44]) have been successfully used in shell analyses. However, in most cases
these applications have been limited to specialized shell problews and for
this reason will not be presented here.

It should be pointed out at the beginning that the paper will not pre-
sent any new technique nor seek to ascertain or establish the "best" numerical
method. However, an attempt will be made to present the fundamental basis
for each method and review the application of each method in solving she~i
problems. A-vantages and disadvantages of each method will be pointed out
for specific shell classifications. Although many improvements have been
made in the three numerical methods discussed, there are still areas which
require further refinement. Therefore the paper will also attempt to cite
these areas.

The various shell computer programs which employ the reviewed numerical
methods will not be discussed iii this paper. They will be presented by other
shell conference papers, and a comprehensive assessment of these programs is
given by Hartung [45).

2. SHELL CLASSIFICATIONS

Prior to discussion of numerical methods, it is convenient for this
presentation to classify various shell configurations. Adopting a procedure
similar to Hartung [45], shell configurations will be classified according
to the number of directions in which the shell must be discretized in order
to obtain a solution.

Based on this classification, the simplest problems involve thin shells
of revolution subjected to azisym•netric loading. This problem need only be
discretized in the meridional direction, since the shell solution does not
vary in the circumferential direction. At the other end of the spectrum is
the three-dimensional (3-D) class, which includes thick shell problems. In

*Numbers in brackets refer to references et the end of the text.
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general the 3-D class requires that the shell be discretized through the thick-
ness as well as over its surface. A partial list of shell configurations clas-
sified according to the above standard is given below.

One-Dimensional (1-D) Problems

Thin ShelLs of Revolution - Axisymmetric Loads

Thin Shells of Revolution - Nonsymmetric Loads (uncoupled Fourier
harmonics)

Thin Shells of Revolution Nonsyametric Properties (coupled
Fourier harmonics)

Thin Shells of Revolution - Nonlinear Behavior (coupled Fourier
harmonics)

Two-Dimensional (2-D) Problems

Thin "Shells of Revolution" with cutouts or nonhomogeneous boundaries
Arbitrary Thin Shells
Intersecting Thin Shells
Thick Shells of Revolution - Axisyumetric Loads
Thick Shells of Revolution - Non3ymnmtric Loads (uncoupled or

couled Fourier harmonics)

Three-Dimensional (3-D) Problems

Thice "Shells of Revolution" with cutouts or nonhomogeneous boundaries
Arbitrary Thick Shells

Generally, the classification is dictated by the number of independent variables
required to discribe the problem. However, as noted above, advantage can be
taken of shells of revolution configurations to reduce an apparent two-dimensional
problem to a one-dimcnsional discretization. For example, in treating thin
shells of revolution under nonsymmetric loading, the loading and shell response
variables can be expanded in a Fourier series in the circumferential direction
[1-3]. For linear problems this results in a set of uncoupled problems, one
for each Fourier harmonic considered. Each of these uncoupled harmonic prob-
lems is solved using a one-dimensional meridional discretization, and the solu-
tion to the original problem is obtained by superposing harmonic solutions.

For nonlinear problems [6,10] or shells having variable circumferential
stiffness properties [3] , the Fourier decomposition technique results in a set
of equations in which the harmonics are coupled. Although this problem is much
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more complicated than the uncoupled problem, the resulting equations still only
require a one-dimensional discretization. Unlike Hartung [45], the present
authors feel that this type of problem should still be generally classified as
one-dimensional. It should be mentioned that sometimes these types of prob-
lems are better solved using a two-dimensional discretizationo An example of
this would be a shell having a discontinuous or highly localized circumferen-
tial stiffness or loading variation. For these cases, if a two-dimensional
discretization is used, then according to the above standard the problem is
classified as 2-D.

Several one- and two-dimensional problems are shown in Figure 1. One-
dimensional configurations for simple, stacked and branched shells of revolu-
tion are illustrated in Figures la, b, and c respoctively. Figures Id, e, and
f show typical two-dimensional configurations. Shaded regions indicate areas
where a three-dimensional analysis may be required.

3. FINITE DIFFERENCE METHOD

The finite difference method is a widely used •echnique for the numerical
solution of the shell differential equations. The fundamental basis of the
method is the approximate evaluation of continuous derivatives using discrete
point formulas. The method can be applied directly to the governing differ-
ential shell field equations (e.g., (1-6]) or to the potential energy expression
[7]. In the latter case the final algebraic equations are obtained by mini-
mizing the potential energy.

The specific finite difference exprebsions used are dependent on the form
of the differential equations. As an example, let us consider the eight-order
system of field equations (e.g., see (46]) frequently used in the linear analy-
sis cf shells. This system can be reproscnoted in the form of two partial dif-
ferential equations, each of fourth order, or four second order differential
equations, etc. A fourth order formulation would, of course, require finite
difference formula for approximating fourth derivatives, and similarly for
other derivatives.

To illustrate the application of the finite difference method, let us
consider the eight-order shell of revolution system represented, after Fourier
harmonic expansion, by four second order ordinary differential equations [l].
The matrix form of this set of field equations is given by

[AWx) d [B(x)I f I + [ C(x) JfYJ - IQ(X)I I

where A, B and C are (4, 4) matrices representing the shell stiffness and
geometry properties. The dependent variable y is a (4, 1) vector considered
in [1) as thrce displacements and the meridional bending moment.
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(a) (b) (c)

(d) (e) (f)

Figure 1. Typical Shell Configurations
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In its simplest form the application of the finite difference method is
initiated by dividing the shell into equally spaced intervals as shown in
Figure 2.for a one-dimensional shell of revolution.

i t-12

A i

A i+l

N

Axis of Revolution

Figure 2. Finite Difference Mesh

The central difference expressions for approximating derivatives in Eq. (1)
are given by

d2y Yi+l - 2 Yi + Yi-l
dx 2  A2

(i = 2, 3, 4,... -1()

2d Yi+1 - i
dx 2A

where i refers to a particular station or control point associated with the
finite difference interval A . The above expressions were obtained by curve
fitting a parabola through three successive points. The error associated with
the above expressions is order (A 2 ). Thus the smaller the increment (A l 0),
the better the approximation of the derivative. Formulas using higher order
curves to approximate derivative expressions are available and will give smaller
errors of order (An) . However, as would be expected, additional control points
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are required for these representations, and thus they increase the bandwidth
of the algebraic equation3. The bandwidth is defined as the maximum number
of terms to the left and right of the main diagonal. Since the time for
solving the set of algebraic equations is proportional to the bandwidth
squared, higher order formulas are usually avoided.

Continuing with the example, Eqs. (2) are only valid at interior points
in the shell discretization. At boundaries, forward or backward differences
or expresoionb requiring the addition of a fictitious point (2] may be used.
For exAple, in [1] the following forward and backward difference of error
order () was used

d y 2  Yl a
dx A at (3)

(3)

- N YN-N at i N
dx A

Application of the finite difference formulas (2) and (3) to the shell
differential equations (1) results in a set of algebraic equations which can
be expressed in matrix form

[Kilyl - hIJ (4)
where K is a (MN, MN, matrix, M being the number of dependent variables at
each control point ai d N the number of control points. For thi. example K is
a (4N, 4N) matrix. S'.nce, in general, K is a highly banded matrix, it may be
very efficiently solved on a digital computer. In reference [1] a special
Gaussian elimination method (Potter's Method) was used to solve Eqs. (4).
The procedure involved only the inversion of (4, 4) matrices,

In general, application of finite differences to any consistent form of
linear shell equations will result in a matrix equation of the form given by
Eq. (4). Although the example given was for a one-dimensional discretization,
the method is equally applicable to two- and three-dimensional shell problems.
The finite difference method can also be conveniently used to solve nonlinear
problems. In this case the resulting algebraic equations are nonlinear and
are solved by an iteration or step-by-step technique.

Ajpplication of the Finite Difference Method to Shell Configurations

The finite difference method has been applied to one-, two-, and three-
dimensional shell configuration problems. The convenience of application and
accuracy depends on the specific problem and type of shell configuration
considered.
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Although variable interval finite difference formulas are available, the
method is most conveniently applied to a uniform mesh. One of the difficulties
encountered in the application of the finite difference method is the selection
a priori of a mesh size to obtain economical solutions within accuracy require-
ments. This is particularly tw1e at boundaries or in regions where rapid changes
of loading or stiffness properties occurs. Finer mesh or higher order dif-
ference expressions are desirable in these areas. For example, it was found
for one-dimensional shell of revolution problems [2] that use of the three
point forward and backward expression (error (A,2 )) in place of the two point
expression in Reference [1] greatly increased the solution accuracy in the
boundary, region. The use of fictitious points and central differences also
increased accuracy [2].

Theoratically, finite difference cannot be used at locations where deri-
vatives are discontinuous. However, for shells of revolution this problem can
be e:1iminated by application of transition or compatibility and equilibrium
expressions at discontinuities as suggested in Reference [1]. The shell con-
figuration may be divided into multiple regions or segments to handle discon-
tinuous configurations with each region tied together by appropriate transition
equations. This procedure may also be used to allow changes in mesh size be-
tween regions. Care must be taken that the mesh size is not too different be-
tween regions, since numerical round-off errors could occur when using a
digital computer.

There are various other permutations of the basic finite difference ap-
proach that improve accuracy. Perhaps the best formulation to use with the
finite dif-erence method is a formulation which minimizes the highest order
derivative. In References [5, 6] a six-order and eight-order set of six and
eight first order equations, respectively, were solved. The dependent vari-
ables were stress resultants, displacements, and rotations. In both of these
formulations the interior differences were cf order (A 2 ) and it was not neces-
sary to use derivatives at boundaries. Furthermore, a higher order derivative
formulation such as given in (1] requires that finite differences be used in
the calculation of stress resultants. This can result in added inaccuracies
which the first order system formulation does not have.

The application of the finite difference method has characteristically
been restricted to orthogonal coordinate systems (mesh). Therefore, diffi-
culties occur in treating complex shell structures (arbitrary stiffened shell)
or shells with irregular boundaries or cutouts. Boundary conditions at
irregularities are especially awkward to treat. A part of this complexity
is rewoved when using the finite difference method in conjunction with mini-
mization of the potential energy [7].

In sumnary, the finite difference method yields excellent results in
treating one-dimensional problems. For two- or three-dimensional problems
finite difference is very useful for treating problems only requiring an or-
thogonal nesh of equal spaced intervals. It becomes difficult to apply to
general complex shell configurations with irregular boundaries.
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4. NIUMERICAL INTEGRATION METHOD

The numerical integration method is applicable to solving any system of
m first order ordinary differential equations which can be written in the form

where y(x) is an (m, 1) column vector which contains the m unknown dependent
variables; A(xy) is an (m, m) matrix which for nonlinear problems contains
functions of the dependent variable y; B(x) is an (m, 1) column vector which
contains the nonhomogeneous load terms; and x is the independent variable.
The boundary conditions for Eqs. (5) may be stated in the form

IF.] jy(a) I + IFbJ Jy(b)J - IG1(6)

where Pa and Fb are (m, m) matrices and G is an (m, 1) column vector, which
prescribes the boundary conditions at x w a and x - b.

The numerical integratiovn method of solving Eqs. (5) and (6) for linear
problems is straightforward and is described below. The solution of nonlinear
or eigenvalue problems is similar, but also requires an iteration technique to
arrive at the correct solution (8-11]. For linear problems A(x,y) - A(x)
and the complete solution of Eqs. (5) may be written in the form

IW - (Y(x)1 fy(a)J + fZ(x)j (7)

where Y(x) is an (m, m) matrix whose columns ace m independent solutions to the
homogeneous part of Eqs. (5). [Y(x)] may be obtained by using a numerical for-
ward integration method subject to the initial conditions that (Y(a)] equals
the identity matrix. The (m, 1) column vector Z(x) is the particular solution
of Eqs. (5) and may also be obtained by forward integration subject to the
initial condition that Z(a) equals zero. It should be noted that when carry-
ing out the forward integration use could be made of a predictor-corrector
integration technique which automatically selects the step size [8].

By evaluating Eq. (7) at x - b, the dependent variable y(b) may be
related to y(a) by the equation

I y(b) I - [Y(b)1 IYWa) + IZ(b)I (8)

4~2



4/

Thus one may see that Eqs. (8), together with the boundary conditions (6)
consditute a system of 2m equations from which the 2m unknowns y(a) and y(b)
are determined. Once y(a) is known, the solution y(x) at any value of x is
obtained from Eq. (7), provided that the homogeneous and particular solution,
Y(x) and Z(x) respectively, have been retained.

"Application of tle Numerical Integration Method to Shell Configurations

The application of numeilcal integration to ehell problems is limited to
solving problems which only require a one-dimensional diecretization, nor-
mally in the meridional direction. Furthermore, while the method described
above is theoretically correct and sound in principle, in practice it cannot

P• be used to solve shell problems whose meridional length L is greater than
approximately

:•L > (3/X) (9)

where X is of the order of magnitude

where R is the mi.rimum radii of curvature of the shell and h is the shells

thickness [8]. Tits reason for this limitation is that the homogeneous solution
for the shell equations has a term of the form e~x . Hence in solving Eqs.
(7) for Y(b), very large magnitudes are obtained when L > 3A Then in
attempting to determine y(a) and y(b) by solving Eqs. (6) and (8), it is fonnd
that a complete loss of accuracy results because of the subtraction of large
numbers of almost equdl magnitude. Therefore, some other procedure must be
used to solve shell problems of arbitrary meridional length.

The method used to solve ahell of revolution problems of any arbitrary
meridional length is called the multi-segment method, [8-11]. In using this

X! method the shell is divided into M contiguous segments denoted by Si, where
"i - 1, 2,...M. Each segment is chosen so that its length is smaller than

'4 ( 3/A ). Consider the shell segments shown in Figure 3. For descriptive
reasons the left edge of each shell is numbered starting at 1 for segment 1
and ending with M+1 at the right edge of segment M.

x 3 4  XM

x2S x M M+

xl

Axis of Revolution

Figure 3. Shell Segments



The governing shell equations are reduced to a system of eight ordinary
first order differential equations in terms of eight dependent variables (con-
sisting of stress resultants, displacement, and rotations) and the independent
variable x, the meridional coordinate. In analogy to Eqs. (7), the solution
to the governing equations within any segment is given by

-YW [Y(x)lj Iy(xO-i~ + IZ(x)li 1(- , 2,....M) (11)

where the subscript i on the matrices denotes that they correspond to segment
i. The solution at the end of each segment is therefore

ly(xi+l)ji - [Y(x)li Iy(xi)ji + fZ(x)Ii (i - 1, 2,...M) (12)

To complete the governing shell equations, the boundary conditions at x, and
xM+l may be written as

IFaI jy(xl)l + [FbJ 'Y(x,,+1 )) - IGI (1.3)

and the continuity equations which hold for contiguous segments are given by

[Tali 1Y(Xi+l)li + 1'bli+l IY(xi+l)li+l = IFI (i 1 l,2,...M-1) (14)

where Ta and Tb are (m, m) matrices which relate the dependent variables at
the right edge of i, {y(xi + 1)}i , to the dependent variables at the left
edge of segment i+l, {y(xi + 1)}i+i . Eqs. (12), (13), and (14) form a com-
plete system of equations from which the 2nm unknown variables at the edge of
each segment may be determined. Once these variables are found, the solution
at any value of x is obtained by Eq. (11).

As mentioned previously, numerical integration is limited to solving
problems which only require one-dimensional discretization. Thus the method
requires that the shell equations which represent the shell configuration be
reducible to a system of ordinary differential equations with one independent
variable. Hence in applying this method to the shell of revolution subject
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to asyi•netric loads, the governing partial differential equations must first
be reduced to a system of ordinary differential equationR with one independent
variable. As described earlier, this is done by expanding all the dependent
variables in a Fourier series in the circumferential direction. The re-
sulting ordinary differential may then be solved by the numerical integration
method.

Problems which cannot be reduced to a system of ordinary differential
equations may sometimes be solved by combining the numerical integration and
finite difference methods. For example, Kalnins [12] has solved the problem
of a curved thin walled shell of revolution by using a finite difference rep-
resentation in the circumferential direction and numerical integration in the
meridional direction. Other mixed methods of this type are also possible.

5. FINITE ELEMENT METHOD

The representation of a continuum by an assemblage of a finite number of
structural elements, each of which may be characterized by independent deforma-
tion modes, is called the "finite element" method [13, 141. The major dis-
tinction between the finite element method and the finite difference method
is that the finite difference method discretizes the differential equations
which describe the structure's behavior, while the finite element method dis-
cretizes the structure, and then constructs the governing equations for the
discretized model of the structure.

There are two forms of the finite element method called 1) the "force"
method and 2) the "displacement" or "stiffness" method [13-151. The force
method treats the internal forces or stresses as the basic unknown variablcs
and is usually associated with the Principle of Minimum Complimentary Energy.
The displacement or stiffness method considers the displacements as the basic
unknowns and is usually associated with the Principle of Minimum Potential
Energy. Of the two methods, the displacement method is usually preferred be-
cause its formulation and computation automation is relatively simple, and
yet it is still general. Since most finite element shell cnalyses use the
displacement method, the remainder of this section will only discuss this
method.

The application of the finite element displacement method is best de-
scribed by the following steps:

1. Idealize the structure. Choose the types of elements which will repre-
sent the structure and construct a discretized finite element model of
the structure.

2. Calculate the stiffness matrix for each of the elements which make up
the structure.
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3. Assemble the element stiffness matrices to form the structural stiffness
matrix for the entire structure. These equations are the equilibrium
equations applied at each nodal point of the structure.

4. Obtain the unknown displacements at each nodal point of the structure by
* solving the equilibrium equations subject to the imposed boundary re-

straint s.

5. Determine the internal strains, stresses, and forces in the structure.

All of the above steps are standard for solving problems using the displace-
ment F.E. method. The only differences which may exist between formulations
is the method by which the element stiffness matrix is obtained (Step 2).
Two basic techniques have been used to derive element stiffness matrices
[15, 161. They are 1) the "equivalent force" and 2) the "energy" methods.

The equivalent force method is based on assuming stress functions tc
represent the behavior of the element. The element strains and displacement
modes are obtained by integrating the stresses. In addition, "equivalent"
forces are calculated by integrating the stresses along the element boundary,
and lumping the forces at the nodes. Finally, by evaluating the displacements
at the nodal points and comparing these relations with the equivalent force
relations, the element stiffness matrix is obtained.

The energy method has been the predominate method used to derive element
stiffness matrices, since it is based on variational principles that provide
a sound theoretical basis for the finite element method 117-19]. Although
numerous variational principles have been used to derive element stiffness
relation [20-22], the displacement method is normally associated with the
Theorem of Minimum Potential Energy. A general formulation of the displace-
ment method based on the Theorem of hinimum Potential Energy was presented
mby melosh [17]. A discussion of the criteria for insuring the monotomec
convergence of the F.E. energy method solution is given in References [17-19].

fit was pointed out by these investigators that the convergence of the
finite element solution to thq. enact solution as the shell element sizes tre
decreased is dependent on a number of conditions. The two primary conditions
for convergence are that the deformation of each element maintain compati-
bility along interelement boundaries, and be capable of representing a state
of constant inplane strain and bending curvature. In addition, although aot
necessary from a convergence viewpoint, the deformation of each element should
include a complete set of rigid body modes which yield zero strains for the
shell theory used.

It should be noted that many finite element stiffness matrices have been
derived which do not satisfy the above conditions but still yield good solu-
tions [23, 24, 431. Nevertheless, finite element stiffness matrices which
satisfy the above conditicns are the objective of most finite element in4esti-
gators.



The general method for determining the element stiffness matrix by appli-
cation of the Principle of Minimum Potential Energy is given below. In applying
the finite element method, the body is first divided into a large number of
discrete elements as shown in Figure 4.

jt element

Figure 4. t e Element Model

The strain energy of the element, Uj, and work done by surface or boundary
tractions acting on the element, Wj may be written as

Uj V ( ([DJIIu )[E j([D]f jdV (15)

Wj - fs IPiTluldS (16)

where [E] is a function of the material properties, the matrix [D] is a
differential operator, and the vector {u} is the displacement or rotation
of any point within or on the boundary of the element. The deformations
{u } of the element are now assumed to be representable by a series of

functions f whose coefficients are the displacements or rotations, 6, at
the "nodal points" of the element, i.e.

lul H [ 16) (17)
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The functions * are chosen to satisfy the convergence criteria conditions
discussed earlier.

The Principle of Minimum Potential Energy states that of all displace-
ment functions which satisfy the displacement boundary conditions, the one
which satisfies equilibrium makes the potential energy an absolute minimum.
This principle may be written as

6 ~(U - Wji - 0 (18)

Substitution of Eqs. (15), (16), and (17) into (18) then yields the
final equilibrium equation for the body

~([k] 181 - IFLj 0 ) or [KI18i f~1 (19)

where the summation means that Eqs. (19) must be summed for all elements of

the body subject to continuity constraints. The matrix [k] is the element
stiffness matrix and the force vector {F} is the generalized external forces
acting on each element.

[k] f (DD[D1)T[EI ([DJ [D])dV

Y (20)

Sf Ipf ifI dS

It should be noted that Eq. (19) is of similar form as Eq. (4) of the
finite difference methud. It is conceivable that for specific pr)blems, ap-
plication of the finite element and finite difference methods can result in
an identical set of algebraic equatioa~s.

As in the finite difference method, the final matrix K is very sparse
and by judicious choice of a nodal point numbering scheme can be put in a
highly banded format. Automatic matrix re-ordering schemes have been em-
ployed in the finite element method to minimize the matrix bandwidth.

Application of the Finite Element Method to Shell Configurations

The major advantage of the finite element method is its complete gener-
ality and ease of application to complex problems. The finite element method
has been used to analyze all types of shell configurations. These analyses
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make use of four basic element types (Figure 5): 1) conical and meridionally
curved axisymmetric shell elements [25-30]; 2) triangular or quadrilateral
flat and curved elements [21-23, 31-37]; 3) axisymmetric solid of revolution
elements [38-40]; and 4) three-dimensional solid elements [41]. In addition,
stiffened shell structures use straight and curved beam elements to represent
stringers and frames.

The first type of element used to analyze axisymmetric shells of revo-
lution were the conical elements [25-29]. As in the finite difference and
numerical integration methods, the Fourier series expansion technique was
used to treat nonsymmetric loads. However, as pointed out by Jones and Strome
[421, the-use of conical shell elements to represent curved shells sometimes
gave inaccurate results. These inaccuracies were predominate in problems
where distributed loads induced large membrane stress resultants. Development
of meridionally curved shell element [28-30] permitted a more accurate ideali-
zation which yielded improved accuracy.

Similarly, the first elements used to represent general curved shell
structures were flat triangle elements [31]. The flat element stiffness ma-
trix was improved by many investigators [21-23, 32]; however, it still has
the same inadequacies as those encountered with the conical element, and may
not always give accurate results for curved shell structures [33-37]. To
overcome this deficiency, many investigators have been working on developing
an adequate curved shell element [33-37] which satisfies the proper conver-
gence and rigid body conditions. This work has included using more degrees
of freedom per node to represent the shell deformation as well as using more
nodes to represent an element. In both cases the complexity of the element
stiffness matrix is increased as well as the computer computational time.
Even so, there does not appear to be an% ineral curved triangular or quadri-
lateral element which completely satisfies all convergence and rigid body
conditions.

Two- and three-dimensional solids are tre3ted using either the axisym-
metric triangular ring element or the general solid element (e.g., a tetra-
hedron) [38-41]. The first axisymmetric element used a linear displacement
field to represent its behavior. It was found, however, that for some prob-
lems, the stresses in contiguous elements would be greatly different if the
mesh was not exceptionally fine. This problem was reduced by combining tri-
angular elements to form a quadrilateral element, and then calculating
stresses for the quadrilateral element or by averaging stresses of elements
attached to the same node. Improvements in the solution were also obtained
by ueing a quadratic displacement to represent the element, and adding nodes
to the sides of the elements [41].

Other techniques to improve the accuracy of solution have been studied
and include mixed hybrid formulations [21] and mixed displacement and force
methods [15].
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(a) Axisyemtric Thin Shell (b) Triangular Flat and Curved
Element Shell Elements

I (c) Axisymmetric Thick Shell (d) Three-Dimensional Solid
Element

Figure 5. Shell Finite Elements
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* 6. PROBLEMS SOLVED USING THE THREE NUMERICAL METHODS

Hartung (451 recently completed an extensive survey and assessment of
current capability for computer analysis of shell structures. This assessment
includes descriptions of major types of problems solved to date by the finite
difference, numerical integration and finite element methods. Table 1 is based
on this information, and shows the types of problems which have been solved by
the three numerical methods.

The table shows that one-dimensional discretization problems have been
extensively studied using all three numerical methods. The finite difference
and finite element methods are more extensively used than numerical integration.
The finite element method has not been applied as yet to buckling imperfection
sensitivity studies.

Two- and three-dimensional applications have not been as extensive as
one-dimensional applications. Furthermore, many of the problems studied in
this classification were done for special geometries and are not generally
available for solving arbitrary shell problems.

7. SUMMARY AND CONCLUSIONS

This review has presented the major features and limitations of the finite
difference, numerical integration, and finite element methcds. Each discrete
method was shown to be based on well founded principles, which guarantees that
the solution error approaches zero as the mesh or step size is decreased. The
finite difference and numerical integration methods have one source of error
(not including computational round-off error inherent in all computerized
methods). This error is due to discretizing the governing differential equa-
tions, and approaches zero as the mesh or step size is decreased. The finite
element method has two sources of error: 1) geometric idealization errors,
and 2) structural idealization errors. The first source is due to representing
the actual shell geometry with an approximate finite element idealization. The
"second source is due to representing the deformation behavior of each element
with only a finite number of degrees of freedom. The error due to geometric
idealization does, of course, vanish when the actual geometry is used. However,
when curved shell surfaces are represented with flat plate elements, the error
may not vanish [42, 431. Errors due to structural idealization can be proved
to vanish in the limit, provided that the deforma-ion modes of the element
satisfy the proper convergence criteria.

All three numerical methods have been extensively used to solve one-
dimensional problems, and if used with the refinements mentioned, gave very
good 'esults. In addition, for one-dimensional problems, all three methot.j
are about equal in ease of application.
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APPLICATION OF FINITE DIFFERENCE, NUMERICAL INTEGRATION,
AND FINITE ELEMENT METHOD COMPUTER PROGRAMS TO SHELL PROBLEMS

One-Dimenslonal Two- and Three-Dimensional
Problem Type F.D. N.I. F.F. F.D. N.Io* _ F°E

Static Analysis
Linear Elastic X X x X X X
Geometric Nonlinearity X X X X X
Material Nonlinearity X X X X

Buckling Analysis
Linear Elastic X X X X X
Geometric Nonlinearity X X x X X
Material Nonlinearity X X
Imperfection Sensitivity X X

Dynamic Analysis
Linear Elastic

Free Vibration X X X X X
Direct Integration X X X X

Geometric Nonlinearity X X X X
Material Nonlinearity X , x X

*To solve two- or three-dimensional probLems, numerical integration must
be combined with another method,

Table i
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Two-dimensional discretization problems can only be solved by the finite
difference or finite element methodo. Numerical integration is not applicable
for thia classification unless it is combined with another discrete method.
The finite element method is the easiest method to apply to two- and three-
dimensional arbitrary shell structures. It can easily handle surface irregu-
larities, variable material properties, and different types of structural
elements. Application of the finite difference method to two- and three-
dimension-' problems has been liwited, so far, to using orthogonal meshes
which are usually equally spaced.

Further work in the three reviewed numerical methods should include the
following:

1. Investigation of advantageous methods of combining numerical integration
with other discrete numerical methods

2. Development of techniques for treating arbitrary nonorthogonal finite
S~difference meshes

3. Development of an arbitrary curved triangular finite element which meets
all convergence and rigid body criteria

If a conclusion can be made from this review, it would be that each of
the discrete numerical methods presented exhibits some unique features that
make it a valuable shell analysis method.
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QUESTIONS AND COMMENTS FOLLOWING GREENBAUM'S TALK

COMMENT: When you listed the errors involved in the finit.

difference method, I think that you omitted geometric idealization errors.

This is the same kind of error that you listed for finite element methods.

For example, in a one dimensional shell of revolution problem, if I tak..

large intervals between node points along the meridian, then I'm going

to get poor answers by either method because of geometric idealization

error.

GREENBAUM: Let me restate what I said. In the finite difference

method we discretize the governing equations. However, in those govern-

ing equations we actually do treat, for example, the curvature of the

shell and we do express the curvature at each nodal point. Now in the

finite element technique, however, when we represent the same structure

with a flat element we do not include the curvature of the element. This

is what I really referred to by the phrase geometric errors.

COMMENT: On the same question I'd like to comment that there

is a close connection between the type of errors in the finite and the finite

difference methods. I think you use finite differences in the finite element

method in as much as you base it on the variational equation. You approxi-

mate the derivatives in the energy integral by their finite difference approxi-

nmations and then you perform a numerical integration. As you mentioned,

you can derive equations based on finite differences which coincide with

equations based on finite elements. If you can come up with the same

equations, the errors must be closely related in both methods.
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I'd like to comment further that you didn't mention mixed methods in your

list of methods. While they are less well known, I know of one mixed

where a curved triangular element was devised and excellent practical

results were obtained with it. However, no theoretical convergence proof

was provided for the method.

QUESTION: In equation 4, you included only linear terms. If

you have nonlinear terms, would you comment on the way in which this affects

the finite difference formulation, the solution procedures used and I

advantage which might accrue to finite difference or finite element ods?

Is the bandwidth of the matrices affected?

GP.EENBAUM: Normally, in a nonlinear problem, you wind lip with

a series of nonlinear algebraic equations. You can use several techniques

to obtain a solution to this set of equations. The most common technique

used today and perhaps the best one from a c(-nvergence standpoint is

Newton's method, in which you essentially assume a solution plus a correc-

tion for that solution and then iterate until the solution converges. However,

the nonlinearity itself does not really increase the bandwidth of the equations.

It just complicates the solution of the final nonlinear equations.

As far as a difference between finite element techniques and finite differ-

ence in treating nonlinear problems, this depends upon the background of

the analyst. I have heard it said by finite difference experts that finite

difference techniques are easier to use and, of course, similar statements

have been made by finite element experts. So I really would leave the

question as to which method is better, from the linear or nonlinear standpoint,

to the individual investigators. I really could not distinguish a difference
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there myself between finite difference and finite element.

COMMENT: I believe that Dr. Dupuis of Brown has developed

a curved triangular element which is compatible and convergent. Some of

the results are shown in his paper to be presented tomorrow.

QUESTION: I guess my question stems from ignorance about

the finite element method. I don't really understand whether we are dis-

cretizing the structure in the finite element method. Suppose we take a

general curved shell and divide it into small regions without discretizing

the structure at all. Now within each region we assume the displacement

to have a certain polynomial form with undetermined coefficients. We then

fori.. the energy expression and minimize it with respect to these coeffi-

cients in the presence of constraint conditions between the regions which

have to do with displacement compatibility. Now if we set up the problem

in the way that I've just outlined, what are the differences, say, in that

method and the finite element method? And if there are none, then I

don't see where the structural idealization comes in.

GREENBAUM: That type of technique could be uwed to essentially

derive an element stiffness matrix; that is, you could use the actual shell

geometry. You also could use some numerical technique to integrate the

actual geometry over the proper thickness and the proper surface. Strictly

speaking, if yuu did this, it would be called the finite element method.

However, I would like to point out that that is not normally how the finite

element method is used in practice. In practice we normally discretize

the structure with an assemblage of elements which do not actually repre-

sent the real geometry. They approximate it but they are not exact.
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COMMENT: I was wondering if you had given some thought to

representing .¾. undeformed geometry using things like Coon surface patches

which people at General Motors and other places use to model surfaces. I

think it might be appropriate in finite differences in locating points on the

surface and in finite elements in defining the geometry for making your

integrations. Maybe some of the surface representation work that's been

done around the country by people not normally in structural analysis

might be interesting to investigate,

COMMENT: I' .e heard some vague comments concerning various

other methods of solving large shell problems. One of them is a spline fit

method and the other would be a direct search method. Can you make any

comments on the appropriateness of these techniques for very large problems?

GREENBAUM: I would say that the energy search technique is a

procedure that we use to soive the final equations; it is not, in my esti-

mation, the method itself. For example, the finite element method can

employ direct energy search techniques. So I would label this as a

mathematical tool to solve the final algebraic equations but not to be a

new numerical method. I'm not familiar with the spline technique you

mentioned.

QUESTION: You really didn't dea? with the force method of

structural analysis and did not refer to the force method of getting the

stiffness element. Would you explain why? Paul Denke has warned us

that the stiffness method can fail due to loss of numerical significance

when element stiffnesses vary greatly. Experience at rather

crucial times in development programs has indicated that this
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does happen and the force method, again according to him, is not subject

to this sort of failure. I think this is a fact we should z,.t least continue

£ to recognize.

GREENBAUM: I'm afraid that my experience with the force method

is rather limited. However, many people believe that the force method

is extremely hard to use. The displacement method, on the other hand, is

a lot easier to use and yet is more general, and hence they tend to use it.

If there is a force method exponent in the audience, I'd prefer to leave it

to him to answer that.

COMMENT: Perhaps the following remarks will help. We set

Ir up equilibrium conditions and continuity conditions within the total structure

at a finite number of node points, using a finite number of force variables

and a finite number of displacement variables. We can set up the governing

equations for this system consisting of equilibrium conditions and displace-

ment continuiti conditions at all the nodes of the structure. If we then

attempt to solvv the equilibrium conditions among the forces first and

thereafter the continuity conditions, we arrive at the force method. And

this method requires that we designate in one way or the other the so-called

redundant forces which Denke and others have accomplished by the so-called

structural cutter or automatic selection of the redundants. In the displace-

"ment method, the continuity condition is first resolved by the assumption

of a unit displacement and then the equilibrium conditions at the nodes

are set up in terms of the displacements. The elements which are used

in these two methods could be the same type. They do not have to be in

any way subject to the restriction that a force element has to be used in
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the force method or displacement method developed element in the dis-

placement method. Once the selection of the redundants, which is the.

most difficult part of the force method, has been made, from that moment

on the force method is as easy to use as the displacement method. You

can always make a badly behaving structure or a well behaving structural

model in the two methods.

WALTON: Each chairman has been asked to close his session

with a summary of at least what he considers the important points raised-

From my own personal point of view the most important thing said was

Dr. Stein's statement in favor of shared computer programs. I concur.

I too believe that the test of use by many different people in different

institutions is the best way to hone a program to excellence. I would

add that mere distribution' of computer programs, however, is not

sharing in this sense. It is essential to share the experience with them

as well. A point in this connection which Dr. Stein did not raise but which

I think is impo-tant concerns the matter of confidence in a program, Too

often we find the situation where a program will actually have the capability

to provide us with information on which to base a better engineering decision

but engineering management will fall back on older and more conservative

methods of judgment simply because there is not a broad enough basis of

confidence in a new program. If a program is good and many people use it,

then many people know it is good and it becomes much easier to induce

management to actually cut metal on the basis of the program results.

It is noteworthy, I think, that both authors agreed on the existence of

basically three significant approaches to numerical analysis of shells.
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Finite elements, finite differences, and forward integraticn. I was interested

in Dr. Greenbaum's assessment that all three methods worked for the

essentially one dimensional problems, and that for this class of problems

all three are about equal in ease of application. I would like to note what

I consider an important exception to Dr. Stein's statement where he said

that the computer has not had much of an impact on analytical solutions,

that is, exact solutions. It was only through the advent of the

digital computer that it became possible to compute exact exponential

solutions of the eighth order equations for cylindrical shells as first pro-

posed, I think by Flugge, and implemented by Dr. Forsberg of Lockheed.

Finally, I think we should all take note of Dr. Greenbaum's evident feeling

and I did not hear it challenged that a truly adequate finite element does not

yet exist. I think we should before this week is out try to bring to the sur-

face the reasons why such an element is so long in forthcoming.
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A SURVEY OF SPARSE HATRIX TECHNOLOGY

Ralph A. Willoughby
IBM Thomas J. Watson Research Center

Yorktown Heights, New York

AJ.STRACT

Efficient techniques for handling sparse matrix calculations are an

important aspect of problem solving in a wide spectrum of applications. There

is a long history of mathematical development of iterative techniques for the

numerical solution of partial differential equations which will not be system-

atically surveyed here. Insrzad the emphasis will be an direct methods for

solving Ax-b for x where most of the elements of A are zero. These latter

techniques have arisen independently in such application areas as computational

circuit design, linee.ý programming, power systems, and structural mechanics.

Each application area Involves a certain set of special features relative to

sparse matrix problem classes. These features are exploited in program

packages to achieve a high degree of efficiency for the application. There

is an inner core of common mathematical and computational features, and an

important aim of this paper is to survey these "common features."

The comments in the paper concerning the interaction of sparse matrix

technology with the architecture of the hardware and systems software of

evolving information processing systems are those of the author himself. They

reflect his point of view as a long-time numerical atalyst aud computer iuser

in various large problem areas. Details concerning existing and planned

hardware and software systems are beyond the scope of this survey.

*
Extended version of invited lecture at the Conference on Computer Oriented

Analysis of Shell Structures, Lockliced, Palo Al o Research Laboratory 'August
1970) co-sponsored by Lockheed Missiles and Space Cor-pany, Palo Alto, California
and Air Force Fllght Dynamics Laboratory, W'right-Patterson Air Force Base, Ohio.
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I, IINTRODUCTION

The emphasis in this -,irvey is on recent developments in direct methods

jor solving sparse matrix problen2. The.se are a large number of computer

programs for sparse matrix calculations but only a relatively small number

of basic mathematical ideas underlying these programs. A primary objecZive

of this paper is to provide an understanding of these concepts.

The concepts underlying sparse matrix calculations fall into four

classes: (a) combinatorial analysis of the ordering of rows and columns,

(b) floating point oper-Li'.ns on scalars, vectors and matrices, (c) data

management, and (d) programming. Prograxmming is a critical aspect of the

efficiency of the sparse matrix calculations, but it is beyond the scope of

this paper to discuss progra~ndng details.

Frequent use is made throughout the paper of three letter mnemonics for

important concepts. A mnemonics dictionary iG provided in section 14, and this

also serves as an index for where these concepts are discussed. An extensive

bibliography and author list is also given in section 14. Three parts of the

bibliography are organized chronologically by subject. They are: E. Eigenvalues

and Eigenvectors, Sparse Mattices; F. Computer Architecture, Parallelism,

Memory Hierarchy, Data Management; and 0. Preserving SparSeness. There are

119 more references and these are listed in alphabetical order of the first

author.

The primary motivation for a number of people working in sparse matrix

research has been the computational design of large scale integrated circuits.

This work will be discussed briefly in section 2.

Problhm modeling is an important related concept, but will only be mentioned
in passing in this paper.
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Success with this part of sparse mtrix technology led to an investigation

of other application areas. Literauare search and personal contact focused

the author's attention on linear programming [73], power systems [91], and

structural mechanics [103]. It became clear that cross fertilization in the

fieid of sparse matrix computations would be very useful. Thus, a Symposium

on Sparse Matrices and Their Applications was held at the IBM Research Ce.nter

on September 9-10, 1968. The table of contents for the proceedings [112] is

given in section 3, along with the table of contents for a similar conference [78]

organized by the Institute of Mathematics and Its Applications and held at Oxford

riversity, Englarn, April 6-8, 10 . When refcw•ence is made to papers in these

proceedings, it is via the mnemonics SMO ('parse Matrix Oxford conference, p. 3.2)

and SW (Sparse Matrix Yorktown conference, p. 3.3).

Algorithm preliminaries are presented in section 4. .., section 5, the

following algorithms are discussed: Crout Triangular Factorization, Row

Gaussian Elimination, Product Form of the Inverse, and Elimination Form of

the Inverse.

Sy•mnetric matrices are the subject of section 6, and band matrices together

with band-like domains are discussed in section 7. Some comments are also

made in section 7 about certain itetative methods. Those aspects of graph

theory which directly relate to the ordering problem for sparse matrix calcu-

lations are discussed in section 8. Partitioning techniques are considered

in section 9.

If Pivoting For Size (PFS) is involved in a disorderly sparse matrix,

then the tradir'tal strategies for pivot choice are often repiaced by threshold
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pivoting. This ie especlally true in the linear programming area. There

is as yet no adequate treatment for the error analysis associated with this

strategy. However, a sketch of the general error analysis situation in

num.erical linear algebra is giien i:. section 10. Also, a detailed discussion

of matrix reducibility is included here, since it is related to some aspects of

error analysis.

Sections 11-13 concern various aspects of the relationship between sparse

matrix technology and the architecture of the hardware and systems software

for information processing systems.

At least, as far as the author is aware of in the existing literature.
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"2. SPARSE MATRICES IN NETWORK DESIGN

A novel approach [41] to the numerical treatment of sparse matrix problems

has been motivated by computational design of large scale integrated circuits.

This section is devoted to a discussion of the sparse matrix technology asso-

ciated with a special class of computational design problems; namely, the

optimal design of transistor switching circuits [41; G-46].

The technology is aimed at achieving efficiency in the numerical iolution

of time dependent ordinery differential equations. One does not necessarily

have the property of diagonal dominance nor of symnetry. Moreover, the coeffi-

cient matrix can have a highly irregular sparseness pattern. This level of

generality in the coefficient matrix is also present in the sparse matrix

problems for linear programeing.

The computational circuit design problems have a special feature; namely,

the sparseness structure of the coefficient matrix is fixed over a large

number of cases. The systematic exploitation of this feature has resulted in

a high level of efficiency for the computational design programs which use

this sparse matrix technology.

In the subsequent paragraphs, a brief description is given of the mathe-

matical aspects of the computational design of transistor switching circuits.

One is concerned in these problems with determining how thi transient switching

behavior depends on a vector of design parameters, p, and modifying p so

that the behavior is "optimal." This behavior is characterized by the solution.

C-46 means reference 46 in #..a Preserving Sparseness part, G, if the biblio-
graphy at the end of this paper.
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w w(t), to the initial value problem,

= £(t,w,p) (2.1)

on the time interval, t0 <titF. Associated with (2.1) is a criterion

function C - C(p) > 0, and the aim of the analysis is to determine the vector p

which minimizes C. In order for optimization studies of this type to be feasible

for realistic circuit models (e.g., 100-1000 equations in (Z.1)), highly efficient

numerical integration techniques e :e required.

The system (2.1) was usually stiff (i.e., there were widely different

time constants in the system), and, as a result, predictor-corrector and explicit

Runge-Kutta methods were not suicable. Liniger and the author proposed [56),

along with others (see (561 tor references) the use of an "essentially"

unconditionally stable integration formula for (2.1) of the implicit form,

wn+l - ahý n+1 R, (2.2)

where R involves w, * for t<t nand tn+l t + h. The nonlinear system

whr- ivlesw frtt, tn xi

(2.2) must be solvced by a strongly convergent method, and Newt..n's method

was proposed.

(I- ahJ(k)) L. R + "hý4 (k) (k) (2.3)

In+1 - wn+1 ,

In order to control the growth of roundoff error, Ac is important to solve
first for %,w in (2.3) and the,: find tae new w from (2.5). The form '2.3)
is closely rel:,tod to the ntcthoe of Ite'ative Refinement (64, 66] for linear
algo.briic equnlaions, and this wi01 be Ci-cussed later in sections 4 and 10.
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(0) (2.4)
n+l 'n'

(k+l) (w<) +bw, (2.5)W n+1 " n+l I 25

w'.re J - af/Bw - Jacobian Matrix. In [G-46], a similar approach was adapted

to a modified form of Gear's method.

It has been repeatedly shown that this strongly implicit approach greatly

,elaxes the conditions controlling the choice of At - h. Efficiency of the

method depends critically on the ability to solve (2.3) fast, reliably, and

automnatically.

System (2.3) is of the form

Ax - b, (2.6)

and, fortunately, the coefficient matrix, A, is usually sparse. Moreover,

(2.6) will be solved a large numer of tites, but SSI(A)*(Sparseness Structure

Information of A) is fixed, and this has been an important aspect of the sparse

matrix technology developed in this area.

C. W. Gear, Proc. IFIP Congress, Edinburgh. Scotland f.1968) pp.A81-A85, [128].
**That is, the number N(A) of nonzero elaments if A is <<n 2 , where A is an

nxn matrix.
For notational convenienice, SSI(A) is often represented by the Boolean Sparse-

ness Matrix (BSM) associated with A, where 1 means nonzero. In sparse matrix
programs, however, a Threaded index List with Pointers (TLP) is more appropriate
[72]. See also Zollenkopf's paper SMO-6 [78].
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The matrix A is not positive definite symmetric nor is it diagonally

dominant. Moreover, SSI(A) is arbitrary. However, if one fixes, a priori,

the order in which the equations and unknowns are processed in Guassian

elimination or in triangular factorization, then the entire sequence of

machine operations needed to solve (2.6) is aleo determined, a priori, simply

from SSI(A). The sparseness in b could also be utilized, but usually b is

considered full.

Let A - LU where L - (9 ij), 't = 0 for J>i (lower triangular), U - (u j),

-i u u 0 for J<i (unit upper triangular). It is convenient to introduce
ij

a composite L\U matrix as C - (c ) where c 9i for Jji and c - uij forii i i ii i i
J:i. Each element of C is generated by a single formulaC

m-1
c ij ( -3 k1cik c kj)d (2.7)

c k-l k

where m = min(i,j) d 1 for i>J, and I - c-c if i<j. If ai- 0 and,
ij

for l<k<m-l, cik Ckj - 0, then c j is "logical f zero." Otherwise, a reduced

formula defines c ij. In this fornmla only nonzero numbers occur.

Gustavson created a highly efficient Symbolic Factorization Program (SFP),

GNSO (GeNerate SOlve) [40]. GNSO uses SSI(A) to generate a linear (loop-free)

code SOLVE, which is specifically tailored to the zero-nonzero structure of A.

Only nonz,..o quantities are stored and processed. SSI(C) and operation counts

in SOLVE are biproducts of GNSO. GWSOIN is similar to GNSO, but useq TLP's to

represent SSI's. A FORTRAN listing for GNSOIN is available upon request to

s k - 0 by definition if 8<a.
kna
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S Gustavson. These ideas have been refined and extended in [G-46].

The program SOLVE can be very long, and as a result, Chang (112, pp. 113-

122] created a program SFACT, which uses SSI(A) to generate SSI(C) in the

context of the Row Gaussian Elimination (RGE) programs developed by Tinney

and his colleagues [71, 72, 83, 98].

Developments of this type and others have resulted in vastly improved

network analysis programs and work is still continuing in this area. However,

much of the work done is of a general nature not particular to network design

and can be utilized in other application areas. In particular, computational

design in engineering is, itself, a vast area which can greatly benefit by

advances in sparse matrix technology. It is expected that these advances will

continue for many more years.

Presented at Zhe Sparse Matrix Yorktown (SMY) conference. The table of contents
for the proceedings [112] are given here In section 3 along with the contents
for the proceedirgs of the Sparse Matrix Oxford (SMO) conference (78].
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3. SPARSE M•rRIX SYMPOSIA

Sparse matrix problems play an important role in a num.ber of application

areas; e.g., (a) Partial Differential Equations (PDE's) [28, 101, 102], (b)

electronic circuits [16], (c) linear progranriing [73], (d) power systems [91],

and (e) structural mechanics (103]. Sparse Matrix Algorithms (SMA's) have been

extensively developed in each application area, and special features have

been exploited in program packages to achieve a high degree of efficienf.y.

There is, however, an inner core of conmon features, and two recent sparse

matrix symposia 178, 112] were organized to heip idantify some of these

features and to survey the field of sparse matrix methods.

Certain important topics were basically not covered in either symposium;

e.g., (a) SMA's for PDE's,* (b) eigenvalue, eigenvector calculations [E-Rl],and

(c) error analysis [109]. However, many i'iportant topics relating to sparse

matrix problems were covered, and certain of these topics will be discussed

in other ,,ections of this paper. As an aid to the reader and for referencing

purposes, the tables of contents are given on the succeeding pages for the

two conferences.

Weinstein [112, pp.139-148] presented a paper on Stone's method [22,23,93,104]
for solving certain classes of PDE's.
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SMO - SPARSE u.,:RIX OXFORD CONFERENCE PROCEEDINGS [78]

Large Sparse Sets of Linear Equations

J. K. Reid (Ed.), Academic Press, London (1971), organized by the Institute
of Mathematics and Its Applications, and held at Oxford University, England
(April 1970).

TABLE OF CONTLN'TS

1. Beale, L., Sparseness in Linear Programming.

2. Allwood, R., Matrix Mechods of Structural Analysis.

3. Larcombe, H., A List Processing Approach to the Solutiou of Large
Sparse Gets of Matrix Equations and the Factorization of the Overall
Matrix.

4. Walsh, J., Dirczt and Indirect Methods.

5. Ashkenazi, V., Geodetic Normal Equations.

6. Zollenkof, K., Bi-factorization - Basic Computational Algorithm
and Programming Techniques.

7. Jennings, A., Tuff, A., A Direct Method for the Solution of Large
Sparse Symmetric Simultaneous Equations.

8. Baumann, R., Sparseness in Power System Equations.

9. Churchill, M., A Sparse Matrix Procedure for Power Systems Analysis
Programs.

10. Harary, F., Sparse Matrices and Graph Theory.

11. Tewarson, R., Sorting and Ordering Sparse Linear Systems.

12. Baty, J., Stewart, K., Organization of Network Equations Using
Dissection Theory.

13. Carre, B., An Elimination Method for Minimal-cost Network Flow Problems.

14. de Buchet, J., How to Take into Account the Low Density of Matrices to
Design a Mathematical Programming Package. Relevant Effects on Optimi-
zation and Inversion Algorithns.

15. Ogbuobiri, E., Sparsity Techniques in Pcower-System Grid-Expansion
Planning.

16. Reid, J., On the Method of Conjugate 6%.. a2nts for the Solution of
Large Sparse Systems of Linear -quations.

17. Willoughby R., Sparse Matrix Algorithms and Their Relation to Problem
Classes and Computer Architecture.
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SHY - SPARSE MATRIX YORKTOWN CONFERENCE PROCEEDINGS [112]

Organized and sponsored by the Mathematical Sciences Department, and held at
the IBM Thomas J. Watson Research Center, Yorktown Heights, N. Y. (Sept. 1968).

TABLE OF CONTENTS

1. R. A. Willoughby, Introduction xi - xxi
*

2. F. G. Gustavson, W. M. Liniger, R. A. Willoughby, Symbolic
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*
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Sparse Matrix Techniques in Two Mathematical Programming Codes. 85 - 100

11. E. L. Palacol, Tle Finite Element Method of Structural Analysis. 101 - 106

12. P. Wolfe, Trends in Linear Programming Computation. 107 - 112

13. A. Chang, Application of Sparse Matrix Methods iii Electric
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14. W. M. Liniger, R. A. Willoughby, Efficient Numerical Integration
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15. D. M. Smith, Data Logistics for Matrix Inversion. 127 - 138

16. H. G. Weinstein, Iteration Procedure for Solving Systems of
Elli! -c Partial Differential Equations. 139 - 148

17. r. canin, Jr., Computer Methods of Network Anallsis. 149 - 154

18. C McCormick, Application of Partially Banded Matrix Methods
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:k and Open Questions. 159 - 184
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4. ALGORITHM PRELIMINARIES

A. General Remarks

There are a large number oi methods which take advantage of special

properties of the coefficient mr.itrx, but if A is simply a general nxn sparse

matrix, then there are thrue main types of direct sparse nmatrix algorithms for

solving Ax=b for x. These are based respectively on Gaussian elimination,

triangular factorization, and Gauss-Jordan complete elimination. There are

methods basad on orthogonal transformations, such as the QR method [E-l,-2]

which are very important for eigenialue-eigenvector calculations, but they

are not, in general, economical when applied to unsystematically sparse matrices.

Each direct algorithm has two stages: FIN (Form of the INverse) stage,

that is, the factorization or transformation of A into a form appropriate

for repeated application of the second stage; (2) SUB (SUBstitution) stage,

that is, the applying of the FIN(A) to the vector b.

Even if there is a single right hand vector, b, the SUB stage is often

applied repeatedly because of the method of ITerative Refinement (ITR) [64,66]

which will be described later in this section.

If it were true that A-1 is sparse, and many SUB stages are to be

performed, then it would be an easy matter to code a sparse matrix-vector

multiplication and then form x A-lb. However, A71 is logically full unless

A is reducible; that is, unless B - P IAP2 is Block Lower Triangular (BLT) for

some pair of permutation matrices PI,P 2 125,113; G-6,-l0,-l1,-20,-29].

Sparse Matrix Algorithms (SMA's) are de=igned vo preserve sparseness in

FIN(A) in the context of numerically stable pivoting. Matrices which are

That is, a few applic,.tions of ITR are sufficieut to achieve desired accuracy
in the solution vector.
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DID (Diagonally Do..inant) or SYP (SYr.netric and Positive definite) have the

desirable feature of allowing diagonal pivoting in any order. Here the order-

ing to prv.sirve sparseness (see part C in the bibliography at the end of the paper

for references) strategies can be applied a priori to SSI(A), This is followed

by PDI): (Plivoting dcown the Diagonal in Natural order). If, also, SSI(A) is fixed

over a large number of cases, then SFP's are important.

For some classes of problems PFS (Pivoting For Size) is required, and many

SMA's have a PFS version. Of course, for PFS to be effective, the matrix must

not be poorly scaled.

A SMA designed to solve Ax=b for x can be extended to solve AT zc for

T T T T
z, where A is the transpose of A. The system A z=c is the same as z A c

so in the second stage, one replaces column SUB by row SUB.

B. Goals of SMA's

(1) Avoid operating with and storing zero floating point numbers.

(2) Order equations and unknowns to achieve efficiency in operations

count and/or access to information (data and code).

(3) Achieve sequential memory referencing both at the eleiaent

and at the vector level.

(4) Have efficient methods for handling the data managemený aspects of SMA's.

This is especially true for SYI(SYmmctric Indefinite) matrices [13,14; E-8, -2511
and foe the calculation of eigenvalues and eigenvectors by the method of INI
(INverse Iteration) [E-Rl, -18].S~**

Thus the usual A(I,J) notation is replaced by A(K), say, where A(K)#O.

The simplest schemes store and process the nonzero ai 's row by row or column
by colu.mn, but other schemes, such as rows on one side 6f the diagonal and columns
on the other sidc, ire also used.
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(5) Incorporate automatic segmentation for efficient use of surial backup

store on large problem's (see section 12, and part F of the bibliography).

(6) Exploit special propecties of the matrix and/or the problem class.

C. Basic Macro-Operations (MOP's)

a - ,a -aY/6 , (4.1)

a ( -v Tw)p , (4.2)

V V-ow , (4.3)

T T T
v T+ v -ow ; (4.4)

where a,S,y,6,a are scalars; p-i or p-6 (6=pivotr; v,w are column vectors;

T
and v w = Ev iwi= inner product.

MOP (4.1) is the classic element transformation which is used in each pivot

step for Gaussian elimination, whereas (4.2)-(4.4) are vector oriented MOP's.

MOP (4.2) has the advantage of requiring only one temporary extended register

(or storage location(s)) to hold the accun:ulatio;i of extra precision product,.

viwi. On the other hand (4.3) and (4.4) are inherently parallel. MOP (4.2) is

basic in the FIN stage for triangular factorization, whereas it is (4.3) or

(4.4) in the FIN stage of Gaussian or Gauss-Jordan elimination. Which of the

MOP's are involved in the SUB stage depends on the type of substitution (row

or column) and on how the matrices Involved in the FIN(A) are stored.

* "" meais "is the result of evaluating" as in the programming language APL [47].

This language has many features which make it desirable for representing SMA's
and other algorithms which deal with arrays as uell as a variety of numbers such
as integers, Boolean 0 and 1, and floating point. APL\360 Primer Student Text is
available through IBM branch offices. Note that expressions (4.1)-(4.3) are not
"pure" APL expressions as they stand, since it is not assumed that the reader
knots the powerful operation set and conventions associated with APL.

79

( .,,V ,.•• •,I. .• •..•oV .• • ;•,, ,• ... • , .... •,.,....••.o..••••,•. . . : . .... .... •. ,



If v is being processed repeatedly via (4.2)-(4.4), then it is a common

technique to store v as a full vector, .eros and all. In this way one can

execute (4.2)-(4.4) by merely indexing over the nonzero components of the sparse

vector W.

D. Method of Irerative Refinement (ITR) [64,66]

Assume one ia solving Ax-b for x and an adequate FIN(A) has been formed,

then ITR proces~ds as follows:

(1) Given an approximate solution -(k) (e.g., take x (0) 0), form

r(k) = b -Ax(k) (4.5)

and exit if r(k) and/or x(k) is satisfactiry, otherwise go to (2).

(2) Apply SUB stage to F*N(A) to solve for Ax in

AAx - r (k) (4.6)

(3) Set x(k+l). x(k) + Ax, then go to (1).

E. Elementary Matrices [46, p.3].

The rank one matrix wv , whose (ij) element is wivj, pl -, number of

important roles in numerical linear algebra, and is especially important when

used in the form of an elementary matrix, I + wvT, where I is the identity

matrix. Note that, if E - I + wv T, the.n 6(E) - determinant of E - 1 + V Tw.

-1 T .T -Moreover, if 6(E) 0 0, then E - I -pvv where p - (1 + v w)-I.

One class of applications for elementary matrices are the Methods of

Modified Matrices (MMM's.) [4,8,116-119; 45, pp. 79,83,84 ****. There is a special

One purpose of ITR is to obtain an assurance that FIN(A) is adequate, and the
other is to repeat ITR until a satisfactory x is obtained.

**•
**It is important to forn, b-Ax (k) in extended precision because of numerical

cancellation.

That is, every 2x2 submatrix is singular but at least one element is 0 0.

This is an aspect of liron's method of tearing [52: G-l,-2,-3,-4,-5,-7,-19,-20;
sMo-1,'; sHY[-8].
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sparse matrix version of a ,DIt which assumes that rIN(A) has been formed and

that

T
H - A + wv . (4.7)

The algorithm for solving Mz c for z then proceeds as follows:

(1) Solve Ax=c and Au=w for x and u resper.tively. Comment. Note

that, M=A+wv - A(I+uvT), and, if (I+uv T)z - x, then Mz-c.

(2) Form a x and 8 - vTu. If 1+8-0, then exit with message, "M is

singular," otherwise go to (3).

(3) Form a (1+0)-l a.

(4 ) Form z m x-au and exit normally. Coument. z - (I+uv T)-x -

-1 T)
(I-(l+O) uv )x - x -ou.

An important special class of elementary matrices are those which involve

only one nontrivial column or one non-trivial row; that is, when v7 is a row of

I or w is a column of I, respectively. As is customary, one lets ek

represent the kth column )f I

One has in particular the class of Elementary Column Matrices (ECM's)

whose properties are described below.

(1) Let t = (tlk,..,tkk,...,tnk), and

T tITk - 'k .. .

,- - - !

One also has EEM's, but only 'CA's are dcscrlb-.d since they have been the bnck-
bone ot linear programming ali:ori,:'.s [62,73; 75, vol.2, pp.271-284; G-31].
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Coument. Tk= I + (tk-ek)ek , Tkej a ej for ilk, and Tkek e tk.

(2) Assume k 0 and let Okm tkk • then Tk is nonsingular, and is

trivial to form. In fact,

T I k) (t Dk -

- (I -t' eT)D

where t k -tkkek , a knd D a diag. (1,..,l,p ,1,.l) That is,

"k k

(3) Column SUB. If c = T then c is calculated as follows.

(a) Let a - Pkbk - ck. If a 0, then c-b, so assume a0O.

(b) For Jik, c j b1 -atjk.

Comment. MOP(4.3) is involved here.

(4) Row SUB. If cT . b T kI, then cT is calculated as follows.

(a) If Jik then c j b V

(b) ck = (bk bTt)

Comment. MOP (4.2) is involved here.
(5) Column MbI. Let A'ej a Ae for Vk while A'e k - and

Ae - a 0 aý; that is, the kth column of A' is a', otherwise A' is A.

Algorithm for solving A'z - c for z proceeds as follows:

(a) Solve Ax=c and Atk- a'. for x and t,. respectively. Comnment.
k

"Define Tk as in (1).[ °

6. ..2. : • _ . . - . . _ _ . .. . • .. . . . .. . .. /



(b) If tkk= 0 then At Is singular so exit with res.;e, otherwise

go to (c).

(c) Form z - TkX. Comment. T k is zorme= no in (2) and z is formed

according to (3), then z T x T(A7c)0 (A')- c.
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5. SPARSE MATRIX ALGORITIDS (SMA's). GENERAL CASE

A. General Remarks

In the FIN stage of SMA's there are two pivoting situations, namely

(1) PDN (Pivoting down the Diagonal in Natural order) and (2) PFS (Pivoting

For Size). Wilkinson [1'-Rl, pp. 225-227] has a TRiangular Factorization (TRF)

method with interchanges, which Forsythe (29] published as an algorithm for

the full matrix case. The disorderly sparse matrix is not well adapted

to PFS versions of triangular factorization, but, by keeping row and/or column

permutation lists the other SMA's can be adapted to certain PFS strategies.

B. Notation

A = (au) l-',j<n

L (il), tij=O for J>i (lower triangular)
ui- 1, uijO for J<i (unit upper triangular)

C = composite L\U matrix = (cij)

2Eij for ji

SU uij for J>i

D - diag. (.ii,O22', ... ,9nn) diagonal matrix of pivots,

W - LD-I - unit lower triangular matrix

R - DU - upper triangular matrix

A - LU- WR - WDU.

C. Crout Triangular Factorization

(1)FIN Stage. l,<ý<_n, m<i~n, m4-1<Jjn (m~n),

Band matrices (see section 7) are another case which has been considered [E-8].

As befor-: S - 0 by definition if a<a.
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M-.L

S.-- A -, -, - . . -( Y - -

(2 Fowr SUB Ly- --- -b, 1<m

M-i
u j - JliikUkm'

"tm ai;m Izk

Uj (a1,J YL mkI kJ)Pim

(2) Forward SUB. Ly ,'b, liinn,
m-iYm=(bi -k l) kk)m

(3) Backward SUB. Ux - y, n>i.>,
nX m a Ym - k 1 -1Umkxk"

D. Row Gaussian Elimination (RGE).

Remarks. Here, A w WR, and all storage and processing for A, W, and R is

by rows. W is formed element by element, and MOP (4.4) is used repeatedly in

the FIN stage (this is commonly called the elimination stage in RGE). Column SUB

is the most common situation, and since W md R are stored by rows, forward

and backward SUB has (4.2) as the basic MOP. Only the FIN stage is outlined

below.
1T a

(1) r1 T aT

T T
(2) For 2<k<n, V 4- T

(a) For 1<.jk-l,

wkj = iir~,

4-VT T

V -wkjrj ;

(b) wkk -1, wkj - 0 for J>k;

k

T T T
Let ak - ekA - k row of A, etc.
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E. Product Form of the Inverse (PFI) 4

(1) FIN stage. T T T A I;
n 21

S(a) tI at ^ 3el,

(b) For 2<k<n,

tk = T T ak where ak A
k k-I 1 k k k

(2) SUB stage (column case)

x - A7'b - *- T- b.3
n 1

F. Elimination Form of the Inverse (EFI)

(1) FIN stage: L-7 L. 1 A- U;
n

(a) L - T1 as in PFI;
_ ~ -1_ -

(b) For 2 <k<n let vk Lk 1 " L 1 ak where ak- Aek then

u Ujk for j<kI _

Z jk Zk for j>k;

LkE k

' 1

LI
(c) By a trivial factorization

UwUn . . U2

where

Elementary column matrices (see section 4, part E) are the basic tools in tle

PHI algori thin.
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112) SUB stage (column case)
A-lb U-1 U-1 L-1 L b.

Remarks. The S FI algorithm as presented is column-oriented. However, if one

applies the transpose operation to each formula in the factorization stage of

algorithm F above, the result is a row EFI algorithm, which is an alternate

way of handling RGE. Elementary row matrices which are either upper triangular

or unit lower triangular are the basic operational tool in rot: EFI.

The PFI algorithm has an elegant simplicity ir, its formulation, but it has

the sparseness structire of L\U-l rather than the preferred L\U of the other

algorithms discussed here [G-43].

G. PivotinR Vor Size (PFS)

Remarks. PFS has been a critical aspect of algcrithms for matrices which

are neither positive definite symmetric nor diagonally dominant. The computa-

tional price one pays for this in dealing with full or band matrices is reasonable,

but where the sparseness structure is arbitrary, this is not necessarily the case.
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Care must be exercised in choosing pivots to also preserve sparseness. Clearly,

zeros and near-zeros connot be used as pivots, so 6ome threshold criterion at

least is necessary. This threshold approach has been otandard in LP calculations.

In full matrix and band matrix algorithms, one has two options. The first

is to interchange rows and/or columns to bring the mth pivot element into the

(mm) position. This option has the advantage of simplifying subsequent indexing

operations. The second option leaves the elements in their natural location

and builds instead a row permutation (•'1, 2, . and/or a column permutation

(v 1 ,v 2 , ... ,vn) where (vvm) is the position of the mth pivot. This requires

more involved indexing, but has the advantage of not requiring the interchange

of compacted vectors of different length.

For simplicity PFS will be discussed only for the PFI algorithm, but a

similar extension can easily be made for the RGE aud EFI algorithms. The Crout

algorithm is less suitable for this purpose when sparse matrices are involved.

The PFI algorithm with PFS is essentially the same as for the one given.

th thexcept that at the k step, one deals with column v of A and with the P

component of this vector as the pivot. The nontrivial column of Tk 1 is the

Ukh. After n steps, the A matrix has been transformed into a permutation, P,

of the identity matrix, that is

A p T1 T,

iIwhere for lck<n, i v- k lJj vks

P e e
j
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and

P e

sr •
sir ce

p-l A 4

!,e v j-ermutation is iurroduced to. partially preserve sparseness in the

-.m o: -,' . r . . For .xamplc, one could process the columns in order of

in--reasinp ,er of nonzeros in each column. Becauae of the L\U- 1 sparseness

structure of the form of the invcr, e in the PFI algorithm, a standard practice
,

in Lr as been tr, reorder rows and columns relative to singletons to reduce

the matrix .o tbh-- special block lower triangular form shown below.

*- o. zeros

zero
or

nonzero

A71 also has this same form, but, in fact, only the kernel matrix M has to be

factored if the PFI algorithm is suitably modified. The set of SMA's presented

here certainly do not represent a complete list, but thay provide insight into

the character of SMA's for the general case.

A singleton row (colurn) has exactly one nonzero compone.t. As in Gaussian

pivot reduction, one strika- •ut the row and colurn of the pivot element and

continues to search for singletons.
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S~~6. SYFB4ITRLC MATIR1C:S

A. General Remarks

If A - AT (i.e., a~j - ajj) and diagonal pivoting is feasible, as in the

case of positive definite or diagonally dominant matrices, then considerable

saving can be achieved in both storage and operations count. However, in the

case of sparse matrices, this requires more intricate indexing because both row

and column access to elements is required in th6 factorization stage.

It is interesting to note that, if A ia even symmetrical in sparseness

pattern and diagonal pivoting is feasible, then advantage can be made of this

in the design of a factcrization algorithm. This is the motivation for

Zollenkopf's Bi-Factorization (BIF) Algorithm [78; SMO-6] in which he operates

on the left of A by a sequence of elementary column matrices, and at the

same time, on the right by a sequence of elementary row matrices. At the

end, A has been transformed into the identity matrix, and one thereby has

created a Form of the INverse (FIN). This is similar in character to Markowitz's

Elimination Form of the Inverse (EFI) [62] and is an extension of techniques

pioneered uy Tinney and his colleagues [G-14,-34;71,72]. Zollenkopf's article

is very detailed, with flow charts, diagrams of the various matrices and examples

of handling SqT's via Threaded index Lists with Pointers (TLP's).

T TA
As before, let A - LU - WR WDU. Since A - AT, then W - UT, and thus

u wi A Z If p > 0 for lj<_n, then one also has the

- T 1/2
Cholesky factorization, A - GGT, where G - WD The main point of using

*In Power System Analysis [91] A is often complex symmetric with diagonal

dominance.

Which are also lower triangular.

Which are also unit upper triangular.
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the Cholesky factorization over A U DLU is that ViP(T+C-ý "'(l+ E) so that

one achieves an extra bit of sirnificancc in the pivots. This has to be balanced
J

against the extra cost of calculating Z.' instead of I. if E. < 0

or is complex, then the r'quare root approach is not considered.

T

B. A =U DU F'actorization

(1) Remarks. The upper triangular portion of A will be stored and

processed row by row. As the processing proceeds, the diagonal

jelement a is replace~d by PM 9 and am is replaced by
M ~mm m

I for m+lýJ~p. Recall that

M-11

jm jm k jk ukm

and that uk Z t Ck The element uk will be formed when it is

first needed, 3nd it will then replace , which is no longer needed.

The diagram below illustrates this scorage situation.

L

'-49 jkj
I ~I

I 'A

Only a full mratrix version is presented since the sparse -matrix algorithm
requires r.iore detail than is suitajble for a survey such as tlV'.
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(2) Details of Alrith!.
-15

a. P€ al"
b. kl =alk for 2<k<n.

c. DO for 2<m'nn

1 IX) for mrk-n, c a

2) DO for lk<•t-l;

a) d m k,

b) DO for m<Jjn,

ci = C -Z d,
j jk

c) uk. -d (stored in (k,m) location in place of 2r.).

3) Pm Cm-1 (stored in (m,m) location in place of ao)

4) DO for m4-]<k<n.

tkm ck (stored in (m,k) location in place of ak).

Comments. The quantities, Ck, :n<k<n, are the partial accumulated

inner products. For accuracy purposes it is desirable to use

extended precision in the formation and storage of the c k'S.

C. Conjugate Gradients Method (CGM)

Reid [78; SMO-161 wrote the following in the introduction to his paper on

CGM.

"The method of conjugate gradients has been known for some time, having
been developed independently by E. Stiefel and by M. R. Hestenes with the
cooperation of J. B. Rosrer, G. Forsythe and L. Paige, but it has received
little attention recently. It is difficult to see why this has been so since
the method has several very pleasant features when regarded not as a direct
method for the solution of full systems -ý equat.ons but as an iterative
method for the solution of large and sparse systems. It is our purpose here
to explain these features and to report on some numerical experim'ents which
compare the various versions of the algorithm that are available."

Comment. p ,u have been formed for lk<m-l, k+l<n, k+l<i<.-l, but jk

is needed now ohy yotr mj<jfn.
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Livesley [57, p.37] found difficulties in using CG'I in structural

problems. Others seem to have found difficulties which caused them to abandon

CGM as a basic sparse matrix algorithm for SYP (SYmmetric and Positive definite)

matrices. Stanton and his colleagues, on the other hand, are systematically

developing these methods for structural mechanics problems [33, 92]. They

report that preconditioning via scaling of the coefficient matrix is an

important practical consideration.

Assuming that CCX can be made numerically insensitive to accumulated

round-cff error, and can achieve sufficiently accurate results in a reasonable

number of sceps, then CGM has an attractive feature of effectively utilizing

the sparseness of the A matrix, no matter how irregular the sparseness struc-

ture is. There are only three basic macro-operations involved in the calculation,

T
namely, v*-Av, a= w v, and v+v+5 w. Here again, one would treat v in each case

as a full vector but store A compactly row by row.

Further discussion of CGM is contained in [7, 19, 20, 34, 35, 43].

D. SYnmetric Indefinite (SYI) Matrices

If - M T but H is neither positive definite nor diagonally dominant,

then the problem of solving Mx - b is more complicated. Of course, one can

ignore the symmetry property of A and proceed to PFS [E-Rl]. How-

ever, more storage and operations are required by thic approach. A different

approach has been taken in [13, 14]. Here, one applies a mixture of scalar

and 2x2 block diagonal pivoting so chat symmetry is preserved in the reduction

process. This approach has been shown to be stable when the proper care is

exercised in the choice of the 2x2 blocks.
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An interesting PFS strategy is discussed in [E-25] for the case in which

the coefficient matrix is of the form M - A -XB where X is real,

A and B are real band sym-.etric, and B is positive definite. The pivot-

ing is stable but, also, tae product of the first k pivots is the determinant

of the t.rst k rows and columns of N1. The Sturm sequence property is then

used to determine the number of eigenvalues which are greater than X [E-Rl,

p. 3 0 0].

I
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7. BAND MATRICES AND BAND-LIKE DOMAINS (BLD's)

A matrix A - (ajj) is said to have bandwidth 2k+l if k is the smallest

index such that a ij- 0 for li-jl> k. A bandwidth of 5 for an 8W8 matrix is

shown below.

Sd 12  a1 3

"21 a22 '12J a24

*31 a3 2  '33 '34 35

Aa 4 2  a 044 45 a4 6

a53 a 5 55 a5 6  a57

a64 '.5 66 a6 7  *68

a75 a76  1a 7 7  a78

a 86 &87 '88

Band matrices are an important special class of sparse matrices, and many

efficient algorithms have been developed [36, 63, 82, 95, 97; E-Rl, -8]. If

A allows PDN ther. the algorithms are especially easy, and if aij 0 0 if and

only if li-Ji < k (fu'll bands), then* SSI(C) - SSI(A).

Assume PFS is involved, but that the mth pivot position is chosen from among

the positions (i,m) where m<i<mik, then in the worst case, the semiband width

above the diagonal in U is doubled [E-8, -25].

Of course, one ignores the generation of zeros by exact numerical cancellation
in dealing with SSt's.
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If a high level of storage and operational efff~ciency is desired, then

band matrices are too restrictive a class for many sparse matrix applications.

Again, assume A allows PDN, then the following Band-Like Domain (BID) for

A is a useful sparse matrix generalization of band matrices.

Definition. Assume _<m<n then

(1) (em) c BLD(A)o

(2) For ,l<_<m, (p,m) e BLD(A) if and only if aim 0 for some i such

that li<ii_.

(3) For l<vy<m, (re,v) c BLD(A) if and only if a m? 0 for some J such

that l<j<v.

This domain i.s indicated, for a typical m, in the diagram below. A denotesS

the BSM associated with A, where (A)ij - 1 means aij 0 0.

0
0
0
0

0

0 I
5!A~ oi 0O 001 10

I

I I

A and C both have only zeros outside BLD(A) but C may fill come of the zero

positions inside the BLD. In fact, for "tridiagonal plus" matrices,** the

entire BLD for C is full. The 8x8 example shown below illustrates this

Only the pertinent zeros and nonzeros are shown.

A tridiagonal matrix is a band matrix U10th k=l; the "plus" rcans that not
only is a j# 0 for li-,L<_ 1 but also for certain other positions.
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M

band-like character and tridiagonal plus fill-in.

77E~ 0

01 ~1~ 0 i0 1 1 o1o o 0 1I

s 0 0 0 1 1 1 1

0 1

Note that the tridiagonal plus sparseness structure is not necessarily preserved

under reorderings of the matrix A.

Jennings (48, 49, 78; SMO-7] has exploited BLD's in his algorithms for

SYP matrices. Melosh and Bamford [65] use a related idea in their wavefront

approach to data handling, and NASTRAN [58,59,60,112;SMY-18,pp.155-158] has an

active column feature for those columns where the nonzeros extend above the band.

Tri-Diagonal Matrices (TDM's) are, in many ways, an ideal type of soarse

matrix. A great many numerical analysis papers have been devoted to TDMts

(see E-Rl,-R2 for references]. TOM's are basic in many areas of numerical

The syr-bol 4 means a - 0, c #0.i9 ij

97



analysis, such as eigen-.alue-eigcnvector calculations and differential equations.

Thiese matrices, tosether with the nore general class of Tri-Diagonal Like (TDL)

matrices are the cornerstone of the iterative methods referred to as Alternating

Direction Implicit, Splitting, and Fractional Step.

Definition. A is a TDL matrix means

(1) aij• 0O if and only if a jl 0.

(2) For l<m<n-l there is exactly one i such that m+l<i<n and aim * ami ' 0.

(3) A allows PDN.

Note that SSI(C) - SSI(A). See section 8 and [G-9, -21] for a graph theoretic

discussion of TDL matrices.

One solves multidimensional partial differential equations by cycling through

a sequence of TDL problems. See [10,21,28,39,61,101,102) for surveys and some

of the earlier references. This is a very active subject, and many articles

continue to appear in standard numerical analysis journals. The mathematical

analysis is largely limited to the case of commuting operators [106].

These methods are a part of a broad spectrum of iterative methods [l01).

T'-` tradeoffs between using sparse direct methods and various types of iterative

methods is rather poorly understood except for certain model problems [24]. For a

completely regular model problem, one can precisely estimate the computational

complexity as n 4 - where n is the order of the coefficient matrix. However,

this type of analysis can be misleading. If the model problem is the practical

problem to be solved, then there are special techniques such as the use of

Fourier transforms which can be used to achieve very high efficiency. On the

other hand, if the problem is irregular, then the computational corplexity as

,
That is, those which are based on the cor-putational efficiency associated wiLth

solving TDL systems.
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Sn -• • can be vastly different than that predicted by the model problem.

Stone's method (22,23,93,104; SMY-16,pp.139-148] holds considerable promise

for certain classes of problems. The idea here is to let M - A + N where N

is chosen to kill the propagation of nonzeros inside the BLD. Let M - LU, and

C be the composite L\U matrix, then NI is fuller than A but SSI(C) - SSI(A).

This has been shown t3 be an effective procedure fox sparse matrix problems

arising in the petroleum industry even for certain types of coupled systems of

partial differential equations.

The Finite nlement Methods (FLM's) provide a whole new spectrum of sparse

matrix problems which have a quite different computational complexity than

the finite difference methods. For one thing, the size of the matrix is much

smaller. However, the genr-ation of the i. trix elements is quite involved for

the more sophisticated classes of finite elements. In comparing computational

complexity of finite difference versus finite element methods, it is important

to define the problem class, and to determine the extent to which one time

symbolic preprocessing can be utilized in a parameter variation study. There is

"a vast literature associated with FEM's but is not referenced here. However,

"a recent report by Segethova [84] deals with direct sparse matrix methods for

matrices arising in FEM's.
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8. GRAPHS. ONDIIRECTED, DIRECTED, AND BIPARTITE.

There are a number of ways in which Sparseness Structure Information (SSI)

can be represented and manipulated. The use of Threaded index Lists with

Pointers (TLP's) is a powerful approach in the automatic machine computation,

but other representations are more suitable fron a conceptual point of view.

The Boolean Sparseness Matrix (BSM) associated with a given sparse matrix

A is one tool. fHowever, graphs of the sparseness structure have the advantage

of being invariant under certain classes of reorderings of the matrix A.

Graph theory is a vast field in its own right. References [42,77] provide

an introduction to certain applications of graph theory, and contain a large

number of referencee. However, only a small part of grpph theory impacts the

field of direct sparse matrix algorithms.

Three types of graphs will be described briefly; namely, undirected, directed

and bipartite graphs. A number of authors have used graph theory techniques

to develop pivot strategies.

Rose [79,80] has made a systematic study of the fill problem for matrices

with symmetric sparseness structure where diagonal pivoting in any order is

aglowed. An undirected graph G is associated with A . The vertices i ands

J, where i•j, are connected by an undirected edge if and only if a i 0. The

labeling of the nodes is not intended to imply the order in which the nodes are

eliminated. When a pivot sequence has been specified, there is associated with

This matrix will be denoted by As; (A 8)ij - 1 if and only if aiJ 0.

See v'rt G (Preserving Sparseness) in the bibliography for some of the
refe-.±nues.

•** AT
That is, A A

s s
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,I . , 5 x I ,%Z2 ,•4'--e ,,X "T,7' "

G, a graph G' which represents the sparseness structure for the C matrix

(i.e., the composite L\U matrix).

The diagram below illustrates a 6x6 example.

1i 0 0• ,0 1

1 0 1 0 0

A/
/

0 0 1 1 1 0 /
A " /

081 1 0 1 2 4

0 0 1 0 1 0

1 0 0 1 0 1

After "eliminating' vertex J, the vertices adjacent to j forr. a clique,

that is, the principal submatrix associated with the set of these vertices

forms a full matrix. From the graph it is clear that 5,3,4,2,1,6 is an optimal

pivot sequence, and only one new edge is introduced in creating C'. On the

other hand, the pivot sequence, 4,3,2,1,6,5 introduces 6 new edges and hence is

undesirable as a pivot strategy.

The vertex 5 has a special significance because only one vertex is adjacent

to it. Such terminal vertices create no fill when they are elirdinated. In

terms of the matrix A, terminal vertices are associated with rows which have

If i#J then vertex i is adjacent'to vertex j provided a ij 0.

**
Joining vertex 2 and vertex 6.
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exactly two non-zero elements. If the graph is a tree (i.e., has no cycles)

then one can always choose i terminal node at each pivot step [G-9]. A TDL
.'(

matrix is an optimally ordered tree, and Carte (G-21] has exploited this idea

in an ordering schlero for block iteratton.

The class of graphs G' have been characterized by Rose as being tri-

angulated. The minimum f£ll problerm, then, is that of determining a triangu-

lation of a given graph G which introduces the least number of new edges.

An example of a triangulated graph with 5 vertices and 7 edges is shown below.

Z e c

If a graph G is triangulated then there exist pivot sequences such that no

fill occurs in the elimination process.

Ordering to achieve ninimum bandwidth or compact BLD is motivated by a

desire to create systematic sparseness structure and/or reasonable sized moving

Template of Active Storage (TAS).. Which of the many approaches to ordering is

more fruitful depends upon the problem class and the nature of the computing

system on which the problem is to be run. Clearly, if mormory access is not a

*
Relative to a pivot sequence.I **

Every cycle with vore than three edcges has a chard.
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limiting factor and a large number of cases are to be run where the sparseness

structure is fixed, then Rose's triangulated graph approach is a desirable

strategy.

T
Now, assume A A but diagonal pivoting in any order is allowed. This

S S

means, in particular, that a if 0 for l<i<n. Associated with the given sparse-

ness structure, in this case, is a directed graph G where, for itj, there is

a directed edge from vertex j to vertex i if a i0 0. This assignment of

direction for the edge associated with a is best motivated by considering the
ij

method of substit'ition, as in Signal Flow Graphs (SFC's) [124-126]. In a SFG

each equation is explicitly solved for the diagonal unknown and solution proceeds

by substitution of the right hand side expression into the other equations.

A 6x6 nonsymmetric BSM with its associated directed graph is shown below.

1 0 1 0 1 0 G

1 1 0 0 0 0

o o o o1

A 0 0 0 0

1 0 0 1 0 0

0 0 1 0

0 0 0 1 0 1l

This matrix is reducible and one fill is the optimal situation. A pivot

sequence which achieves this is 3,1,2,5,4,6. The reordered matrix is shown

103
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below:

1 0 0 0 0 0

1 0 1 0 0

0 1 1 0 0

C
e0 0 1 1 0 0

0 1 0 0 1 0

o 0 0 0 1 1

There are a number of matrix reducibility algorithas (25,113; G-6,-lj,-II,

-20,-29j which determine if a given matrix is reducible, and, if it is, to

specify the permutation P such that B - PTAP = (Bij) is Block Lower

Triangular (BLT) with each Bii irreducible. In terms of the directed graph,

this means finding the strong components of the directed graph [C-61.

There are a number of other uses of the directed graph, such as finding

all subgraphs with some desirable feature, determining clustering [71], or finding

almost BILT orderings L5 2 ; G-20].

So far as this author knows, there is no cheracterization of the class

of G' graphs which is independent of a preassigned diagonal pivot sequence.

Rose has indicated in discussions with the author and his colleagues that the

directed graph case is much more difficult to systematize than thL corresponding

undirected case. Some general considerations of operations on directed graphs

iF contained in (25].
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The r.aost general case is a sparse matrix in which the diagonal plays no

particular or special role anCd where the matrix can even be of order mxn with

minn. Then there is associated with A a bWpartite graph with l row vertices

and n column vertices. There is a edge connecting row vertex i with column

vertex J provided a 0 [G-29]. .This graph has no restriction on ordering of

rows and columns, and can be used to sttdy the fill in the case of arbitrary

pivot order.

Graph theory has important conceptual advantages, but it has a number of
A

shortcomings relative to automatic digital computation. Only humans "see" a

graph as a whole and as parts, and can identify patterns when the structure

of the graph is below some threshold of complexity. Spezulation as to what

further algorithmic breakthroughs can be attained fron graph theory insights

is beyond the scope of this paper.

That is, there has not been an assignment of unkr- rns to equations, where
equation i is associated with unknown i and 1. l 0.
**

At least for the "unintelligent" information processing systems which are
available at present.
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9. PARTITIONING

There are a variety of reasons why matrices are partitioned. One of

the early reasons had to do with segr.enting problems so that the subproblems

could be successively solved within the limitations of the existing memories.

This had the advantage of keeping the analysis in the form of matrix equations

and was an aid to the problem poser. With the advent of modern automatic

memory hierarchies and excellent vector-oriented sparse matrix algorithms,

other methods of segmenting are available in an automatic form whtch do not

require clever insight on the part of the problem poser.

The Successive Over Relaxation (SOR) method was shown to be valid for

certain classes of sparse block matrices (1]. Block iterative methods have

been extensively developed [e.g., 18,26,101]. uarre [G-21) discusses computational

techniques for partitioning an undirected graph associated with SYP matrices

into a small number of trees. The diagonal blocks will be TDL matrices, and

a Block SOR iteration is applied to the partitioned system of equations.

In some cases there is a natural partitioning imposed by the physical nature

of the problem. Here the partitioning may ba completely regular, and the

elements of A are, say, 6x6 matrices. If the matrix is SYP or DID, then the

algorithms given earlier can be generalized to include block diaponal pivoting.

In fact, one could write highly efficient 6x6 matrix algebra subroutines.

That is, the elements of the matrix are, themselves, matrines.
**

It defeats the purpose of this approach if one has to deal with ncntrivial
sparseness for the 6x6's themselves.
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Partitioning also plays a role in the analysis of the fill associated

with several stages of Ga,,s.ian elimination. Lot A be the following Wx

partitioned mtrix where All is a kxk nonsingular matrix [46, p.130]

k n-k'

A FAl k 121 k

AA 21 A22 -

Then, Ax-b can be written in the form

Allx1  + A12 - bl,

A2 1 x + 2 2 x2 "b2

Solving for x in the first equation yields x A bI - Al 1 A1 2 x2 . This

result is substituted into Ihe second equation, and one obtains the reduced

equation A2 x2  b• where

A' A 2  A -A 9. 1)
22 22 A2 1 A1 1 A1 2

and

b' b -A21AI b (9.2)

Let S and S2 be two kxk nonsingular matrices and let

Bu1.0 4 ] [A21 122- : 1
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Then B111  S1 A1 1 S2 , B1 2  SIA1 2 , B2l - A2 1 S2 1 and B2 2 = A2 2 . Moreover,

B B B-1BB'2 - -B B1B22 22 2111 12 -1

A 22 -A21 S2(S 1 A1 1 S2 ) S1 A1 2

A22 -21Al11A12 "A22•

The invariance of the Block Gaussian Reduction (BGR) formula under linear

Stransformations of the first k rows and columns of A has a number of

important consequences. For one thing, it shows that the resulting reduced

matrix A12 does not depend on the details of how FIN (All)is obtained. Thus,

for exabple, one can apply Gaussian elimination to A, but restrict the choice

of the first k pivots to the first k rows and columns. This also shows

that there is a kind of local "continuity" of orderings of rows and columns

which lead to a sparse C (i.e., the composite L\U matrix). If at the mth

rc.duction stage, a(M-l) is not suitable as a pivot, then it is necessary tormm

disturb the natural sequence of pivot positions. Assume that this disturbance

can be limited to a few reduction stages, say m, m+l ..... ,k, and that the

pivots a•jj, m<'<k, satiefy m<i,j<k. The only portion of the matrix C, which
wi

is affected by the PFS strategy for m<p<k, is shown as the shaded region in the

figure below.

not affe~ted- I
fak pivot choices for

SI arfected

"To witAhin rucudofi erro.r, of coui:r.
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There are other reasons why the 2x2 block matrix approach is useful. For

one thing, the successive (lower right hand corner) reduced matrices tend to

be progressively more dense. Jennings [49] has an interesting discussion of

the overhead associated with nonband sparse versus full algorithms. If this

overhead must be paid for each solution vector, then there is a threshold of

density where it no longer pays to use a sparse Tnatrix method. Thus for each

sparse matrix A there is a k<n such that the (n-k)x(n-k) matrix A'2 should

be considered full. This applies also to a priori ordering to preserve

sparseness algorithms.

The matrices Al ,A1 2 ýA2 1 may have special properties which make it desirable

to have the first k pivots confined to A1 1 . If only the elements of A2 2 , in

the lower right hand corner of A, vary from case to case then the matrix

1A2A 1 A1 2 is constant, and it can be precomputed and saved. If A1T - A11 and

T tT -1 A 22 T T- T-A +- 2 then (A22) (A2 2 -AA21A ) A A22 AA1 1 A1 2 - A22 provided
T

A22 A22 When real and complex matrix elements are both involved in the

matrix A, then it is deeirable, if possible, t.o limit the complex elements to

the matrix A2 2 . Of course, here A is assumed to be irreducible.

Suppose A - B -sI where, either B is real and s is a complex scalar

or B is a constant matrix and s variee from case to case. Then every row

and every column of A contains an s-dependent element. Half of the factor-

ization can be made independent of s by ordering either the rows or the

columns (but not both) of A backward (i.e., n,n-l,...,l). This places the

s-dependence on tbe antidiagonal. This fact is more a curiosity than the basis

of a practical method, since stable pivoting is a necessary aspect of any

practical method.

Cbc"~ thi i-G -WZ&^UG5 -Witg '96a W-rUr'-9b rg GPTORD [G-46).
------------------------------ .. . ~.. . .. ~*~L progranOTODjG4]

By stable pivoting is meant the ability to achieve desired accuracy in tile solu-
tion with a reasonable floating point precision together with a small number of
ITerat've lefine.c'nt (ITF) steps (64,66).
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10. ERROR ANALYSIS

A sketch of general error analysis relative to computational linear

algebra is presented below as a prelude to some aspects of error analysis

which are peculiar to sparse matrix problems. The case of direct methods for

disorderly sparse matrices which are neither diagonally dominant nor positive

definite symmetric is of especial importance. It is beyond the scope of this

survey to present any quantitative results, and the reader should consult the

references presented in survey papers (30,50,67,110,111], the books (31,45,46,

76,105,109; E-Rl], and the matrix bibliography by Householder [E-R2]. Two

conferences on errors in digital computation were sponsored by the Mathematics

Research Center, University of Wisconsin, Madison, Wisconsin in October 1964

and April 1965 (75].

The extensive and careful evolution of valid .- lgorithms and computer

programs in the field of computational linear algebra should serve as a guide

for similar developments in the nonlinear areas [74,. 120; E-R3], The Special

Interest Group in NUmerical Matheratics (SIGWM1) of the Association for

Computing Machinery (ACM) has fostered interest in validation and testing of

algorithms and periodically reports results in its newsletter, which is edited

by Professor Cleve Moler, University of Michigan.

The modern evolution of matrix error analysis begins with the appearance

in the late 1940's of the classic papers of von Neumann and Goldstine [69]

and Turing (99]. At first, error analysis was limited to a study of fixed

point arithmetic algorithrs. Fixed point arithmetic has a distinct advantage

The Handbook Series Linear Algebra in Numerische Mathematik are a notable series
of this type.

All numbers and operations on nuz-bers are scaled such that they lie in the
range -l'x<l.
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over normalized floating point arithmetic in regard to signed addition and

subtraction. Severe numerical cancellation shows up in the form of leading

zeros. However, significance can be lost in fixed point multiplication of two

small numbers unless the product is scaled in an appropriate manner.

There has been a strong migration to algorithms based on floating point

arithmetic. These relieve the uscr, to some extent, of the task of analyzing

the size of all intermediate calculations. With the advent of automatic floating

point hardware in the mid-fifties, one no longer paid a factor of up to ten in time

over fixed point arithmetic.

ln the late 1950's, Wilkinson [107-111; E-R1] laid the foundations for

"backward" floating point error analysis. Wilkinmon [109, p.33] credits the

origin of backward error analysis to the papern [69,99] and more explicitly

to Givens [37]. In backward error analysis one establishes that, in the

computational procedure for solving Ax=b for x given the matrix A and the

vector b , one is actually calculating the exact solution to a slightly

perturbed problem. That is, if x iL the calculated solution, then x satisfies

(A+ 6A)x b + 6b
C

where bounds are specified on the norms [46, p.37] of 6A and 6b.

Volume 7, number 4 (December 1970) of the SIAM Journal on Numerical Analysis

is a special issue honoring Professor Alston S. Householder on his sixty-fifth

birthday. In the preface to this issue, Varga states that Householder's early

systematic use of norms in numerical analysis profoundly affected later

Certainly not of the problem of severe numerical cancellation.

See E-R2 for a more complete set of references.
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developments in the field, and his periodic Gatlinburg (Tenn.) Conferences

provided enormous stimulation, It was a lecture by Householder in the spring

of 1953 at Georgia Institute of Technology that convinced the author of the

present survey paper that numerical analysis is an important and challenging

field of specialization.

In the case where A is a matrix of a special form, e.g., symmetric or

sparse, then the perturbation 6A should preserve this form. In fact, in

the field of ill-posed problems [55], deliberate perturbations are sometimes

imposed so that the solution will be unique and satisfy auxiliary conditions.

With the perturbation approach to error analysis, this analysis is

separated into two aspects: EAB (Error Analysis, Backward) and EAS (Error

Analysis, Sensitivity). The latter concerns how much the "exact" solution is

altered by perturbations in the input numbers. Babuska has introduced the concept

of "maximally stable" algorithms [2,3] where one tries to minimize the

uncertainty in the answer which is due to the algorithm and to the finite

precision of the arithm-tic. Of course, the uncertainty in the answer which is

due to the physical uncertainty in the input data is another matter, and cannot

be resolved by the algorithm. This point is made by Lanczos [53, p.149].

The mathematical cornerstone of sensitivity estimates is the condition

number of a matrix [31, p.20; 105, p.88; 110],

cond(A) > IIIIAI 1.

A better terminology would be "incompletely posed" problems. These arise in
certain modeling questions where one knows ansi-ers and seeks the model.

Vithin the context of a reasonable degree of :loating point precision and
computational complexity.
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If one uses the Euclidean norn,

l^ll' ýJ [ai {2,

then cond(A) - P//ln where 0lIn are the largest and smallest singular values

of A, respectively [4; 31, p.5; 38].

The condition number of a matrix is effected by scaling, and Bauer [5,6]

has pointed out that a major aspect of scaling has to do with the effectiveness

of PFS strategies. Unfortunately optimal scaling is rarely achievable in

practical problem solving [l1j, and may, in some cases, conflict with physically
,

meaningful scaling. A recent series of papers by van der Sluis [88-90]

represent a major contribution to this field.

When experienced numerical analysts are faced with an unacceptable degree

of sensitivity to input perturbations in a practical problem solving context,

the standard practice is to check with the problem modeler to see if the

ill-conditioning is due to poor problem formulation. In many cases this is

the cause, and a reformulation removes the difficulty.

-In some cases, the ill-conditioning is unavoidable and then the method

of ITerative Refinement (ITR) [64,66] is the main tool. Of course, sufficient

accuracy must be achieved in the factorization stage to enable ITR to converge.

Wilkinson recommends ITR in any case as a means of providing a degree of

assurance of the accuracy of the solution.

The INverse Iteration (INI) method [100; E-Rl, pp.319-333] requires PFS stra-

tegies and this normally means not preserving sy-.etry in the factorization [E-8,-25].

See Givens' remarks [112,p.166 (SMY-1 9 )].
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The mixing of scalar diagonal pivoting with 2x2 block diagonal pivoting can

be used to preserve symmetry and, at the same time, provides a stable pivoting

strategy for symmetric indefinite matriccs [13,14].

At times it is possible to take advantage of th-2 symbolic form of the

matrix elements to avoid numerical cancellation in the factorization stage.

The Nodal Admittance Matrix (NAMI) [11], which arises in the analysis of electrical

networks, has this character. NA.M's are a special case of a more general class

of H-matrices [101, p. 8 5] which satisfy the following conditions: (1) A is a

real nxn matrix, (2) aij < 0 for i'j, (3) A is nonsingular, and (4) A > 0

(i.e., all elements are non-negative). In a number of applications including

NAM's and Cost Model Matrices (001's)(70] the diagonal elements are expressed

as a sum which includes the sum of the absolute values of the off-diagonal

elements in the same column (or row),

Ja I+IaIj ,,m
mm iy~m im n+jm

where an+,m 0. This summation property guarantees that the matrix A isn~l~m-

diagonally dominant. If, in addition, A is irreducible and an+l,m < 0 for

at least one m such that 1<m<n, then A is nonsingular and A-0> 0.

It is interesting to note that, while diagonal pivoting is considered

stable for the case of diagonally dominant matrices, the calculation of the

pivot elements I in this case, by the usual formula

m-1
mm a. mj Ujm (10.1)

j=l

That is, cannot be reordered to be DloJk Lower Triangular (!;LT). The question
of reducibility will be discussed later in this section.
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involves exact symbolic cancellation as shown by the following 2x2 example.

SA c a,b > 0, Icl << a

-a _ __

If A - tb I b (-a) b b - alh
11 1 12  b -(- a+-)(-If A-=LU thcn £i at au2 a a+c

b(a+c) -ab b.. The inherent accuracy in the small number c can be
a+c a+C"

lost in form!ng the sum a+c so that £22 can have a high relative error. This

type of cancellation was brought to the author's attention by Calahan ['.,pp.30-3 2 ;171.

Many engineers have developed circuit motivated techniques for avoiding cancella-

tion based, for example, on the use of the "star-mesh" transformation [81] or

of the indefinite admittance matrix [86,87]. A method based on a zero sum
,

augmented matrix was presented by the author at the Oxford Sparse I trix

Conference [SMO-17]. This method which is presented below is merely a slight

variation of a technique reported earlier by Bingham [9]. Let A' - TA] where

T -t
e - (ll,...,l). A' has zero column sums and this property remains invariant

under Gaussian reduction. If A - LU then

A' [TA] [Le U.

The zero column sum property of the augmented L matrix provides the following

cwacellation free formula for I as an alternate to (10.1),

n+lI MM 1 1 km 1. (10.2)

k-m+l

This is the indefinite ad:--ittce -.atri:x in nodal analysis.

Row and/or colu,:n sums are usce1d in dck calculcticns as error and/or blune,.r
checks.
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In the formula for t M'use is made of the properties .j, uj, U .- 0 for iJi.

If the alternate formula is used for calculating t. then there is no numerical

cancellation in forming all of 1. and U for this class of M-matrices. This

also applies to the SUB stage if b>O. The mth conponent of -e TA is an+lm,

which is an input number, and thb diagonal elements of L are formed rather

than the diagonal elements of A.

The following theorem for the class of matrices which are strictly diagonally

dominant M-matrices (that is, a+lm < 0 for l<_<n) forms the motivation for a

SMatrix Reducibility Algorithm (XRA) [113].

Theorem. A-l > 0 if and only if L and UT (U tzanspose) each have their last

column as their unique singleton column (i.e., a column with exactly one nonzero

element).

For this class of matrices, A- > 0 if and only if A is irreducible. Thus

by forming SSI(C), where C is the composite L\U matrix, one has a test for

reducibility. Suppose A is reducible, then there exists a permuation matrix, P,

such that B - PTAP is BLT. The square diagonal blocks, Bkk, will be irreducible.

Moreover, B-1 is also BLT, and has B-1 > 0 as its diagonal blocks. The follow-

ing condition characterizes the indices ij such that a l and ajj belong in

the sarne irreducible diagonal block of B,

a1 I a1 OS A 1 - (aj). (10.3)
ij i ii

Reducibility of a matrix is a purely logical question which depends only

on whether elements are zero or not zero. The proposed !.RA, though motivated

by ideas relating to strictly diagonally dominant M-natrices, requires only
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the condition, a M 0 for l.m'n. In many applications, this condition is

already satisfied. If it is not, then one first applies to A an Assignment

Algorithm [G-27] which is a special part of the general field of network flows

127].

The various Symbolic Factorizations Programs (SFP's) which generate SSI(C)

from SSI(A) can be extended to include both row and column symbolic forward

and backward SUB. In this way, SSI can be obtained for row i and column i of

A-', and this information determines the set of indices which belong !n the

same irreducible diagonal block of B. The following properties are numerically

true for strictly diagonally dominant M-matrices and "logically true"* for

matrices A such that a € 0 for l<mcn.

•,al 0 =>ci 0 ,• ai 1 0
Ij ij ij(10.4)

M m

w:here Ly , b and Ux y (i.e., A - LU and Ax u b).

Since C is at least as full as A, the first 8x8 matrix on the following

page is irreducible by inspection since there is a nonzero in row m to the right

of the diagonal and a nonzero in column m below the diagonal for l<m<7. The

second 8x8 is also irreducible by inspection of SSI(C).

*That is, in the Boolean sense and ignoring creation of zero by exact numerl,'.a
cancellation for a particular matrix A.

The symbol b is used to represent aij= 0, cij 0.
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IIPREDUCIBI, E x RICES

1 0 I 1 0 0 0 0

0 1 0. 1 0 010 0

---------------------------------- 4--
1 1 01010 0

:•0 0 0 . 1 0 0 1

0 0 0 1 0

1 0 0 1 1 1 0 1 0

"0 0 0 0 0 1 1 0

0 o 0 0 1 1 1 1

1 00 0 -1 o o o o o o I

I 10 0 0 0 0 o
1 1 0 0 0 0 0 0I

0 1 1 0 0 0 0 0 0 1 1 0 0 0 0

0 0 1 1 0 0 0
0 0 1 1 0 00 0A_, C2

0 0 01 1 o 01

0 1 0 0 1 lo 0 01- - - -

0 1 0 0 1 1 0 1 o o 0 0 1 1 0
00 0 0 0 00 1 0 I

00 0 0 0 0 1 10

00 00 01 1 1 0 0 0 0 01 1
0Ii~irj11I



4A1

Trivial reducibility can be removed from A as a preliminary operation.
For example, all rows and columns of A associated with singletons can be

a priori struck out of A and ordered directly into the BLT matrix B. Also,

the sparseness structure of certain elements of the various matrices and

vectors are either known a priori or are irrelevant to subsequent calculations.

For example, (10.4) provides a priori information, and, if an irreducible block

has been found, the sparseness structure information associated with the indices

in the block is irrelevant to the determination of subsequent irreducible blocks.

Thus index skip lists can be generated during the algorithm and utilized to

bypass unnecessary operations.

The 8x8 reducible matrix, A, shown on the next page, illustrates a number

of aspects of the proposed MPA. A permutation, 0, of (1,2,3,4,5,6,7,8) is deter-

mined such that B is BLT and row (column) i of B is row (column) ai of A.

Search for singletons provides a, = 5, 8 = 4, and a7 = 1. These provide lxl

diagonal blocks in B, and now the indices 5,4,1 are irrelevant. The matrix C

is formed, and A is found to be still reducible because c8 7 = 0. The relevant
I I

part of row and column 2 of A-1 is determined, and a2 j . aj 2 0 0 if and only if

jc{2,6,8). The indices (3,7} form a 2x2 block which must follow {2,6,81. Thus

a 2 - 2, a3 = 6, 04 8, 0F5 3, a6  7; that is, a - (5;2,6,8;3,7;1;4).

The symbol § in C means valic: is irrelevant.
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R•EDUCIB1LE MATRIX

0 0 1 0

S0 01 0 0 0 1 0

1 0
I A 0 00 1 00 0

0 1 0 0 0- 1 0 0

S0 1 0 0 0 01 0

S0 0 0 1 1 0 i

§ 0 § 0 0 1 0 1 0 1 0 0 0 0

S0 1 5 0 1 0 0 1 i 0 0 0 0 0

§ § § § § § § §1 0 1 1 0 0 0 0

§ § § § § § § §1 0 0 0 1 1 0 0

S •} ~0 1 0 1 1 1 0 0S1 0 § § 1 0

IFI
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.MKrR!X REP' ,':;1LIT'Y ALGORITIH. (!OrA)

1. Given SSI(A) generate SSI(C) via a SFP.

2. Check column counts in L and row counts in U for reducibility
(theorem p. 10.7).

3. If A is reducible, find irreducible blocks of B via repeated use of
(10.3). The set S = (l,2,...,n) is partitioned into equivalence classes
R = (R 1 , P,,...,R ) of indices belonging r.o the same irreducible
diagonal biock of PB.

4. Define pxp Boolean matrix M (m ), where m I1 if and only if for
some iLR and some J, R , a 1 0. M is reorhered t;o achieve a lower
triangul~r form by sutc,)ssivJ symbolic Gaussian reduction, using at each
step as pivot the unique nonzero element in a singleton rcw.

5. The reordering permutation for M, together with the pa-tition R, deter-
mine a permutation matrix P such that B - PTAP is BL and the square
diagonal blocks Bkk are irreducible for 1<k~p.

T T
6. Instead of solving Ax=b, one solves Bz=g where z i P x and g = P b. Only

the diagonal blocks are factored, and z is determined via block forward SUB.

I ~ oIgiti-• Ifi. I -• c o

ASo I i _reduible

It A -Jiro Uc ?n4

S~ca O LVEO 11ri0gla redc ible

S6 I A

xF
3 1

iirouc In 4d•.bl

Soacial$OLTriangularJ
11Ptefr AgX3Z•CIL•ALOtT0



The following 3x3 example shows why it can be dangerous, from an accuracy

point o: view, to pivot outside the irred cible blocks. Let f 2a+l where

-f r0 0 a-

01 A O 0 a

-u.a -1A -1' 1 1
10 0 La- 1  h-1

Note that g - a(a/f), and t g -g g!(l+g)] a [/(a+l)] hNoeta 22 33••"h

Maximum pivoting was used in each step, but Z is of the form • - ' as
33

a - + -. Let c(A) = condition numbe.r of A -ijAII.IIA'1-1 I, th.,n cfA)>2a, since

IIAII>_ spectral radius of A ' 2a, and iIA 1Ii_ 1. However, if the matrix A

is scaled by dividing the first row and first column by a, then the resulting

condition number is less than 9 for all a > 1. The (!,1) eleient is now

-(2a+l)/a2, which is clearly . poor pivot choice for a>>l.

Consider now a RLT matrix, B = (Bij ), where the diagonal blocks, Bii, are

irreducible and nonsingular. One can independently scale the diagonal blocks Bii

to achieve an optimum condition numbar for that block. In addition, let

D - block diagonal matrix = diag. (cl, 2 12I..., nlI) where O<c<l and I is the

identity matrix having the same order as B If T - DBD- 1 . (Tij) then
- 1 I, I -i , ij B j and

T-1 DD- = (T I) and Tii =Bii T1i - Tii; Wij an
S i-i I

Ti -i B for lfj<i<n. Thus optimal scaling demands that pivoting be

restricted to the irreducible diagonal Utncka.

It is important to realize that the number zero in matrix calculations is

qualitatively different from a nur~ber which ray, in a given context, be
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negligibly small, c, say. The nvmr.ber zero is invariant under scaling of rows

axid columns, whereas c certainly is not, e.g., • • c - 1.

Numerical analysts create pathological examples as a caution to the unwary.

A well-known exar:ple of a qualitative difference between c and 0 is exhibited

in the eigenvalue-eigenvector inalysis of the following nxn natrix.

A -

if a w 0 then A is in Jordan canonical form [45, pp.34-37], X - 0 i1' the only

eigenvalue, and x -e (e first column of te identity matrix) is the normalized

eigenvector (otherwise there are only principal vectors [45, p.32]). On the

other hand, if, for example, a - 1 0 n , then there are n distinct eigenvalues

i-1 . ni pritethi W i0 ,l_<!n, where w - e - primitive n root of unity, and

o - 2n/n. All these eigenvalues have modulus 10-. If n-20, for example, then

a = 10-20

In sparse matrix problems, a11 - 0 typically means "x does not occur in

equation i" rather than "the effect of x in equation I is negligibly small."

Casting out insignificant terrs in probleim: modeling ha; been the domain of the

*
Kahan [50] and Wilkinson [107, 108] are experts in this area.
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applied mathematician. However, in the realm of nonlinear evolutionary problem

modeling, this "casting out" is being replaced* by "putting in and see what

happens."

There has noc, in general, been any particular emphasis on error analysis in
•, **

the various specialized t.karse matrix applications areas. Rosanoff and Shaw [85]

have analyzed the question of conditioning in Structural Mechanics, and Fox

end Stanton (33] stress the importance of scaling to minimize the eigenvalue

spread in applying a CGM in cases where A is SYP. Finally, Wolfe (75, Vol. 2,

pp.271-281] discusses the questlon of error analysis in the linear programming

field. Linear progranmmng represents an area requiring the most general approach

to sparse matrix calculations.

PFS has been a critical aspect of algorithms for matrices which are nelti-r

SYP nor DID. The computational price one pays for this in dealing with full

or band matrices is reasonable, but where the sparseness structure is arbitrary

this is not nec,.ssarily the case. Care must also be exercised in choosing

pivots which pres-rve sparseness. Clearly, zeros cannot and near-zeros should

not be used as pivots, ' least aome threshold criterion is necessary.

As far as the author is aware, there does not yet exist in the literature

a systematic analysis of the accuracy achievable in the factorization stage

using some form of threshold pivoting. Of course, it is always desirable to

use extended precision inner product accumulation, and this may be crucial in

the ctse of threshold pivoting.

-•i *

This marks a move towards large scale scientific calculations.
• -- •**

Structural Mechanics Conference, Flight Dynamics Lab , Wright-Patterson
* Air Force Base, Ohio (October 196t).

That is, 11 "> c. where a is some absolute or relative threshold.
*.***-
In the context of a priori specified precision in the floating point arithretic.
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11. COMPUTATIONAL COMPLEXITY tND EFFICIENCY

The wt.ole question of computational complexity and of efficiency of

numerical methods is just beginning to receive the attention it deserves in the

field of practical problcm solving. The maximum size of matrix problems attempted

has always been at the limit of the capacity of information processing system.s.

In order to enhance the evolution towards solving larger problems, there needs

to be developed a detailed understanding of how the computational feasibility

and efficiency depends on the problem formulation, the algorithm, and the

architecture of the computer hardware and system software.

Efficiency is measured in terms of Cost/Performance (C/P). Both cost and

performance are hard qualities to quantize. In its broadest sense, efficiency

is the measurement of the human and computer factors involved from the time

a problem is first conceived until results are available in a form suitable
,*

for the user's ultimate need. Here the chargeable CPU time may be completely

negligible, especially if no production code is available for the calculation.

In the narrowest sense, one is measuring the throughput in the CPU for

important inner loop calculations. Even this is poorly specified if one is

operating in a time-sharing or multiprocessing mode.

Consider the question of efficiency in solving Ax-b for x given the

vector b and the sparse nxn matrix A. There are undoubtedly critical cross-

over points and elbows on efficiency versus n plots, but meaningful plots of

this type are hard to obtain for nontrivial situations, and these plots nave to

br. viewed in the larger C/P environment of the total problem being considered.

Moreover, the efficiency should be averaged over some spectrum of computer runs

Central Processing Unit, that is, the arithmetic and prtp3r,'a. rcntrcl registers
as distinct from momory.
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in a realistic operating environment.

Wolfe [112, pp.107-112; SMY-12] has given an excellent indication of the

evolution of computing power in the field of linear prograiing. The first

graph shows the size of the largest problem users reported solving at various

periods in time. It is Interesting to note that, at the time of the symposium,

10,000 equations seemed to be the production frontier in both linear programming

bind in structural mechanics. The character of the sparse matrix problems and

the algorithms are vastly different in the two fields. The second graph shows

an equally important type of evolution; namely, the decrease in running time

for a rodel problem as both the computer system and the algorithm evolved.

"We need more graphs of both types for a spectrum of applications, and also

detailed timing charts for certain large-scale calculations which are at the

frontier of capability of current systems.

A measure of computational complexity in linear algebra has typically been

the number of multiplications involved. This has been reasonable with regard

to floating point operations since multiply-add is the basic operation except

for the calculation of n reciprocals p a 1A i/i for l<i<n. Recent work

[12,32,44,51,94,114,115] has addressed the question of minimizing the number

of multiplications in numerical calculations. These, of course, do not

necessarily cover the question of computational complexity in disorderly

sparse matrix problems. For sparse matrix calculations, there is, in addition

to the complexity of the floating point processing, the logical manipulation

of sparseness structure information as well as the questions concerning access

to information in a memory hierarchy and under a variety of operating conditions.

Septem~ber 1968.
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The whole question of computational complexity is becoming increasingly fuzzy

because of the advent of sophisticated operating systems, virtual memories [F-44]*

and parallel !123], pipeline IF-47] and array processors EF-25]. Multiprocessing,

especially in a time-sharing environment [F-35] also increases the difficulty of

accessing computational complexity and efficiency. The relationships between

sparse matrix calculations and computer systems will be discussed further in

sections 12 and 13.

That is, automatic data management in a memory hierarchy environment.
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12. MEMORY HIERARCHIES AND DATA IANAGE1LNT

Access to information, both data and code, is an important aspect of

computational complexity and efficiency. Soni problems are CPU bound, but

others are memory bound. The latter seems to be a critical bottleneck in

certain large scale direct sparse matrix calculations, and has been a strong

argument favoring iterative methods. However, as problems become more

irregular, many iterative methods become ineffective because of a degraded rate

of convergence [104; 112,pp.139-148; SHY-16]. There needs to be a continual

assessment of the relative tradeoffs between direct and iterative techniques

as the problem classes, the algorithms, and the computing systems evolve.

Highly sophisticated memory hierarchy systems are appearing, and the aim

of these systems is to make the functioning of the hierarchy tr parent

(i.e., be of no concern) to the user by means of automatic memory management

[F-44,-45]. Some reasonable rules relative to ordering must be followed

[68; F-39] if efficiency is to be achieved in matrix computations. Basically,

the main ideas are: (1) When blocks of information are moved up in the hierarchy

they should have a utilization which is directly related to the size of the

block; (2) Where information resides in the hierarchy should be related to

the effect of its access on the overall efficiency of the processing.

Efficient I/0 and memory management are two of the most critical problems

in the design of large scale production codes. The resolution of these

problems often dictates the level of generality which can be tolerated in the

code without seriously degrading the computational efficiency in the typical
*

production runs.

*
Having too many special purpose codes, on the oiher hand, tends to create a

high level of human inefficiency.
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Sparse matrix problems have a number of special characteristics. For one

thing, there are long chains of streaming and merging in these calculations

which are well suited to multiple memory pipelining. Some information is used

repeatedly such as the rows of the U matrix in the FIN stage of Gaussian

elimination, whereas, in each pass through the SUB stage, the rows of L and

of U are used exactly once.

Let A be a band matrix such that ai 0 0 for li-il < k where k<<n, bi

otherwise a j- 0. Also assume that pivoting can proceed down the diagonal

in the natural order (PDN). This class of matrices are ideal from a sparse

matrix point of view. In the factorization stage there is a Template of Active

Storage (TMS) required to form the m h column of L and the mth row of U.

This TAS is the shaded area in the diagram below.

(j-kj)

.o(m.m-k) -d .,
;MM :M,J) (M=.=k)

- (Lu, )Q(mi-k

Of course, all indices are also greater than or equal to one and less than

2
equal to n. There are at most k + 3k + 1 locations involved in this TAS.

This is a moving template which progresses as m increases from one to n.

There are schemes which augment the diagonals with zeros at the beginning
and/or the end to avoid special cases for the terminal indices.
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This local active store also applies to the x and y vectors in

the SUB stage, and again is a desirable feature in memory situations

which are not random access. It is partly for these reasons that a number

of authors have developed bandwidth minimization algorithms [G-15,-35,-38,-42].

For the general sparse matrix and the RGE algorithm, the active storage

requirements can be very chaotic, both with and without PVS. In the first place,

the storage needed for the nonzero elements in A is, in general, not adequate

for the storage of the nonzero elements of C because oi the fill occurring

in C. If only diagonal pivoting in the natural order is involved, then an

upper bound for the number of nonzeros in C is obtained from the BLD

approach to fill. If PFS is involved, the estimations of active and total

Sstorage requirements for C are much more difficult to obtain. Of course,

one can deal with upper and/or lower semi-bandwidths in this estimation,

but this approach may be too gross.

One approach to Gaussian reduction is to process all remaining rows with

the pivot row and thereby obtain a reduced matrix which has an order of one

less than the matrix being reduced. In fact, this approach was used in the

early Gauss-Jordan complete elimination algorithms [F-l]. Here, the active
2

storage remains at somewhat more than n , since the entire matrix is updated

at each stage. After n stages, one has either A71 or a permutation of A71

in place of A. One has the widest choice of pivot strategies if this

approach to Gaussian reductions is used.

A quite different approach can be taken in processing the rows of A in

the RGE algorithm. The rows of A are first stored compactly in serial backup

See also Tewarson's survey article on sparse matrix methods [96].

The author acknowledges informative discussions with colleagues, A. Blaser and
H. Pretsch, at IBM Germany who are investigating memory estimation techniques
for general sparse matrices where PF5 is involved.
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th th
store. At the m reduction stage, one processes the m row of A against

th
rows 1,2,...,m-1 of U, amd obtains then the m row of U. Some subset of

the first m rows of U are needed in compact form in active storage for

processing row m+nl of A.

If PFS is not involved and one is going to solve a number of cases where

SSI(A) is fixed, then SSI(C) can be obtained a priori, and the moving TAS can

be constructed. Moreover, reordering schemes can be applied which are aimed

at making the maximum size of the template reasonable. This can be especially

important in large-scale calculations which are memory bound.

There are, of course, a number of other tradeoffs in a priori ordering

strategies such as achieving: (1) minimum operation count in forming C;

(2) sparsest C; and (3) systematic sparseness structures (e.g., band, triangular,

block triangular, or structures which are "near" these in some sense). The

effectiveness of these strategies is sensitive to the problem class, the

computing system, the dynamic operating conditions when a problem is being

run, and, of course, the excellence of the programming.

Repeated restarts of slow serial backup stores, such as magnetic tapes,

can be a limiting factor for the size sparse matrix problems which are feasibla

in a production computation environment. Large core store, high speed discs

and drums help extend the size of feasible problems. On the other hand, operating

systems, problem oriented supervisors, and dynamic storage programs may eat up

in overhead a large portion of the added memory power. If substantial overlays

of code and/or data are required in the inner loops of a large-scale calculation,

the effective rate of computation can be considerably degraded.

See Part G in the bibliography and [96] for detailed references.
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13. COMPUTER ARCHITECTURE AND PROGRAIING

There is no question that many classes of sparse matrix calculations could

be enhanced by special purpose hardware such as parallei, pipeline, and array

processors. Also important algorithms could be microcoded to improve the

throughput. However, the C/P figures for these special aids to a small class

of users may cause them to be unfeasible, except for cr!tical real time appli-

cations where cost is not a primary criterion.

Parallelism has many forms. For example, one can either h&ve a single

instruction stream with vector processing in parallel, or several instruction

streams with a number of arithmetic registers. In pipeline processing, one

segments the operation "multiply-add," say, into a number of successive but

separate steps. As soon as one step is completed in the sequer ..e, new operands

can be processed in a pipeline mode. If the pipeline is long, data-dependent

branches which drastically interrupt the flow arc to be avoided whenever possible.

Memory pipelining has already been mentioned in the previous section.

It is very difficult to predict the evolution of information processing

systems, but some general remarks seem appropriate. First of all. multiprocessing

has become a standard approach in larga-scale systems. Moreover, there will

be a continuing evolution towards more powerful general purpose computers which

satisfy the needs of information and data processing, as well as the small

market for large scale scientific calculations. As indicated in the last

section, one of the. important developments will be automatic memory management

which will be coupled with simple user rules for structuring and segmenting code

and data.

Wilkes, M, V., "The growth of interest in microprogramming: a literature survey,

Comput. Surveys 1 (1969) 139-145.
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Terminal oriented computation with an interactive graphic facility,

will have steadily improved C/P characteristics. However, in order to be

feasible at the individual user level, there must be a drastic reduction

in the current C/P figure for interactive graphics. The terminals may

have stand-alone memory and computer capability, but they will also largely

be a part of a communication net of terminals and large-scale central computer

systems.

There are two underlying criteria involved in the evolution of "omputer

systems; namely, (1) compatibility and (2) improved C/P. The first is

in.noetant since then costly production codes are not made obsolete. Without (2)

no new general purpose system has any reason for being. Moreover, the enhanced

C/P should be achieved in the context of high level languages such as FORTRAN,

APL and PL/l, and should not require extensive user tuning of existing programs.

The preceding remarks could be interpreted as referring mainly to hardware

evolution, batt what is hardware and what is software can be a very vague disrinc-

tion. Software engineering is a rapidly developing discipline in the systems

programming area, and will continue to be the pioneer for hardware innovations

when C/P characteristics dictate a shift from sophisticated software to efficient

hardware,

In sparse matrix problems, there are a small number of important underlying

mne"hematical ideas which must be understood and exploiced, but it is in the

applications programming, itself, that the efficiency is achieved. The

proaramr.er Phould be aware of the computer nrchitecture considerations in

planning his programs, but extensive "fine tuning" may make the program subject

As well as hard copy option at the grapaics terminal.

Reliability and serviceability are a part of C/P.
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to continual rodificatlon because of changes in hardware end/or s;'stems software.

Clever programming is a fascinating game, but it must be played by fea..onable

rules if the resulting program is to be useful to a large class of problem

solvers. Basically, progr.-ming has two aspects: (1) flow charting, and (2)

coding. Ab•,pct (2) should be an imple..entation of i~rio; development of aspect (1)

and not vice versa. "ine tuning may be a necessity, in some cases, of important

inn.:r loops, but these s uld be cleairly identified in the program for easy

updating.

In sun.•nary then, while it would be desirable to have computing s)stems

which are tailored to the specific needs of users, C/P characteristics dictate

that users adapt to the structure of the evolving systems. Sophisticated I
scientific users should take the effort to clearly identify their needs and,

where necessary, show that these needs are not being effectively satisfied by

current syste••s. In this way, C/P studies can be made relative Lo these needs so

that unnecessary bottlenecks can be removed from future systems. The users
I ~ might start their interaction with computer architects by readi-g the story -

of the planning of a large high performance computer [r-.7].

It is the contention of the author and his colleogues that, if a computing

system is effective in a C/P sense for sparse matrix calculations, then tLi.s

system will also be effective for a broad spectrum of other uses.
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14. NXNIMOXN CS DI CTIONARY Xb BIBL.IOGCRAP'iY

A. General V:v;-.arks

In writing Lhis survey, the author found that he was often referring to

certain concepts such as triangular factorization. It became convenient to

refer to th1LS'V concpC ts; bsy h1n.ans of inc±mo:nics. Thus, TRiangular Factorization

is assigned the mnvmonic TRF.

in part B of this section, a mncinonics dictionary is presentcd which serves

also as a subject guide for the references and an index for the survey itself.

The references are by no means complete, especially in the applications

area. Certain references a:re cited in each application. These either represent

a text which can serve as survey of the application or papers which concern a

particular a.sp-.ct of sparse matrix technology. The use of Band Like Domains in

structural rcvchanics problems is one example of this type.

As Hous.eholder has pointed out many times In his Mathematical Reviews

contriutions, there -s repeated discovery of known results in practical

numerical analysis. One reason fur this is the very recent acceptance of

algorithms as publishable in their own right, and the rather meager set of

cadequate surveys and annotated bibliographies for various practical aspects of

numerical analysis.

Cross discipline symposia are an important remedy for this lefect. These

symposia should be addressed to the understanding of the underlying mathematical

modeling techniques and the current state of feasible and/or efficient

computational methods,
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One purpose of this survey his been to provide an extensive bibliography

for cparse matrix technology. Parts E, F and G are organized chronologically

by subject m:atter as fo.lows! E. ELigenvalues and Eigenvectors, Sparse Matrices;

F. Computer Architecture, Parallelism, Ner.ory Hierarchy, and Data Management;

and G. Preserving Sparseness. Part C Is an author list, and part D is a set

of general reierc-necs, which are alphabetical by first author.

Two references E-1l2, -R3 tefer to the two volumes of Householder's extensive

bibliography of numerical linear algebra E-R2, Vol. 1 (First) Authors A--J,

V!o. 2 Authors K-Z), and one volume on references for numerical treatment of

nonlinear equations. Mhere known, the reference includes a citation concerning
where the article is reviewed in MR (Mathematical Reviews), CR (Computing

Reviews), lZ (feferativyl Zurnal. Matematika), and ZBL (Zentralblatt fur

Mathematik und ihre Grenzebiete). The abbreviations for the journals are

those listed in the index issues of MR. There is also an author index and a

,.AiC tKey Word in Context) index. Also, each reference has a four-diSit identi-

fication which starts at 0001 fo5 each volume. All told there are approximately

3800 references in the three ;olumes.

I: most cases, If a refere:nce in the present survey occurs in Householder's

bibliography, the Householder number iF given together with his CR and/or M

citation. For exa.ple, the Daniel [20] reference ends with M056$, CR9 13,478,

"MR36 2315. This means Ue,.ustholder jE-k2, Vol. 1]*i* 0563; beoreputing Reviews,

volume 9, review number 11,478; Mathemattoal Reviews, voluuma 36, review number

2315.

Aublished In M!oscow.
, Published ir Berlin.

C::* If E-R3 is Intended, this will be denoted by H(Q'uxxxx.
*::• Starting with volume 20 (1959), IR nu.t:.Aers the reviews starting from

on0. o:n, I year. P-ef',rc ti.at reviews ware rcerred to bu volume and page.
CR nunbLrs each rcview ccnsceutivey withoit starting at one each year.
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:;oth in the references In this survey and in Householder's bibliography,

the title of the article or book is translated into English when the article

is i•n another language. The language of the article is indicated in parentheses.

In most cases, CR and MR reviews indicate if there are summaries of the article

in other languwges.
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B. Mnemonics Diction;,rv

AOI Association for Computing Machinery; see also SIGNUM; p. 10. 1.

APL A Programming Language; [47]; pp. 4.3, 13.2.

BGR Block Gaussian Rcduction; see also RGE, SYI; [13, 14, 45, 46; F-41];
pp. 6.4, 9.1-9.4, 10.5.

BiF B11-1actorizatlon; see also ECH, EFI, ERM, SYP; (78(SMO-6)]; pp. 2.3,
3.2, 6.1.

BIM Block Iteration :k.Lhod; see also DID, PDE, SOR, SYP, TDL; [e.g., 1, 18,
26; G-211; pp. 8.3, 9.1.

BLD Band-Like Domain; see also Bý!, SSI, TDL; [48, 49, 58-60, 65, 78 (SMO-7),
84]; pp. 3.2, 7.2-7.3, 7.5, 8.3, 12.3, 14.1.

BLT Block Lower Triangular; see also MRA; [25, 113; C-6, -10,-11,-20,-29];
pp. 4.1, 5.6, 8.5, 10.5, 10.7-10.13.

BliN Band Matrix Method; see also BLD, TDL, '"TDM; (e.g., 36, 63, 82, 95, 97;
E-RI,-8,-25; G-15,-35,-38,-42]; pp. 7.1, 12.2-12.4.

ESM Boolean Sparseness Matrix; see also SFP, SST, TLP; [e.g., 40];
pp. 2.3, 7.2-7.3, 8.1-8.5.

C/P Cost Performance ratio; see part F of references; pp. 11.1, 13.1-13.3.

CAP Computer APplication; see also CCD, LP, NLE, PDE, PSA, SDE, SPP, STM;
[4, 10, 11, 16, 17, 21, 24, 27, 28, .32-35, 41, 42, 48, 49, 52-62, 65,
70-75, 78-87, 91-93, 98, 101-104, 112, 113]; pp. 3.1-3.3; also see
part.i cular applications.

CAR Computer ARchitecture, see also MEH, NOP, TAS; [e.g., 123; F-7,-25,-47];
pp. 4.2-4.4, 8.3-8.4, 9.1, 11.1-11.3, 12.1-12.4, 13.1-13.3.

CCD Couiputational Circuit DesIgn; see also CAP, HWM, NLE, PSA, SDE;
[9, 11, 16, 17, 41, 42, 52, 71, 72, 78 2SMO-17), 81, 83, 86, 87, 98,
112 (SMY-17), 113; G-1 through -5,-7,-23,-26,-28,-461; pp, 1.1, 2.1-2.4,
3.1-3.3, 10.5-10.7; see Cornell Conference reference p. 2.1.

CGM Conjugate Gradients Method, see alse SYP; [7, 19, 20, 24, 33-35, 43. 46,
57, 76, 78 (SMO-16), 92, 105]; pp 3.2, 6.3-6.4.

C201 Cost Model Matrices: see 41so CAP, DID, M-MAT, NA.,; [70]; p. 10.5.

CPU Central Processing Unit; see part F cf references; pp. 11.1, 12.1, 13.1.

DID Diagonl!ly Dominant; see also BGR, BIM, PDN, SYP; [9, 17, 26, 54, 70, 78,
81, 83, 91, 96, 101, 112, 113; E-R2]; pp. 4.2, 6.1, 9.1, 10.5-10.7.

EAB Error Analysis, Backward; see also E.N, EAS, PFS, SCA: [e.g., 109];
pp. 10.2-10.3.
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E,• Error %:,'alvsis; see also LAB, EAS, SCA, SUR; [2-6, 9, 13-17, 30, 31, 33,
37, 38, 45, 46, 50, 67, 69, 75, 76, 85, 88-90, 99, 105, 107-111, 113;

E-IU,-R2]; pp. 1.3, 2.2, 3.1, 4.1, 4.4, 6.4-6.5, 9.4, 10.1-10.15; see
especially [109].

EIS Error Analysis, Sensitivity; see also EAB, EAN, PFS, SCA; for references,
see EAN; pp. 10.3-10.4.

I' CM Il'hiontary Column Matrix; see also BIF, EFI, EIU1, FIN, MT-51, PFI; [4, 62,
73, 78, 96, 112, 121; C-31,-431; pp. 3.2, 3.3, 4.5-4.7, 5.3 5.6, 6.1.

EFY. Elimination Form of the Inverse; see alFo D!F, ECM, ERM, PFI, ROE, SILA,
TRF; [4, 62, 73, 78, 95, 112; G-43]; pp. 3.2, 3.3, 5.3-5.5, 6.1; see
In particular, SY-lO.

ERM Elementary Row Matrix; see also BIF, EFI, FIN, ýDLM, PFI, RGE; 14, 62,
71-73, 78, 83, 96, 98, 112, 116-119; G-43]; pp. 3.2, 3.3, 4.5, 5.2, 5.4,

}• 6.1.

EVV Eigen-Values and -Vectors; see also CGM, INI, PDE, SYI, TDL, TDM;
[e.g., E-R1]; pp. 3.1, 6.4--6.5, 7.4, 9.4, 10.13-10.14.

FEM Finite Slement Method; gce also BLD, BWD, COM, DID, PDE, SOR, SYP;
rT[33-35, 84, 112 (SMY-lI)]; p. 7.5.

FIN Form of the Inverse; see also BGR, BI7, EFI, 10DI, PFI, RGE, SUB, TRF;
see particular type of FIN fur refereu..ns; pp. 3.1-3.3, 4.1-4.7, 5.1-5.6,
6.1-6.3, 9.3, 10.15, 12.2-12A4.

I/O Input and Output; see part F of references; pp. 12.1, 13.2.

-NI INverse Iteration; see also EVV, PFS, SYI; [E-Rl,-R2,-18]; pp. 4.2, 10.4.

IPP Improperly Posed Problem; see also EAN; [e.g., 55]; p. 10.3.

ITR ITerative Refinement; see also EAN, FIN, SUB; [e.t., 64,66]; pp. 2.2,
4.1, 4.4, 9.4, 10.4.

LP Linear Programiniig; see also CAP, ECIA, EFI, MMM, PFI, THP; [4, 32, 62, 73,
75, 78 (SMO-1,-14,-17),96, 112 (SMY-i,-3,-6,-7,-10,-12,-15), 121, 127;
G-31,-43]; pp. 1.2, 3.1-3.3, 4.5, 5.3-5.6. 10.14-10.15.

M-MAT M-MATrix; see also CAP, CMM, DID, NAM, PDE, SYP; [e.g., 101, p. 85; 113'"
pp. 10.5-10.8.

HER MEmory Hierarchy; see also CAR, MOP, TAS; [e.g., 122; F-44,-45]; pp. 4.2-4,4,
8.3-8.4, 9.1, 11.1-11.3, 12.1-12.4, 13.1-13.3.

%M,!M Method of Modified Matricee; see also EC0, EFI, ERM, FIN, PFI; [4, 8, 45
(pp. 79, 84) 52, 78 (SMO-12), 96, 112 (SNY-8), 116-119, 121; G-1
through -5, -19, -20, -31]; pp. 4.4-4.7.

R eproduced from
be.st svaltab~les copy.
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MOP Macro-OPeration; see also FIN, SMA, SUB; pp. 4.3, 4.6, 5.2, 6.4.

!NRA Matrix Reducibility Algorithm; see also BLT; [25, 113; G-6,-10,-11,-20,
-29]; pp. 1.3, 8.5, 10.7-10.12.

NAM Nodal Admittance Matrix; see also CAP, CCD, CMM, DID, M-MAT, 10MM, SYP;
(e.g., 9, 11, 16, 17]; pp. 10.5-10.8.

NLI: NonLinear Equation; see also CAP, PDE, SDE; [19, 74, 120; E-R3];
pp. 2.1-2.4, 10.1.

PDA Pivoting on the liagonal in Arbitrary order; see also DID, SYP; [e.g., 71,
79, 80, 96; part G]; pp. 4.2, 6.1-6.4, 8.1-8.5, 9.1.

PDE Partial Differential Equation; see also BLD, BIM, BK4, CAP, CGM, DID,
FEM, SOR, SYP, TDI,; [1, 10, 18, 21-24, 26, 28, 39, 61, 74, 79, 80, 82,
93, 101, 102, 104, 106, 112 (SMY-16); G-21]; pp. 3.1, 3.3, 7.4-7.5, 12.1.

PDN Pivoting down the Diagonal in Natural order; see also DID, FIN, FDA, PFS,

SFP, SYP, THP, TRV; pp. 2.3-2.4, 4.2, 5.1-5.4, 6.1-6.3, 7.1-7.5, 12.2-12.4.

PF1 Pioduct Form of the Inveise; see also BIF, ECM, EFI, FIN, MMM, SMA;
[e.g., 73, 121; G-31,-431; pp. 3.2, 3.3, 4.5-4.7, 5.3-5.6.

PFS Pivoting For Size; see r',so INI, ITR, SYI, THP; [e.g., E-RI, -R2];
pp. 1.3, 4.2, 5.1, 5.4-5.6, 6.4-6.5, 7.1, 9.3, 10.4-10.5, 12.3-12.4.

PRO PROgra.mning; see also CAP, CAR, MER, SFP, SMA, SPP; (e.g., 40, 78, 112;
F-28,-401; pp. i.1, 2.3-2.4, 3.1-3.3, 6.2, 9.4, 10.12, 13.2-13.3.

PSA Power System Analysis; see also CAP, CCD, DID; [54, 71, 72, 78(SMO-6,
-8,-9,-15), 79, &0, 83, 91, 98, 112 (SMY-4, -13); G-13,-17,-22,-36];
pp. 1.2, 3.1-3.3, 6.1.

RGE Row Gaussian Eilmination; see also EFI, FIN, SMA, TRF; [e.g., 51, 83,
96, 98]; pp. 2.4, 4.1, 4.3, 5.2, 5.4-5.5, 12.3-12.4.

SCA SCAling; see e1so EAN, SUR; [e.g., 5, 6, 15, 33, 88-90, 112(SWY-19);
113]; pp. 4.2, 6.4, 10.1-10.2, 10.4, 10.13-10.15.

SDE Stiff Differential Equations; see also CCD, NLE, PDE; [40, 41, 56, 78
(SMO-17), 112 (S5Y-1,-2,-14), 128, 129; G-46]; pp. 2.1-2.4.

SFG Signal Flow Graph; see also SPP; [124-126]; p. 8.4.

SFP Symbolic Factorization Program; see also BSM, SFG, SPP, SSI, TLP;
[40, 78 (SMO-17), 112 (SMY-2,-9,-13)]; pp. 2.4, 4.2, 10.7-10.12.

L SIAM Society for Industrial and Applied Mathematics; pp. 10.2-10.3.

SIG:LIN Special Itterest Group in NUmerical Mathematics; see also ACM; [67];
p. 10.1.
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SA Sparse Matrix Algorithrm; see also :'jI, DIM, 1211, BGR, CGM, EFI, INI,
I'IR, .•N%1, P'F1, P'S, RHE, S11P, SUP., TDL, THIP, TRF; [e.g., 78, 112);

pp. 2.4, J.1-3.3, 4.1-4.7, 3.1-5.6, 6.2-6.5, 7.1-7.5, 10.5-10.12.

SMO Sparse Matrix Oxford conference; [78]; pp. 1.2, 2.3, 3.1-3.2, 4.4, 6.1,
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QUESTIONS AND COMMENTS FOLLOWING WILLOU'GHBY'S PAPER

QUESTION: How big a problem can GMSO handle?

WILLOUGHBY: The biggest problem we've handled so far was

1, 024 by 1, 024. After chlver generation, not of the long code but of the

sparseness structure for the triangular factors (re: Albert Chang), the

solution for the 1, 024 by 1, 0Z4 for the factorizatlon and back substitutions

on the IBM model 9J required . 75 seconds. However, it took four minutes

to get the program to do it in . 75 second, so if you're only going to do it

once you have to say four plus minutes. That time can be greatly reduced

by clever ordering. Typically we're used to working with several hundred

very sophisticated equations and not masses of very simple equations.

You could go up to about 1000 or beyond if you used Chang's approach

because then all you do is generate the code as you go.

QUESTION: With regard to the future of hardware in handl-ng

structural problems, I notice that you did not mention any of the possibili-

ties of micro-programming where the programmer might be able to con-

struct a computer image to handle his kind of problem. Arc you envision-

ing anything like this?

WILLOUGHBY: It is certainly feasible to do that but whether or not

it is accepted to do that is something I cannot comment on. It's cer "inly

feasible--technologically. Economically and legally I don't know the

answer to that and I cannot comment further,

QUESTION: Is IBM interested in going to parallelism in arith-

metic units such as Iliac has or is that a question I shouldn't ask?
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WILLOUGHBY: Parallelism is a poor word to use; I prefer to use

multi-processing. The word parallelism, unfortunately, means une thing

being split up into many things; but it should also include many things being

split up into many things as, for exanple, when you are solving a great

big problem, a little dinky prublem, and everything else in between. The

word parallelism is a very dangerous word. We want to understand, in

structural engineering, for example, what are the avoidable bottlenecks

in present speed of computation, i. c. , getting things in and ,out. The trouble

with parallelism is that you've got a thousand adders all working but where

arc you going to get all the stuff to keep all those adders busy all the time.

QUESTION: Have you dealt with the problems of band reduction

or packing of data and unpacking of data, eliminate zeroes and so forth?

WILLOUGHBY: No, but I bclicve that McCormack is going to comment

on that when he gives his paper later this week.

QUESTION: You mentioned the work of Kron, I wanted to ask

your opinion on his work and do yo!. think it's worth further pursuit?

WILLOUGHBY: This (the use of electrical engineering techniques for

structural problems) is something which has been thoroughiy explored (by

G. Kron and later by Fcnvcs and F. Banin).

QUESTION: Through representation of matrices in the sparsely

populated form, there arc two main advantages to be gained. Number one

is the storage. You can compress very large sparse matrices in to little

space. The other advantage is the speed. Since you are eliminating all the

zeroes from the computation, your iteration time or cycle time decreases con-
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siderably. Could you give us a comment on the relative importance of the

two factors. If you are using, for example, a purely iterative schenme

like Gauss-Siedel, maybe it takes longer, but then you never fill up your

matrix. Whereas if you are using any of the techniques you mentioned,

you start filling it up and you never know really how much it is going to

fill until it's too late.

WILLOUGHBY: You made a very good comment and I'll try to answc-r

the statement about the tradeoff. You know with certainty how much work

you have to do per iteration step. In Gauss-Siedel, for example, you don't

fill anything in. There is a whole spectrum of iterative methods. First,

w• have what is called the point relaxation where you just solve each

individual equation for the diagonal e.emcnt and then update the solution

either as you go along or all at the end. This approach has been then

elevated to methods called alternating direction in which each basic step

is something that looks like a triadiagonal matrix which you can solve

very fast. This is a little closer to solving the equation, but again you

know exactly how much work is involved. There is also work from partial

differential equations which is called multi-line iteration where you simul-

taneously solve information on several lines which again is closer to direct

methods. So, there is a whole transition here and the tradeoff is very

simple. As you get closer to direct methods, the number of iterations

that you have to make through the process to get the answer decreases,

but you got uncertainty as to how much storage is required and how many

operations per iteration you'd have to do. At the other end of the spectrum

is simple relaxation eor which the number of times you have to iterate kills

you. To estimate how many iterations are required, you have to have ways
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of analytically estimating the rate at which the error vector is decreased.

This is called the eigenvalue estimation problem. In a recent work by

Stone, the author goes kind of whole hog on a new approach which hels

used in petroleum problems including coupled nonlinear systems. It works

but the eigenvalue analysis is very difficult. The results of studies on

model problems were that it was competitive with the very best routines.

It didn•t degrade with nonuniformity, irregular boundaries and all the

things that practical problems are prone to. The iterative approach is

definitely a possibility and if you could guarantee that the rate of iteration is

good enough, then I'll take it every time; but you'd have to guarantee it to Inc.

QUESTION: I'd like to make just a brief comment on the business

of looking at these problem solutions and their economic effects. We find

in engineering application, especially in !arge scale problems, that the

time required to generate the inputs, the time required to form the

equations, to form the matrix, has now become a very considerable part

of both the engineering man labor and the machine time in setting up equa-

tions to be solved. Have there been studies in the combination of prepro-

cessor and simultaneous solution during the process?

WILLOUGHBY: Yes, that has been studied and is being studied very

heavily at the prese... time.

QUESTION: Id like to understand how you make decisions in the

way of setting this (GNSO) up as to which elements are zero and which are

not. I found, for cxample, that if I have to make that decision I might as

well rnulip.y. Ct takes about the same time.



WILLOUGHBY: Where the zeros and nonzeros occur doesn't depend

on what the numerical values are for the nonzeros. The SOLVE code is

generated by GNSO for a whole class of matrices with the same sparseness

structure and can be used repeatedly.

COMMENT: The reason I am asking this question is because I

have in mind a dynamics problem in structural analysis. Now if this

procedure of eliminating multiplication by zero is a general one which

could be applied to such things, we could realize big savings. It would

probably require a very significant effort, however, to generate something

like that for a general structural problem.

WILLOUGHBY: I knowv what you're saying, but I don't know the answer

since I do not know in detail what computations are involved in structural

analysis. You have many degrees of freedom at each node and in each

branch and the mechanization of all that in this context is not obvious. I

think there will be a lot of work involved. If someone was will'ng to do it

and did have this context of solving the same problem repeatedI] with the

same structure, there may be a very nice payoff. This is especially true

if J, the Jacobian, is known to have this positive definiteness, diagonal

dominance or something where you know ahead of time that you don't have

to pivot for size. I don't know that you're going to realize much saving

because some of your structural engineering problems are two and three

dimensional and no matter how clever you order things, the matrices do fill

in. Extensions of band matrix techniques by Bamford, Jennings, McCormick

and others are probably more suitable than the GNSO approach for many

multi-dimensional structural problems.
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All too often computer codes, particularly in the finite element domain,are constructed by the researcher and professional programmer without sufficientcognizance being taken of the requirements of those individuals who would usethe code as a production analysis tool. In addition to the fundamental require-ment of accuracy of results, there are certain features that must be embodiedin every computer code that is to be effectively and efficiently used for dailyanalysis problems.

This paper discusses input, output, and engineering details that should beincorporated into each code as it is written and the work performed within theMissile Systems Division of Lockheed to develop such capabilities. A range ofdata input techniques, including automatic mesh generation, data card, andFORTRAN statement should be provided as standard features; while a variety ofoutput features such as pictorial qnd graphical playback of the model, deflectedshapes, and stresses, along with a number of output formats are consideredmandatory in order that a given program's potential be fully exploited andengineering errors minimized. The program should be constructed in a modularfashion to enable the user to quickly adjust and update the program functionsand capabilities to suit the needs of particular analysis problems. Engineer-ing realities such as large displacement and elastic-plastic options should beincorporated wherever possible to extend the problem solving range of a given
code.

Finally, the development of a number of highly automated programs demon-strating the above features is presented, and research being currently pursued
summarized.
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SECTION I
INTRODUCTION

The interest of the writers in the development of large scale advanced
digital computer codes stems from the nature of' our duties at Lockheed. Our
department is responsible for the structural integrity of all prodticts of the
Missile Systems Division of' the company; a range of' products that encompasses
the Polaris and Poseidon FBM systems in addition to advanced coti:er÷ such as
ULMS, SCAD, and various other classified programs. Our interests include:
ballistic missile structures, reentry systems, motors, ground suppcrt equipment,
and flight control systems. As an adjunct to such activities, we are also called
upon to perform special studies for other Lockheed companies and to analyze
various other components of weapons systums such as launcher concepts, submarine
structures, and propulsion systems. Finally, we have of late found our field
of interest being radicallý widened by the application of our programs to the
analysis of structures outside of Lockheed's traditional aerospace market by

means of technology contracts with other companies.

The nature of our work, together with it.3 demands that we be fully respon-

sive in terms of rapid results to complex problems, led us, in 1965, to start

development of a series of highly user-oriented computer codes with primary

emphasis being placed on accuracy of' results, speed of input/output, program

flexibility and modularity, ease of program extension and update, and adequate

program size to cope with all potential problem demands. This commitment to

aavanced techniques - a commitment which is being continually expanded and

accelerated - initially led to an investigation of available programs and their

applicability to our problems. We were fortunate in that Lockheed's Solid

Mecitanics Laboratory at Palo Alto had developed a strong capability in the area
of finite difference techniques for shell strictures and this led to our obtain-
ing codes such as BOSOR 1 developed by Bushnell(1). Subsequent cooperation
with the Solid Mechanics group IeV to thq levelopment and acquisition of more

advanced codes such as BOSOR 2- 2 ) and 3( 3) generated by Bushnell for shells of

revolution, STAGS developed by Almroth and Brogank4 ) for collapse analysis of
shell structures subjected to generalized loadings, and the STAR code developed
by Sobel, Silsby and Wrenn(5) for transient response analysis of shells of
revolution. This range of programs has given us excellent capability in the
area of finite difference analyses of shell structures, and these programs
have proven their worth during the course of the past six years when applied
t ,.• - 1. .A, engineering problems.

In the domain of finite element analysis - an area where our interest is
very high - we gained our initial capability, as have so many people in the
aerospace industry, by obtaining the program written by Wilson 6) for the
analysis of axisymmetric solids. We were fortunate in having Prof. Wilson
located close by at Berkeley and in developing an active association with him
which still continues. Other programs initially obtained included the SABOR

shell series deyeloped at M.I.T.(7,3), the Rohm and Haas axisymmetric code( 9 ),

the FRAN(10) and STRESS(ll') frane codes, and a frame program, written by
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Whetstone(12). Our requirements Li the area of mixed structures, by which
nomenclature we define an assemblage of links, beams, membranes, plates, and
solids, next demanded that we obtain and develop a range of programs designied
for this class of problems. This need led, in 1966, to a nract with Prof. Kamel
of the University of Arizona to develop the MINI-ASKA codeJ 3 *. This association
has proved of great value and is, happily, still active today. Other advanced
mixed structures codes subsequently obtained were the_)EXBAT series developed by
Loden(lh)and the SNAP series developed by Whetstone 15*. These codes have also
been successfully used in the course of our projects. Finally. a series of codes
were developed or obtained to perform the analysis of such specialized problems
as creep buckling, nose tip anJlyses, and orthotropic properties determination.

In essence, therefore, we have found it most advantageous to mainly obtain
our basic codes from university and research souzrces based on active association
and cooperation with such sources, and direct our own major research and
development activity to the extension of such programs to a highly automated
production status. It is to the discussion of these extensions, and the
techniques employed therein, that this paper primarily addresses itself.

We note that during the course of our research and development we encountered
a large number of programs which were found to possess little utility and potential.
Our reasons for such conclusions are fully discussed later in this paper when we
outline our requ1'ements which any of our codes must fulfill in order to qualify
as a production tool. Assuming that such programs had to be discarded, we concen-
trated our research efforts on the remaining range of basic programs and attempted
to bring these to a highly automated, reliable, and usable form. This particular
area of computerized structural analysis has all too often been neglected, but
it is here that we have found that the large scale program has the greatest benefit
and impact. Our basic equipment to achieve this end has 1Peen three Univac 1108
computers, a range of smaller computers such as the SDS 910, and - as a major
factor - a Stromberg-Carlson 4020 electronic plotter.

With this basic, and expensive, equipment came a set of responsibilities
which our group had to develop in order to efficiently exploit its full potential.
These may be summarized as:

e?

"o A strong background in the theory and application of finite element

and other numerical techniques.

"o Wide experience with a program, its limitations, and its advantages.

"o A high degree of knowledge and skill regarding the computer sy3tem
in use and its limitations.

o An excellent level of programming and modeling ability and experience.

"o An ability to rapidly generate or incorporate new elements, Lechniques,
or program modifications.

"o An expertise in computer graphics and plotter programming techniques.
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o An ability to equate mathematical techniques to engineering realities.

o The capability and duty to always generate hand or approximate
solutions to check complex mathematical models.

Such responsibilities as these are as often neglected by the program useras are the later set of responsibilities cited with respect to the basic program
writer. All too often engineers use an advanced program with no knowledge of
its limitations, accepting its answers on faith rather than fact, and probablyhaving nad it solr,: the wrong problem in the first place. With respect to thisfinal point, we believe that it is imperative that a pictorial playback of thecomputer model input be provided to eliminate such errors and, additionally, thatas much output as possible be provided in a visual format with a minimum of datareduction. Computer run times rapidly fade initc insignificance if three weeks
are required each side of the run for input data preparation and output reductionand assimilation, even making the tenuous assumption that errors can be rapidly
detected and corrected without pictorial displays of the model.

The impact of the highly automated compute, codes on the engineeringorganization and operation of a company are substantial. At Lockheed thetraditional concept of designers and structural analysts as separate entities,each functioning in a narrow field of interest, has largely disappeared. If .hecomputer and its high speed plotter can rapidly and accurately both draw anda.nalyze a structure there is little point to the designer drawing the structureand then transmitting it to the structural engineer for analysis. In this regard,it is noted that the SC4020 plot speed is approximately 0.3 seconds/plot with goodresolution. In similar fashiorý by coupling program. thermo-structural analysescan be performed as a single step rather thcn as individual thermal and structuralanalyses. Similar changes have occurred in the area of coupling dynamic response
and structural analysis.

Finally, a major change has occurred in the manner in which a proposal orpreliminary design is generated and analyzed. Now a wide range of structuralconcepts can be rapidly drawn, analyzel, and documented within the narrow timeconstraints imposed by a customer, ratkher than only analyzing perhaps two, orat best several, design concepts. Witho'It the ability to input and pictoriallyplayback a model in a matter of hours, aialyze that structure within minutes,providing pictorial and graphic-ll output shortly thereafter, anid at the sametime yielding accurate answers, a program cannot claim to be a production tool
for structural engineers. Of course, many structures are far too complex toever achieve this goal but, all too often, programmers or engineers are at faultf:or not striving to attain such a nirvena. Our group at Lockheed has set itself
3uch a goal since 1965 and we will present results to date after first isicussingoverall program requirements as we view them, a short study of analysis costsand output demands, the need for modularity, and our present progrem capabilitieswithin the Missile Systems Division of Lockheed. Pinally, we conclude wi•t asummaxy of our present research in the area of advanced computer programs.
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SECTION II

OVERALL PROGRAM REQUIREMENTS

Aerospace structural analysts places heavy demands on large scale
digital computer programs. We are faced with complicated structures subjected
to unusual and severe environments with the added constraint that weight must
be minimized. To verify the structural integrity of a missile component, and
the degree to which it approaches an optimum, proper account must be taken of
plastic deformation, geometric norninearities, stability, thermal loadings,
fatigue, and quite frequently, rather strange material properties. Historically,
designers do not produce concepts on the basis of our stress analysis capability;
rather, a designer must utilize the most advanced materials and techniques
available to him, consistent with cost and manufacturing constraints. It is

~efore the responsibility of structural engineers to develop analysis tools
of the level of sophistication required to provide adequate support arn guidance
to the design organizations in this operational context.

Our philosophy toward incorporating a new method of analysis _s quite

simple; if it affords an improvement over current methods, we m.ust use it.
However, we cannot always afford to wait for such improvements, but must employ
existing analytical tools. Hence, a bilinear elastic solution is perfectly
anceptable in the absence of a sophi3ticated non-linear Prandtl-Reuss technique.

And we will, in general, prefer a highly reliable approximation to an unstable

"exact" solution. A lack of theoretical nicety cannot cause us to refuse to
undertake an analysis. We rmust find a legitimate approach to a given problem
and employ it, for design schedules cannot wait on long-term research.

Spacecraft and missile structures are often designed on the basis of
ultimate strength, that is; the ability to sustain load past some permanent
deformation criteria to actual failure of part. Since few materials exhibit
linear stress-strain curves to failure, an adequate analysis of a yielding
structure should include some approximation for changing stiffness and load
distribution. Iterative and incremental approaches are used currently in the
Wilson and MINI-ASKA codes: respectively. Incipient or existing yield conditions
are detected according to E.ome criterion, such as Von Mises, Yaximum Shear Stress,
or Maximum Strain, and areas designated as critical cause alteration or reform-
ulation of the stiffness matrix. A recent contract for the analysis of thermal
fatigue led to the development of a step solution accounting for element yielding,
thermal degradation of materir2 propertieq and shifting of the yield surface.
The results GIf this approach have been.'extremely encouraging and the program is
to Le described in detail in a forthcoming paper. This problem, illustrated in
Figure 1 makes obvious the nefessity of graphical output when on., considers that
a complete strain history of every element must be maintained throughout several
thermal loading cycles for each of 1200 elements. We are not aware of the exist-
ence of a working truly nonlinear analysis providing improved accuracy over this
technique without great cost in capacity and reliability.
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An incremental solution is a basic adjunct of any finite element program.
Structures exhibiting geometric, as well as material, nonlinearities are not
uncommon in missile components; for example: glass motors, pressure vessels,
and movable nozzles. A single pass linear solution based on small deflection
theory iz simply unsatisfactory in the analysis of a geodesic or tori-spherical
head, since some deflections actuall-- reverse as the loac increases. The C3
Poseidon motor dome model, for examp. ., yielded a stable solution only when
initial load steps were cut to one-sixteenth of operating pressure. Another
example is threaded or flanged joints in which contact surfaces and bearing
points change during load application. Sophisticated finite difference programs
have come to us for shell-type analysis; but nozzles, bolted joints, threaded
joints, etc., require the geometric generality afforded as yet only by finite
element programs. To meet this requirement we have, therefore, developed a
special one-layer element which is introduced between such flanged joints.
This element is totally incapable of resisting tension or compression until this
strain reaches-l.O, at which point its compressive motion is stopped and flange
faces. now bearing, accept load.

Stability analysis is still very much the province of finite difference
methods, although ,r are currently pushing research in the finite element domain
also. We feel that capability for shell stability vnalysis here at Lockheed is
very high. Extensive use of programs by Bushnell ( ,2,3) and Almroth and Brogan(h)
of the Palo Alto group during the Poseidon program has shown that large-scale
finite difference piograms are now beyond the research tool stage and that they
can be of great benefit in practical production analyses. Examples of results
of such programs compared with actual test results ar, presented in Table 1. The
STAGS program has provided us, for the first time, with a viable method fo'
stability analysis of a geometry reproducing an actual produ'tion item, i.e.,
an assemblage of rings, stiffeners, doors, and cutouts held together by pieces of
tin, whereas in the past, such structures have received the misnomer of 'Shells'
and the misfortune of being analyzed as such. Both BOSOR 3 and STAGS are
relatively new and are now undergoing the only reliable checkout procedure
-- extensive use. It is anticipat'd that these codes will be widely employed,
with associated production-oriented development, during subsequent Lockheed
contracts, although present usage is inestimably aided by close working association
with the authors.

Exotic materia1l abound in aerospace work. Glass-wound motors, carbon fiber
wrapped pressure vessels, plywood nose-fairings, honeycomb support structure,
nearly incompressible propellants, and high anisotropic reentry vehicle nose tips
continually challenge the analyst to provide constitutive relations hIving a
reasonable relationship with reality. Flexibility in this area is extremely
valuable. Shell programs normally contain a set of subroutines for several standard
wall constructions, while our three-dimensional solids programs (13)(16) have
been upgraded since their acquisition to include orthotropic materials for
standard applications such as reentry vehicles and pressure vessel or heat excharger
tubesheets.

Perhaps it woitld seem at this point that we expect eac'h computer program
we receive to be quite broad in scope. Certainly, a tool capable of solving all
our structural problems would be appreciated, but we are not so naive as to
expect a structural researcher to examine all aspects of all possible applicatio?,s
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of his program prior to its release. Still we labor undar the somewhat tenuous
assumption that structural research has structural application as its endo and
this calls for certain concessions on the part of the programmer., usually at
very small cost. A useful production program must be 1Lexible and a requirement
for continual dependence on the author for slight changes ensures that a given
code will rapidly fall into disuse.

The experience of our group has been that many programs have to be discarded
because they have been generated without a sufficient degree of awareness of user
requirements and, in too many cases, possessing so many limitations in terms of
accuracy, usability, and applicability as to render them virtually useless for
a practical range of engineering problems. Examples of such limitations are:

0 Programs which sacrifice usability for speed of solution by, for
example, imposing narrow allowable band widths.
Ue have to solve general structures, not tall slender towers, and
such narrow banding techniques are anachronistic at best and
unacceptable at worst.

0 o Programs with incorrect or outdated elements.
Too often we find that m_,n finite element Malyses are useless
because of this.
Programs wiiich prove impossible to understand, modify, or update.
Such techniques may provide job security in the short terii but

ensure a rapidly obsolete program in the longer term.

0 Programs which do not completely solve the problem.
For a stress analysis program to give forces and moments for 2000
elements rather than stresses is not acceptable.

o Programs with very inefficient storage and assembly and solution
techniques.
Our problems are large and must be solved rapidly and efficiently.

o Programs requiring a large and infl.exible data input scheme.
If structures are mathematically describable then FORTRAN should
be used as input.

o Programs where the user has no warning of any numerical problems

being encountered in solution.
There is no point in inverting an ill-conditioned or singular
stiffness matrix.

o Programs which cannot be highly automated.
We cannot afford the time or errors inherent in hand checking the
large quantities of printed output inherent in most finite element
analysis programs.

179



fm .. , 4

o Programs which gLve incorrect answers.
This happens all too often, and perhaps derives from pressures to
publish or, to take an unkind view, lack of care.

Attention to such details will increasingly determine the appreciation and,
still more important, the amount of support that research groups receive from
industry sources.

All these topics, of course, ultimately bear directly on user confidence.
The time always arrives, in any industry that produces a real product, when some-
one must put a signature cn a drawing certifying the product's adequacy. Three
alternatives are available to a person in such a position of responsibility
concerning the use of advanced programs: he can refuse such tools, he can use
(or misuse) them in ignorance, or he can use them with a reasonable amount of
confidence and knowlege. All. three positions are currently taken by practicing
structural analysis, but, in our opinion, only the third is acceptable.

The ultimate condition, intimate knowledge of a given computer code, is
seldom if ever, achieved. Hence, the importance of user confidence and understanding
cannot be over emphasized. Ideally, the following items should accompany a
digital code intended for use by someone other than the author:

0 A reasonable set of non-trivial test cases -- preferably compared
with test results.

0 A thorough user's manual explaining, in at least a rudimentary fashion,
the manner in which data input is used, and output interpreted.

o Documentation of sufficient depth to allow the user to conveniently
increase his knowledge of basic progrpm functions.

o Checks included in the code to indicate the occurrence of numerical
errors.

0 Some kind of accuracy check, for example: equilibrium, energy, or
iterative techniques.

These 'Lew features largely relieve the danger of misapplication of large scale
digital computer codes.
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SECTION III

A DISCUSSION OF THE
SINGLE LARGE PROGRAM APPROACH

In coamon with many other groups perform4 mg computerized structural
analysis on a wide scale, we are often zoncerned with assessing the merits of
employing a single ultra-large scale program to solve all varieties of structural
probleamLs. Generally, we are wary of such an approach for its cumbersome and
irflexible nature, at least with respect to the responsibilities of our group.
Specifically, we are concerned because experience has shown that we are forced
to constantly modify, update, and expand our own general purpose programs to
meet the demands of a particular analysis problem, to enhance a program's
capabilities and to incorporate numerous improvements made possible by revised
computer software routines. Without this in-house capability, we would not be
tale to undertake many of the advanced analyses that we dobecause on so many
occasions a program has to be radically modified or extended to meet the demands
of a new class of problem. For example, although we started with a single MINI-
ASKA general purpose program, we now have a range of special purpose MINI-ASKA's
in addition to our standardized program. Such special programs include: an
orthotropic solids version, a large displacement and pasticity version, and a
ccmpletelý double precision version. These versions were able to be rapidly
created due to two reasons; the first being the modular fashion in which the program
was written, and the second being that our engineers are intimately familiar with
every subroutine and its function.

This second reason raises another philosophical point regarding the use of
large scale computer programs which has been much debaoel in structural analysis
and other engineering circles. Obviously, we oppose the contention that the
engineers employing a program are not required to know the structure, theory, and
programming techniques used in that program. We do not believe that a person's
engineering responsibilities cease, or are, in some mysterious metaphysical fashion,
transferred to a computer program when he inputs the data cards as instructed.
Already, too many companies are hiring excellent young engineers, giving them a
set of data instructions without those engineers having any comprehension of what
they are doing or why. Sadly, it is often the case that the program being used in
such a fashion is either outmoded or inefficient and the very neople who could
contribute to its updating, expansion, or replacement are sitt ng like automatons
with their brains turning to concrete.

Hence, we have concluded general purpose codes are excellent if they are
designed for comprehension, modification, and updating by the user, but will
become rapidly obsolete or mistrusted otherwise. We believe that in any group
performing advanced analyses a library of special purpose and general purpose
programs is required, that rivalry between competing programs will drive advanced
development faster, and that the inefficient or inaccurate code will be rapidly
discarded. The spectre of "duplication of effort" is often raised in this
regard, but managers, engineers, and researchers do not gererally tolerate true
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duplication for long, nor does much that is labeled 'duplication' actually
prove to be so under closer examination. Thus, we welcome advanced research,
auvanced techniques, and advanced programs and will seek to use then if they
prove of benefit, and drop them if they do not.
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SECTION IV

ANALYSIS COST SUMMARY

In order to establish areas where development effort should be placed,
it is first necessuy to determine where potentially the greatest savings can
accrue.

Too often a great deal of time and money is expended to reduce the program
run time to its theoretical minimm; admittedly a challenging aesthetic exercise,
however, in practice, often resulting in loss of program generality or flexibility.
This is not to say that we are disinterested in speed or that our programs are slow,
but merely that speed of computation is only one factor in building up a successful
computar capability, and that the primary goals must always be accuracy of results
and rapid input-output. Studies have shown that computation accounts for only
10-15% of the total analysis time and costs. On a recent technology contract, for
example, computer costs were only $1200 of a total cost of $17,000. Unless the
computer program is quite highly inefficient initially, small savings in run time
come only after large development expenditures and, given a limited development
budget, alternative approaches to raising overall efficiency generally yield a
more substantial return.

Dat! input and checkout requires the greatest expenditure of time and
money on most jobs* Although slightly dependent on the program complexity,
typically 50% or more of the total analysis time and dollars is spent gen-
erating and checking the input data and performing necessary programming
modifications. Data reduction, evaluation, and presentation requires a further
35 to 40% of the total analysis time and costs. Hence, automatic mesh gen-
eration features, enhanced graphical I/O, and other options should obviously
be developed; however it appears that little research work is presently being done
to reduce these two cost areas which account for 80-90% of the total expenditures
for most tasks. Our own efforts in these areas are described in the following sections.
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SECTION V

PRO RAM INPUT REQUIREMENTS

As stated above, ipc.ation of
the required input dat along with
initial necessary program modifications
account for approximately 50% of the
total analysis time and cost. Figures 2

7 \.and 3 are computer plots of actual
'. • an'sis problems that are offered to

"i' N - illustrate the structure compJc.-ities
~. often encountered.

? The optimum method data generationi • is yet to be discovered which will
allow efficient modeling of the most

general structures. Until this method
is developed, we believe that every

I1 / computer program should make available
range of data input options. Options

IV presently incorporated into our large
scale programs are as follows:

o Data card input
o FORTRAN statement
o I-J mesh generation
o Combinations of the above

Data card input is used when the
structure is irregular and must be
described point by point and element
by element. Input using data cards is

* .. quite time consuming in that each
parameter must be calculated by the

A analyst, written on a coding form, and
then keypunched. Errors are, of course,
possible using this method, while the
computer operator has been known to

L": drop a box of cards at the crucial point
in the analysis. However, on highly
complex and irregular structures, it is

S Kthe only reliable input method currently
available. Figure 2 shows an example
of a structure that was analyzed using

* * data card input. Input consisted of
"five boxes (1800 cards/box) of data
cards. This structure also illustrates
why we contend that banded solutions are
often unacceptablG, for this model has

ace an average semi-bandwidth of 540 D.O.F.
4 " with a maximum of 1000 D.O.F.

FIGURE 2: COMPLEX TORI-CONICAL STRUCTURE

COMPOSED OF BEAMS, PLATES, AND HPBRANES
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FIGURE 3: Wing Structure

(Membranes, Links, And Webs)

Generated By LORTRAN Statements

FORTRAN statement input is a method highly favored by our group, whereby

the analyst constructs a FORTRAN driving routine to generate the input data and

to direct the analysis. Figure 3 is an example of a wing structure modeled using

a FORTRAN driving routine constructed by the analyst and requiring no data cards

at all. Coordinate calculations, meshing, and loading were totally performed

by the computer; hence little room for error exists. The disadvantage of this

methocd is that the analyst must know basic FORTRAN (a handicap seldom ancountered

any longer) and it is only applicable to strueture3 that are mathematically

formulatable or regular. We note that to change aspect ratio, sweepback, or

dihedral of this wing structure requires the substitution of a single card. The

driving routine required 40 cards whereas a data card deck would require

approximately 700.

I-J mesh generation is a technique whereby element connectivity is simplified to

a rectangular grid work which is then conformally mapped into the actual shape of the

structure with all internal nodal points being automatically computed and assigned.

Figure 4 shows an example of such a model that was generated with only 10 data cards

and no additional FORTRAN statements, while Figure 5 demonstrates the application of

this technique to a solid motor case analysis.

In contras 'he motor nozzle shown in Figure 11 was one of our first finite

element analyses problems in which all nodal points were calculated and inp'it by data

cards, a process which took three weeks and many heartaches. Today such a problem

is input in approximately 4-6 hours with far less chance of error.

Any useful produAction finite element program should have all of the above features

as input options. Additional subroutines should be included for recurring shapes and

meshes and much work remains to be done to further simplify data irnpu. For example,

the I-J mesh generation feature is presently ornly applied to two dimensional problems

and such conformal mapping technique plied to three dimensional shapes would appear

to have merit in simplifying the data input required for 3-D mixed structures.
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SECTION VI

PROGRAM OUTPUT REQUIREMENTS

Information from a finite element analysis can be expanded or compressed
to build as high a stack of printed output as desired. Reduction, evaluation,
and presentation of the typical output stack typically requires 35 to 4O% of
the total analysis time and budget. In this area there are basically three
requirements that must be met before the program can be considered useful.
The program must rapiLdly playback in both printed and, more importantly,
pictorial format the model as input by the anplyst. Output must include print-
out and graphical displays of stress and deflection quantities in the format
and reference system chosen by the analyst. Finally, it is necessary that accuracy
checks and diagnostics be printed out as the solution process proceeds to warn
the analyst of possible impending numerical disaster.

Figure 6 shows an example of an error in input geometry that could easily
go undetected if only a cursory check of input geometry were to be made, while
FKgure 7 repeats the model with the eiTror removed. Such errors would be well
hidden if only a coordinate table were to be printed out. Even if the error was
detected by examining the output list the time required could well run into days.
Worse yet, the error could go undetected a;,d incorrect conclusions made regarding
the validity of results.

The time required for reduction and evaluation of output quantities such
as deflections, stresses, and strains has been greatly reduced in the Lockheed
MSD organization through extensive use of the SC4020 electronic plc+ter. De-
flected figures of the loaded model, such as that shown in Figure 8, provide
a rapid check on the validity of the analysis and identify potential problem
areas. Figure 9 represents use of the plotter for displaying the stresses
along any line within the structure. Not only does this provide the analyst
with useful stress information, but additionally is quite helpful for reporting
and presentation purposes. Contours of stresses, strains, or any other quantity,
as demonstrated in Figure 10, significantly aid rapid data reduction of all
quantities of interest to a degree where little additional hand effort is required.
Hence, output data reduction require::ments, which are normally quite time consum-
ing and error prone, can be m.Lnimized by the extensive application of advanced
graphical and pictorial output techniques.

Finally, to be useful and reliable as a analysis tool, a program must also
provide, as a fundamental part of its output, accuracy checks and diagnostics
at the critical steps of the solution process. We have encountered cases where
the stiffness matrix became singular during decomposition due to accumulation
of roundoff and truncation errors, but where the program continued through the
complete solution process without printing a single diagnostic or warning message.
Such errors are not always detected through examination of the strass and
deflection output, but naturally the solution is invalid. There are numerous
other checks that should be included; however, on the basis of the aforementioned
examples, the necessity for this form of output over what is classically provided
appears obvious.
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SECTION VII

MODULARITY REQUIREMENTS

Rapid response to unusual design situations is required for a stress
analysis group to efficiently perform its function of ensuring that only reliable
designs go into production or into a proposal. The alternative of ýmiting an
indefinite period for proper analytical methods to be developed is simply not
available; current resources in the form of existing analytical techniques and
personnel background must therefore be employed immediately. Preliminary design
and proposal efforts, increasingly important in aerospace comi. anies, are governed
by a general rule: if it can't be done in a very short time, it can't be done
at all (at least on a computer).

Digital computer codes must, then, be of very broad capability, or in a
form conducive to rapid alteration by the analyst. We emphasize that the
analyst should be in a position to alter in a reasonable time any facet of the
program within his knowledge, since program authors or programiers with intimate
knowled~ge of the subject code are not generally available on short notice, if
at all, for extensive effort devoted to the solution of a specific analysis
problem. The high frequency with which projects are encountered requiring
program modification has led us to place an extremely high premium on program
modularity.

Three very recent examples of short-notice alterations to program functions
serve to illustrate typical analysis problems requiring maximum program flexi-
bility and modularity together with an intimate user knowledge of program
content and structure.

o Analysis of a geodesic fiberglass motor dome, modeled on a linear
two-dimensional program, showed very poor results, deflections in
some areas vhowing the wrong sign. Coding was introduced to allow
a step solution, thereby accounting for the geometrically nonlinear
behavior of the d~me:

o Supplementary equations of equilibrium were included in the anasis
of an oil tanker web frame to prevent the buildup of reactions at
displacement boundary condition points.

0 An alternate method of specifying constitutive relations for
fiberglass motors was supplied to prevent numerical problems
ca'4 sed by theoretically predicted high Poisson's ratioR.
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Schedules demanded that each of these new facilities function correctly
within two days. The first and third p5 the previous examples were completed
properly because the program employed-'6 has been at Lockheed for several years,
and many members of our group are extremely familiar with its organization.
The second example was accomplished in the required time only because of the
modular organizational scheme of Dr. Kamel's program, MINI-ASi:A(13).

Modularity, in the Missile Systems Division of Lockheed Missiles & Space
Company, means that any specific function performed with some degree of repetition
is separated into a distinct subroutine with conscious effort on the part of
the programmer to make the routine's function obvious. A user may then impose
a new program procedure without fear of generating coding problems in other
areas. Separation of mass secondary storage access routines, for example, allows
simple adoption of new software routines. Of still greater importance, however,
is the fact that someone other than the author may keep a program from becoming
obsolete by incorporating new elements, solution methods, and facilities as they
become available.
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SECTION VIII

PROGRAM CAPABILITY REQUIRED
FOR

PRODUCTION ANA'_YSIS

Presented here is a brief summary of our general capabilities to indicate
what we feel to be the breadth required for large scale production structural
analysis. The following four paragrghs outline our present capabilities in
each of four main areas: solids and plane stress structures, mixed structures,
stability critical structures, and specialized general structures.

Solids and Plane Stress Structures

Programs are available with up to 15,000 unknowns and 5,000 elements for
the rapid solution of both axisymmetric and arbitrary solids.

Element typea available:

CS & LS Trianglea
CS & LS Quadrilaterals
Tetrahedrons
Higher Order Solids

Special Features:

Low Cycle Thermal Fatigue
Incremental Loading
Non-linear Analysis
Displacement Restraints
Thermal Gradients
Orthotropic and Layered Structures
Non-Symmetric Loadings
Stress Otatputs
SExtensive Graphical and Pictorial Output Display Options
Linear and Rotational Acceleration Loads
Mixed Materials
Plane Stress and Strain Options
Highly Automated Mesh Generation

Mixed Structures

Programs employing rapid solution techniques while permitting up to 18,000
degrees of freedom are available for the solution of general structures.

Element types available:

Links
Beams
Triangular CS & LS Membranes
Triaiqgular Plates (including Thermal Gradients)
Quadrilateral Membranes
Quadrilateral Plates

Tetrahedrons
Higher Order Solids
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Specialized General Structures

The following programs were developed to solve unique forms
of structures:

Bencyl - Stability of orthotrpic core and cushion supported shells

Alan - Creep buckling of cones and cylinders (thick shells)
under longitudinal loads

f Creep - Cylindrical shells with non-symmetrical temperature and

axial load

Fancap - Fully automatic nose cap analysis program

Star - Elastic-plastic dynamic response and dynamic collapse of
cylinders subjected to time-varying non-symmetric pressure
and axial loads

Sell Buckling

Seval programs are operational perm:A~ng the rapid solution of
virtually aM axisymmetric shells.

Permitted shell properties:

Orthotropic & Isotropic-
Cutouts & Holes
Discrete Rings
Discrete Stringers
Multi-Layered
Core Supported
Non-Uniform Thickness

Special Features:

Solution by finite difference and numerical integration

Dynamic and thermal buckling

Thermal effects and gradients

Large deflection effects

Plasticity effects

Extensive plot and graphical output options

Arbitrary meridional or circumferential loadings
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SECTION IX

DEVELOPMENT OF LARGE SCALE
HIGHLY-AUTOMATED PRODUCTION

PROGRAMS

When received from an independent programmer, computer programs are seldom
ready for the production analysis tasks that daily occur. We have described
earlier the general requirements that every production code should fulfill and
our interest in the development of same highly automated extensions to such
basic codes. To illustrate this process, historical development sketches of
two programs, one for analysis of axisymetric solids and ona for the analysis
of general mixed structures, are now summarized.

Axisymetric Solids ProraE

This section devotes itself to a brief historical *Unt 0; our development
of Dr. Wilsonts axisymmetric solid of revolution programJn since 1965 when we
received it. This was the first finite element program that we received and
was rapidly brought to a production status. It is a tribute to the utility and
flexibility of this program, however, that is still undergoing very active
development here at Lockheed today, although in vastly dilferent form to the
original version.

Figure 21 shows the first analysis proect attempted using the Wilson
program. A 5:1 scale layout was made and the nodel points and mesh were super-
imposed by hand since no mesh generation features were available. Program
input consisted of over 2000 data cards and output consisted of its usual listed
tables of element stresses and strains and nodal deflections. The program
utilized a constant strese quadrilateral element, and had capability for thermal
and mechanical loads. Solution was linear elasti i with provision for an
iterative plasticity solution using a bilinear stress strain relationship. The
time required for modeling i.-d input was three weeks and this span emphasised
clearly that, as received, the program could not be used for production jobs
requiring a speedy analyt!.cal response. The utility and power of the program and
its f'inite element technilues, however, was obvious in that it gave us a greatly
extended analytical car.aoility.

element pitfalls and limitations. The results of cantilever beam test cases (a
standard test case employed) were extremely poor due to solution roundoff and
truncation errors. A version which assembled and solved in double precision
corrected the errors and excellent results were then obtained. Additional test
cases wer'e run substantiating the decision that, for certain classes of 2roblems,
it is necessary that the program use double preci£iion variables. A series of
investigations were also made concerning element aspect ratios which resulted in
allowable limits being set. This point is often neglected and can lead to
disasterous results which may be believed by the user.

195



LClII

.r ...E U: FINITE ELEMT MES CONSTRUCTED ENTIRELY BY PROGRAIDIER AND REQUIRING
OVER 2,000 DATA CARDS TO INPUT MEM AND GEOMETRY

196



Next the I-J mesh generation feature was added, resulting in an order of
magnitude decrease in input time and costs. For example, the model shown in Figure 11
c•uld now be input in 4 - 6 hours rather than the original 3 weeks. Figure 4
demonstrate- this approach where, in this example, the coordinates of 862 nodal
points and the connectivity of 800 elements was generated using ar input of 7 data
cards. At the same time an early graphics package was developed and added so that
the nodal geometry and element meshes were automatically plotted, using the SC4020
electronic plotter. The results of these first extensions were that data input
error was greatly reduced and the required time and cost of input was cut to less

*• than 10% of previous needs.

Additional pictorial output features were then added so that the deflected
geometry of the model, as well as contour lines of constant stress, strains, and
other quantities were available to the analyst as optional program output. Examples
of such output techniques are shown in Figure 12. Data reduction time was sub-
stantially decreased at the expense of only a second of computer run time by the
use of these options. .

A new version of his basic program which allowed full orthotropic material
properties was then received from Dr. Wilson and incorporated into our program
library after all of the above modifications had been made. This new version
became our basic axisymmetric solids program.

To minimize still further the effort involved in reporting analysis results
the pictorial format shown on the following page in Figure 13 was developed and
incorporated. The SC4620 6utput is thereby entered directly to a report, and a
large amount of data quickly and neatly presented.

An advanced Zienkiewiez-Irons type numerically integrated isoparametric
linear strain quadrilateral membrane element was subsequently incorporated into all
program versions. Figure 14 demonstrates the increase in accuracy over the previous
constant strain quadrilateral elements while a further bonus was realized in the form
of a reduction in run-time of 20%. In addition to these basic changes and the
incorporation of advanced irput/output techniques, a continual development program
was optimizing the codes for the 1108 system and ensuring that full advantage was
being taken of software changes.

Next4 a new code was required to analyze an aircraft brake disc subjected to
extreme thermal loading cycles that could result in low cycle thermal fatigue
cracks. The Prandtl-Reuss equations for incremental plastic flow were incorporated
and an incremental solution for each cycle using the tangent modulus approach
obtained. In this code material properties are input as a function of temperature
and calculations are made considering the strain history and element temperature for
each increment of loading. Present programming requires that the material be
isotropic and linear strain hardening. This program version was developed to
accomplish a specific task; iowever, it has greatly enhanced our analytical capa-
bilities in the general field of low cycle thermal fatigue. Figure 1 which was
discussed earlier, demonstrates the application of this code. Figure 15 demonstrates
the finite element model# the thermal input, and the isostress contours for an
analysis step within the cycle summarized in Figirz 1.
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FIGURE 12: FINITE EL94ENT MODEL, DEFLECTED SHAPE, AND ISO-STRESS CONTOURS
FOR A MISSILE COMPONENT

A number of examples follow of problems where this basic program and its
derivatives has been succE fully applied. Figure 16 represents the forward motor
dome of a solid propellant motor. Analysis was made to determine propellant to
insulation stresses when the motor was subjected to ignition pressures and loads.
The model consists of 1302 elements and 1160 nodal points and is constructed of
17 different materials, ranging from highly orthotropic to nearly incompressible,
and possessing a series of widely disparate stiffnesses. Initial runs were made
using a single precision version of the program. During decomposition,truncation
and roundoff errors occurred to such a degree that negative numbers appeared on the
main diagonal of the stiffness matrix, producing the interesting, though dis-
concerting, result thet a load on a nodal point was reacted by a deflection in the
opposite direction. By using a double precision version of the program, weyere
able to obtain reasonable results; however, output reduction to check equilibrium
of the external forces and internal reactions disclosed the solution still in error.
Printout of the stress-strain transformation matrices of the orthotropic case
material disclosed the error in the basic code. The program was rerun, and a force
balance now indicated equilibrium to 1-3 within 0.25%. The solution was stable and
the results considered successful.

Another analysis problem recently solved using this program is the motor
skirt to case bond region. The two different loading conditions run were internal
pressure and axial loading of the skirt. It was found that the pressure analysis
could not be solved by linear theory (the motor shape changes having a lerge in-
fluence on the final stress distribution) and the final solution involved, in
addition to many minor problems, modifying the program to apply the loads incre-
mentally with the model geometry being updated at each step. This technique
permitted the formulation of a valid monotonically convergent solution to the
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large deflectibn problem. The analysis considered the skirt to case bond in various

configurations, one of which was where the bond had initially separated for a short

length. This requirement imposed an additional complication to the pressure analysis
in that the cracked portion of the bond, while unable to carry shear and ternsion,
can and does carry compression loads from the press3urized motor case into the skirt.
These bond elements were, therefore, given the regular value of elastic modulus
but a low modulus in shear. Although the final output showed a few elements
carrying a small tension, it was not considered significant. A rigorous solution
where the bond elements could carry compressiorn: but not tension, would raise the
run times from high to astronomical.

A second example of the program usage i. in the area of reentry nose cap
analysis. Figure 17 shows the automatic model geometric changes as the nose cap
ablates and demonstrates the variation in the structure with altitude that is used
as thermal load input. Input to the program is almost entirely taken from the
thermodynamics output tape. Contained as output on the tape are temperatures at a
number of locations within the confines of the structure as well as coordinates of
a number of points on the inside and outside surfaces. The stress routines calculate
the coordinates of the intermediate points on the surface and then using the I-J
grid generation routine construct6 the model. The temperatures of each element
are calculated using a weighted interpolation scheme, and then the element material
properties are automatically calculated through a linear interpolation from a table
of properties vs. temperature. The entire analysis is automatic and a complete
stress analysis is accomplished in 24 hours including stress, strain, temperatures,
and geometric histories -- automatically prepared and pictorially summarized in
report format.

Many other examples could be given here since this program and its derivatives
ar, •%me of workhorse programs in daily use. That this program is still undergoing
active development some five years after its original version was received is a
high compliment to Dr. Wilson's basic program format.

Mixed Structures

This section concerns the development of automated and advanced versions of
,Dr. hamel's three-dimensional mixed structures finite eOement program(13) which
came initially to us in 1966. It was our first exposure to a computer program
where the author assumed some programming knowledge on the part of the user, and
provided extensive documentation to ensure that the code could be used with max-
imum efficiency. Furthermore, the extreme modularity and organizational clarity
of the code makes reading the listing more educational than most textbooks for
beginning practical analysis. The rapid development and heavy usage of the program
since 1966 attests to its favor with members of our group who must perform day-to-
day analyses for design purposes. The input for this program is generally by the
FORTRAN method discussed earlier, but input by data cards is an available, if not a
widely employed, alternative.

Transmitted to us as a 32K core version capable of handling 240 unknowns for
10C nodes and 200 elements with five elemen&o types available, the program was
immediately expanded to over 3000 unknowns for 1000 nodes and 2000 elements by
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making use of the full capacity of our computer system. Program sizes are now
considerably higher than these figures while use of U108 systems routines and
buffering technique have greatly reduced run times. All dimensions are contained
in one PDP (Procedural Data Processing) block, and all accessing of mass secondary
storage is separated into routines for each type of quantity accessed. Thus
program dimensions may be altered, and efficient use made of a given software capa-
bility, without great familiarity with the program or fear of generating severe
coding problems. Because of its structure, our major developments since the program
was received have, therefore, been accomplished with minimal consultation with the
author.

In our work the need often arises for an incremental solution. Whenever a
structural problem exhibits nonlinear behavior due to geometry changes or material
property changes, some means must be found to approximate the deviation from linear
behavior. In finite element programs iterative or increrental methods are usually
employed. MINI-ASKA's incremental mode was quickly debugged and tested, thereby
enabling the user to update the state of the structure at each step for large
deflection or plasticity analyses. This incremental mode has been since successfully
used on glass motors, a wing, and an undersea oil pipeline. Additictially, an elastic/
plastic version of the program has been developed and successfully used in our
analysis activities.

When i•ring to perform an analysis of a small wing, we were made aware of the
shortcomings of constant strain elements. Figure 2, presented earlier,(a plot of
a wing conf1L*uration),has dimensions that are not unusual., but the solution
yielded deflections of about one-fourth of the correct answer. Refining the grid
of the vertical web members improved the ability rf constant stress elements to
model flexure, but also increased the bandwidth and total .iumber of unknowns, and
produced a very bad aspect ratio resulting in signfant errors. Incorporating the
iso-parametric linear strain quadrilateral element 22) for this problem seemed the
obvious step, and in two days the stiffness and stress matrices were placed in
MINI-ASKA and checked cut successfully. Deflections for the iwing immediately
matched the hand-calculated value using only one membrane element for vertical webs.
Another occasion required, for reasons of core storage limitations, a beam with
six degrees of freedom in the local coordinate system to eliminate the need for
using three elements to model each xflexural member (one beam for each plane of
bending and a torsion member). The new beam was installed in one day allowing
"us to proceed with the solution.

Reentry vehicles are sometimes arbitrary three-dimensional non-axisymretric
orthotroPic continuat Until recently, modeling these bodies with some az7iaym-
metric approximation was the best an analyst hoped to achieve, -there being no arbi-
trary solids analysis programs available. Using the basic organization of MINI-
ASKA and its constant stress tetrahedron, a separate 6000 element version was
established and a routine written to provide orthotropic constitutive relations.
Again. the organization and high segentation capability of the program allowed
the user to put together the routines necessary to perform a job rapidly and without
disturbing the rest of the program's organization.

206



Thermal loading analysis capability has been extended to include gradients
through the tnickness of plates. The standard approach to thermal loadings in

• the finite element method is to calculate free thermal deflections of an element,

Smultiply the stiffness by these deflections, and apply the 'fictitAous forces' so
obtained as loads. A subroutine INICD (INItial Corner Deflections) calculates
non-rotational free in-plane thermal deflections-and a subroutine INICF (INItial
Corner Forces) multiplies the stiffness by the deflections and enters the
resultigi forces into the load vector. All that was required to include thermal
gradients through the thickness for flexural elements was to provide a subroutine
INICR (INItial Corner Rotations). The analysis then proceeds normally. Figure 18
indicate-sresults obtained by this method.

Displacement and skew boundary conditions are a very useful adjunct to any
program, allowing the user to take advantage of symmetry planes not in coordinate
planes and also to apily deflections as edge conditions. Figure 19 a plot of a
recently analyzed oil tarker web frame, illustrates the use of displacement boundary
conditions. Use of symmetry conditions for a current analysis of a nuclear pressure
vessel jet pump analysis allows us to model only 1/32 of the geometry instead of
one/fourth, therebi cutting analysis cost in half, and probably increasing the
accuracy of results.

Systems of equations involving 4500 unknowns are often subject to serious
accuracy loss due to numerical error during solution. Validity of results may
be checked in several standard methods such as idealization of a structure
allowing theoretical solution or equilibrium checks, but the problem remains as
to what should be done when numerical errors occur. A good production program will
have built-in checks and output to indicate serious numerical trouble. Such
problems, when encountered, are then combated through resorting to double precision
arithmatic, remeshing the model, or execating some accuracy improvement scheme.
Double precision versions of all of our finite element programs are operational
but, unfortunately, doubling word size tend, to cut modeling capacity in half.
An alternate approach is to find some method of improving a given solution.
Iterative schemes are regdily available in numerical analysis texts, and a
Newton's matrix iterationW17) method was therefore programmed for use with large
scale equations sets having a tendency toward accuracy loss and incorporated
in'uo KINI-ASKA. The modular nature of the code allowed the programmer to use
matrix manipulation roiitinis and secondary storage routines without great familiarity
with the solution process. We have found accuracy improvement to be generally more
reliable than our double precision, whi-ch is subject to some system peculiarities.

A comprehensive plot package based on the S04020 has been developed and
incorporated including: full and partial geometry playback, deflected shapes,
selected stresses alor.g cuts through the structure, and isostress contours for
projections or mappings of three dimensional geometries. We must repeatedly
emphasize that these graphical routines are not merely niceties but necessities
for intensive large scale production analysis. Figure 20, a plot of the submarine-
launch tube intersection, illustrates the physical impossibility of computing all
the coordinates by hand and checking the configuration as understood by the computer.
The element description alone requires thirty pages of pri-nted output. The para-
bolic antenna of Figure 21 shows the use of geometry plots for only certain types of
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FIGURE 20: FINITE ELEMET MODEL OF A SYMMETRIC SECTION OF THE INTERSECTION

REGION BETWEEN A SUBMARINE PRESSURE HULL AND MISSILE LAUNCH TUBE
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FIGURE 21: EXAMPLE OF USE*OF GECZ4ETRIC PLOTS TO DETECT INPUT ERRORS

FIGURE A FIGURE B

-DETECTING ERRORS

* PLOTS OF THE GEOMETRY ENABLE THE PROGRAM14ER TO DISCOVER

ERRORS IN HIS INPUT WHICH MAY HAVE OTHERWISE GONE UN-

DETECTE~D, AND PINPOINT PROBLEM AREAS ALMOST IMMEDIATELY.

a PARTIAL PLOTS OF A SINGLE ELEMENT TYPE SHOW UP ERRORS IN

THE STRUCTURE WHICH MAY HAVE BEEN COVERED BY THE PRESENCE

OF ANOTHER ELEMENT TYPE.

*IN FIddRE A,'NODE230 CLEARLY STANDS OUT AS BEING INCORRECT.

WHILE 11 N FIGURE B IT IS OBSCURED BY THlE PR.ESENCE OF OTHCR

ELEMENT TYPES.

FIGURE 22: LINES OF CONSTANT STRESS IN THE LOWER CENTER OF THE TANKER
WEB FRAM4E SHOWN IN FIGURE 2
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elements; the misplaced node (230) is completely hidden in the full geometry plot.
Figure 19 of the oil tanker web frame mentioned earlier shows the use of deflected
plots to confirm the analysts physical intuition of how the structure should
behave under load. Deflections of the wrong sign, or showing a lack of smoothness
are immediately evident in the picture, but may be well hidden in printed output.
Another example of the use of deflected shape plots is Figure 8 where a pressure
vsssel manifold is subjected to a bending moment. The smooth anti-symmetric
behavior is precisely what it should be. Even for this relatively small 560 element
model, the printed stress output covers 150 pages, ensuring that the analyst would
soon be myopiq if not slightly insane, without the availability of pictorial and
graphical output. The use of stress contours and stress cuts is illustrated in
Figures 22/23, the highly visible form making abundantly clear areas of stress
concentration.

In summation, the MINI-ASKA program has proved a great value in its capacity
to grow with the needs of the user, while at small sacrifice in run-time great
generality has been achieved. The development and incorporation of advanced elements,
automated input and a wide range of pictorial and graphical display options has
enabled this program achieve its current status as a code well suited to our needs
for a production analysis tool where speed of response, flexibility and accuracy
of results are paramount considerations.

212



SECTION X

PRESENT RESEARCH

Our present range of research interests encompasses a number of areas. In
the field of graphics we are pursuing techniques of plotting stress contours for
"mixed structures including various projection and development schemes in addition
to improving our orthographic projections, particularly with respect to the well
researched hidden line problem. Our graphical presentations and au, omated report
formats are being constantly improved and extended. Lockheed is studying our
requirements for advanced electronic plotters which will improve both resolution
and speed over our present SC4020 equipment. We are naturally interestev in real
time computer graphics and expect to be highly active in this field when equipment
facilities expand to the size required for large scale production problems, %hich
would represent problems in the 4000 DO.F, range. In this regard we note that
we have already successfully generated movies using finite element models coupled
with the microfilm option on the SC4020, a .qchnique which is of interest for
studying the response of complex structures t-) arbitrary loadings.

To extend our finite element capabilititis, we are active in the area of
stability and dynamic versions of mixed structure codes and are working towards
more advanced mesh generation schemes with particular emphasis on general structures
and arbitrary solids. Advanced versions of mixed structures problems are being
checked out for use in elastic-plastic analyses while advanced plate and beam elements
are being tested. Receiving particular emphasis, however, is the iso-param ?tri'9
numerically integrated hexahedron solid originated by Ztenkiewicz and Irons (18)!19)
(20) and currently being developed by Wilson and Clough(21) at the University oJL'
California. This element appears t6 possess wide applicability to the analysis
of such structures as;tubesheets, thick walled vessels, and pipe tee intersections.
Our test cases have yielded excellent results and we have successfully developed
an orthotrppic version of this element. We are currently developing suitable mesh
generation and plotting routines in order to bring this program to full production
status.

We are continuing work in the areas of applying programs to preliminary
design and proposal activities, particularly in the realm of minimizing input
and allowing full visual playback of input and output. Solution procedures and
improved schemes for detection of numerical instability continue to receive
attention3 while run times are being reduced where program generality and usability
are not compromised. Improved programs for buckling and transient response of
arbitrary structures ars. being checked out and have yielded highly encouraging
results to date. Finally, our capabilities in tho area of low cycle thermal
fatigue analysis is being rapidly extended and is finding an increasingly wide
field of interest and application.
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SECTION XI

CONCLUSIONS

The urgent need for the development of highly autonated input/output tech-
niques to enable the use of large scale computer programs on a daily production
basis is clear. Our work in this area has shown the dramatic reduction in
analysis effort and time made possible by the developmont of a wide range of
advanced pictorial and graphical schemes as standard options. Similarly the
necessity of intimate user familiarity with all internal functions is obvious,
if full advantage is to be taken of a given program's basic potential. Finally,
our requirements for more advanced programs improved accuracy of results, and
extended automated input/output schemes ensures that such areas will continue
to receive our attention.
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QUESTIONS AND COMMENTS FOLLOWING VINSON'S Y'APER

QUESTION: I was intL. e-sted in your low cycle fatigue study.

What size of structure were you interested in and what type of constitutive

equations were you using?

VINSON: I'm not sure, but if I remember correctly they

involved something on the order of 700 elements and a Prarrtl-Reuss

material law was used.

QUESTION: Are you ever blocked in production by loss of num-

stiffness matrix approach?

VINSON: We haven't run into one yet where we haven't even-

tually come to a satisfactory solution through some kind of accuracy

improvement or going to an iterative technique or to a double precision

version. It will happen though, I'm sure.

QUESTION: . not familiar with your graphics facility. To

what extent can you interact and specify, for example, what Views you

want to see and can you make corrections from a graphics unit?

VINSON: I think you're referring to sonme kind of interaction

idea where you change things as the analysis goeE on or as you look at

pictures. We don't generally do that. Our structures are large and have

to go on the 1108 and on the 1108 you don't use real time.

QUESTION: Apparently Tnost of the analysis using the techniques

you described is done by a small group in the division rather thatn the design
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engineers themselves? Is that correct?

VINSON: That's correct.

QUESTION: We have about 200 design engineers using these

techniques and I'm curious to see what your rea'.tion to this type of opera-

tion is.

VINSON: I don't generally like the approach because a large

group tends to deal with compu~cer programs that are the be-all and end-all

and they don't even know ,'hen they're in trouble. You know, there are

p,,.-,e who beii-':.; anything a computer puts out. They need somebody

around with considerable engineering experiece to keep them straight.

QUESTION: So, in other words, you're in favor of your type of

operation rather than having the design engineers themselves do the

analysis with the systems.

VINSON: I would hope that the difference would disappear. I

would hope that people who do design also understand the fundamentals

of structural analysis and analysis methods. Now that may be naive but

I'd like to see that.

QUESTION: Typically, in your experience, how many times afte.;

you have constructed one of these splendid and elaborate models, do you

cycle it in the sense (.hat you modify the design and repeat the analysis. I

have had the experience of talking with other organizations who have capa-

bilities similar to yours and they've indicated that for a typical applica-

tion they recycle, as far as reanalysis goes, relatively few times. I

wonder if that has also been your experience. Do you recycle typically
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three times, change the design and recyle three times, ten or twenty?

What kind of number could you give us?

VINSON: Do you mean changing the models to get the right

answers or altering the actual design?

COMMENT: Let's assume for the sake of discussion thai. the

modeling has been successful and you have confidence in the analysis but

it shows excessive defiection or excessive stress or some undesirable

behavior characteristics and you wish to modify the de3ign.

VINSON: Preliminary designs are changed, I would say, quite

often, more and more often--but ti -t fact is that you don't arrive at a re-

fined design early. You talk about things, you try a lot of concepts and

when you get to the point where you have a pretty good idea of what's going

on, then you do a refined drawing. What we're really pushing for is a

higher interaction where the designer doesn't sit in his cubicle until he's

got an idea, do a beautiful production drawing for three weeks and then

come to you. We don't think that's the way to go. The analyst should inter-

act throughout the entire design process.

QUESTION: If I understand you correctly, you say that the number

of re-analyses is small. Let me ask this one further question. Id it more

likely that you would conduct the analysis over again as a consequence of a

discovery in the change of tbe loads rather than a major modification of

the design?

VINSON: I couldn't say--usually it's awfully late in the program

when load begin to go down and all this really does is give you more flexi-
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bility, in my experience.

COMMENT: I might add on that point that it's perhaps equally

likely you'll be modifying the model for loads as for structure problems.

It's very seldom you'll repeat an analysis without having something

modified- -either in flexibilities or loads or member configuration or

something. ". , we're forever developing modifications and re-running

with differences.

QUESTION: In your paper, you mention a computer program

MINIASKA. Is this in any way related to the ASKA program?

VINSON: Perhaps Prof. Kamel who developed MINIASKA

would like to comment on that.

KAMEL: The name intended for the program was DAISY. The

name MINIASKA was given to the program as a joke stemming f'-nm my

early association with Argyris' group in Europe. MINIASKA resembles

ASKA, but it has been completely rewritten. For one thing, ASKA was

all in machine language and MINIASKA is all in FORTRAN IV.

QUESTIC_.. I noted in your stress contours you've shown here

that you invariably plotted some particular component of stress. We often

find it useful to plot some failure criteria because it's indeed that informa-

tion that the designer would most like to have. Also we have found it use-

ful to try and anticipate design changes and use a substructuring scheme

to advantage so that under changes in load or changes in geometry we do

not have to repeat the entire analysis, Have you found substructuring



advantageous iii examples like you showed today?

VINSON: Substructuring has been used at Lockheed on various

programs. Most of the problems r've run in to have been associated with

missiles. The problems are segmented well enough that we can easily do

a complete model of the area we're interested in. As far as plotting some

kind of a failure criteria, I think there were some graphs there showing

effective stress and maximum. shear strain criteria. These are all avail-

able. If information is available for printout, it can be plotted.

QUESTION: You implied that youtve used a lot of general purpose

programs and I'm wondering what kind of programming staff it takes to

maintain and update these programs.

VINSON. Our group engineer has 14 working for him and a

parallel group has about the same number. Together, we do it all.

We don't have a closed computer shop and ii an engineer feels that he can

program something faster than he can explain it to a programmer, he

programs it. Most of our programs are highly modular. If there's a

particular part of that program that you understand, you can go in there

and make it do what you wish it to do in a week without messing up all

kinds of coding in the rest of the problem. This is why we stress flexi-

bility. We can't support a large programming staff.

CRICHLOW: In this session we have had a very excellent over-

4 iview in three major segments of the business. The mathematicians are

quite often satisfied with a solution that may be a long equation which no

one can do anything with until some programmers take over and produ.:c a
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computer program which still is of no particular use until an engineer

takes it up and applies it to an actual structure. Now the end point of

the whole scheme from the initial mathematics through the programming

and ultimately to engineering application is really to produce an article

for sale. I think this point was well made by Mr. Vinson's very extensive

demonstration of different types, sizes, styles of structures and problems.

I would like to add a point of my own. What the designer is really interested

in are the dimensions of his structure. I think our anelysis system is

upside down in this respect. While we treat the analyses very completely

and determine stresses and relate these to s--"engths, the designer doesn't

care what the stresses are so long as he can be assured that they are less

than some strength constraint. The dimensions are really the dependent

variables of the problem.
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PANEL DISCUSSION A

MEETING THE DEMANDS OF ADVANCING AEROSPACE TECHNOLOGY

Chairman: P. E. Grafton, The Boeing Company,
Seattle, Washington

L. A. Riedinger, Lock~heed-California
Company, Burbank, California

R. B. Baird, USAF Headquarters,
Washington, D. C.

R. Bader, AFFDL, Wright-Patterson
Air Force Base, Ohio

R. W. Leonard, NASA Langley Research
Center, Virginia

GRAFTON: We are going to conduct an open forum panel dis-

cussion this afternoon on the topic of "Meeting the Demands of Advancing

Aerospace Technology. " In particular, we will discuss how these demands

will influence the development of analysis capability for complex structure--

especially shell structures. From my own personal point of view, I suspect

that some of what we have tc say here today some of you may not want to

hear. That is, in many cases, challenges which confront the structural

analyst are not the development of new methodology but rather are charac-

terized by the needs of producing operational structural analysis to3ls.

We will begin the panel discussion with opening remarks from the panelists.

Discussion amongst the panelists will follow after which I will open the

discussion to questions from the audience.

I have been associated for some years with the development of structural

analysis techniques. Now I am out of that business and I tend to view it as

somewhat of an outsider looling in at it. However, one thing strikes me

on reflecting back and that is the time that is involved between the develop-

ment of new methodoiogy in an area like this and the final application of
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this methodology to the design and analysis of new hardware. I suspect

that any new developments in structural analysis that come about in the

next year will probably not significantly effect the design of systems that

become operational much before 1980. So we are going to have to look

pretty far downstream if the developments on which we are working today

are to have a significant impact. Without trying to look at specifics of

systems or operational requirements, one thing seems very clear to me;

that is the increasing utilization of what I like to categorize as multi-

function aerospace structures. In the past we used to think of structures

as having a very simple fundamental -ole to play. They were designed

primarily to provide aerodynamic configuration for axL airplane and to
carry the loads involved during flight. We've already long departed from

that concept in mar.y fields. I'm sure some of you have heard of the air-

borhe warning and control system (AWACS). As part of this system, a: roto

dome which is about a thirty-foot diameter disc, is mounted on top of an

airplane. As you rriight guess, it becomes a fairly significant part of the

aerodynamic configuration of such a system and as such provides an excel-

lent example of a multi-function aerospace strtxcture. The des- -n of the roto
.dome was governed not only by strength considerations, but al oy some

very exacting aerodynamic requirements to minimize che drag of the com-

bined airplane roto dome system and some electromagnetic requirements

to prevent distortion of the radar beams coming through the radome shell

wall. This type of interdisciplinary design is commonplace today and is
going to be the rule. Any time you have a single function structure ten

years from now, I think that's going to be the extreme exception and we

must bear in mind the impact of interdisciplinary design requirements in
developing analysis capability. One very simple example may illustrate

what I rinean by this. In areas where we are concerned with the inter-
action of structure and aerodynamic loeds, we firid that the aerodynamics

people, whether it be for steady state or unsteady state aerodynamics,

are usually working with finite and discretc types of analysis techniques

today. Supersonic air loads are a classic case in point where we deal with
discrete modal networks. However, an aerodynamicist likes to work with

a modal network that suits his problems best, while the structures man

wants to work with a modal network that makes sense from a structural
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standpoint. But ultimately they have to be tied together and if there' s one

"place where you can get significant gross inefficiencies in the actual con-

duct of analysis, it's working at these interfaces. I think most of us have

seen many long and drudging manhours with potential for mistakes and

errors, spent to convert the output from one analysis form suitable for

the input to another analysis.

Like most practical structures this roto dome presents a large numbe.-

potentially critical design load conditions. If you consider the various ,.

"binations of rotated positions and various flight conditions of the airplane,

you can rapidly get a couple of dozen potentially critical flight conditions.

Add to that the electromagnetic heat from the radar propagation, the poten-

tial for blast loading from weapons effects, and the potential for gust load-

ing effects, in addition to the normal steady state aerodynamic manieuvers

of the airplane, and it becomes quickly apparent that the selection of an

appropriate set of critical design load conditions becomes very difficult to

determine.

I'd like to make just a couple of other points, one of which has already been

touched on this afternoon, and that is the problem of analysis versus design.

The main reason that we run L alyses are to verify designs and to assist in the
creation of a design. But some'here along the line we've got to capitalize

more fully on the tools that are available and develop new tools where they

are needed in order to permit the design process to be conducted in a

rational integrated fashion rather than the current iterative procedure of

conceptual design, analysis, modified conceptual design, more analysis

and so forth. It's a fertile field I think for anyone to consider if they're

looking for a challenge. We've got to move forward in this area.

There is another problem that frequently arises whenever a large number of

people make use of computer tools for analysis and I characterize it by

configuration control on computer analysis programs. It is highly desirable

to provide the engineer with a capability to modify programs when the

problem demands it, but it is also absolutely mandatory that when com-

puter codes are used for production purposes and from multiple locations
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that the configuration of the program be known to the analyst. In years

past we've had our share of sad experiences in this regard. It has occurred,

for example, when some engineer with his own particular problem has

tinkered with some ox the internal logic in a computer program and the next

user to come along didn't know about it. Disaster is the usual result.

Here it turns out that the computer itself is a very useful tool for helping

to enforce configuration control and in our commercial airplane operations

we've been looking at the possibility of using a file check stored in the

data on the computer as a means of checking the configuration of the pro-

gram. If the checks indicate that something has been changed, it will refuse

to run the program. Now this sounds like it's being very brutal to people

who want to use the computer for their own programs, but is a way to

enforce the discipline of knowing what is cn those programs and to maintain

control over them.

RIEDINGER: Since the early 1950's we've seen great strides in

computers, improved methods as to speeds and capacity. I think the struc-

tures people led the industry as far as the other disciplines are concerned and

I think they've done a very good job of it. They had to change their intellec-

tual process, however, and their sense of values. They had to rethink

their models, to their advantage, of courbe, in order to take advantage of

this rLew computing tool and the rapidity of it. We've seen the force method

back in the early 50's and that was primarily due to thick- r air foil sections.

We had space to install spar caps in the wing. We had large discrete type

components in the structural model of the design. Simultaneously, the

manufacturing people began to improve their methods as to milling, pro-

cessing, etc., and we were able-to employ thicker skins. Using this capa-

bility in such a way, we were able to design optimum structures, so to

speak. In other words, the wing bending load, as an example, must be

distributed across a relatively thick skin-stringer chordwise section

designed by "optimum design" structural analysis. This was required due

to higher and higher speeds where thin airfoils are employed and where thin

skins and spar caps per se are out of the question for many reasons. So

that requirement led to the so-called displacement method with appropriate

finite elements; and that's about where we are today. I do have some recom-
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mendations here but keep in mind that we seem to overestimate the near

* future and underestimate the far future. Computers, remember, are only

tools. However, better structural methods are possible knowing what the

computer can do. We're going to have to look into a crystal ball as to what

they are going to be within the next fifteen to twenty years. Also there are

many things which must happen simultaneously and this is where I guess

the structures man, the analyst himself, comes into play, and management.

Efficient coordination of research and development- -also please minimize

the input-output phases. I think there's just too much time spent. I

believe we can obtain shorter methods and not kill a moth with a cannon like

somebody mentioned a little while ago. Get in the computer and move out

and have some meaningful output like realistic stress distributions. Let's

try to get the allowables in there also and coordinate everything so that when

we insert in the external loads, we obtain the stresses, interject the allow-

ables, calculate our margins of safety on the spot, know how to read the

data and let the designers know how to read it and then if it isn't optimum,

iterate. But it's got to go faster than it is now. I could cite example

after example but time is short. In other words, model a little bit better,

faster. Some designer may change the design but be ready for it. If the

loads change, be ready for them. Be versatile. Design synthesis--Dr.

Schmidt's favorite subject I believe. Let's get up on the step on that and

don't he afraid that the designers are going to use computer graphics. I

think it will evolve that a better design will be obtained and schedules met

faster. Composites--I guess I could talk all afternoon on that -- but we

do have a splice problem. We've got allowable determination problems.

For instance in the macrosense, if the shear modulus is in error by 20%,

that could mean the modulus of elasticity in compression is off 20%. Of

the three popular formulae for shear modulus, they vary about 15%. In

general, increasing computer capability, more accuracy is obtained.

However, don't overelaborate just because it's available. Zero plus 10%

conservatism is most acceptable--at least to me. As the previous speaker

mentioned, creep is a very important consideration. Fatigue considera-

tions, life assurance of a transport that's supposed to last 30-40, 000 hours.

Crack propagation is another emerging science, shall we say, and I've seen

examples of finite element analysis taking care of that and predicting the
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growth. Again, maybe new methods can be formulated in knowing what the

computer can do.

Now a word about the future -- I guess anything said about the next fifteen

to twenty years -- it would probably evolve that it would be very conserva-

tive.

The memories of computers will keep increasing while the sizes will

decrease. I look to the future when remote stations will be maybe as small

as a cigar box and you'll probably be able to talk into it. The CDC 7900--

that type of computer will probably be only one tenth the size it is now.

I'd now like to characterize briefly three new types of aircraft which may

be produced in the future. These are the large transonic transport, the

intra-urban aircraft and the STOL with vertical lift engines. The transonic

transport (see Figure 1) would be designied to operate at abc -t Mach 1. 15 and

would introduce buffeting problems. This aircraft would not be designed

as are the current wide bellied air buses. In order to minimize drag rise,

it would be thin with the fuselage designed according to Whitcomb's area

rule. Thus, the designer would have to deal with bending of a fuselage

with variable cross section. The plane would be over 400 feet long and carry

600 passengers 6000 miles. It would be powered by a radio-isotope engine.

With no fuel load in the wing to decrease the relative wing load factor, the

bending loads will be greater. Furthermore, the wing will be thin with a

supercritical design which means that the upper surface won't have that

nice curvature that now aids us by increasing the buckling allowable. We

think that such a plane would offer the structural analyst many new problems.

The intra-urban airplane (see Figure 2) would be used in metropolitan areas

in combination with ground transportation. Problems will arise from the

fact that it will make a relatively large number of landings per mile and

will have perhaps six large double doors to allow for rapid entry and exit.

Very low fuel capacity will mean high wind loading in a positive sense.

Then you have the STOL aircraft (see Figure 3) with vertical lift engines
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right through the fuselage or out on the wings. A number of new vibration

problems will resultin either case and these will require extensive study.

I think that these and other new airframe concepts will leave the shell

analyst of the future with an ample supply of new problems.

BADER: I'd like to bring up two points for possible further

discussion during the afternoon. One is a reiteration of many things that

were said earlier today and that is the importance of data management in

computer programs. I believe that in the structural design process there

are two )ther finites that we have to keep in mr.ind -n addition to finite ele-

ments ani finite differences. These are finite productive time and finite

dollars which are available to do the structural analysis work. The use of

such things as automatic grid generation and coordinate calculation, plotting

of output and interactive computer graphics are excellent example of what

can be done to streamline the data management process and I think that it

is the development of these kinds of things that demand our attention.

My other point concerns the x.ew DOD fly before you buy concept of pro-

curement. In the B1 and AWACS programs the Air Force is buying limited

numbers of airframes and I wonder what effect this will have on the economics

and philosophy of structural analysis. Will the airframe manufacturers try

to us e a more refined analysis in order to try and come up with a more sale-

able product or will they be satisfied with a cruder preliminary design

approach in the interest of minimizing costs if the plane sees only limited

production?

LEONARD: My assignment as a panelist was rathar specific.

I was to characterize for you the space shuttle and some of its possible

requirements with respect to shell analysis. There are a number of com-

?)eting concepts but the primary one, which is shown in Figure 4, consists

of a two stage transportation system to orbit with both stages being com-

pletely recoverable and reusable for about 100 times. Both stages involve

lazge aircraft type vehicles subject to loads from launch reentry and land-

ing environments.
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Probably the most popular concept today for the booster portion of this dual

system is shown in Figure 5. it looks like a large airplane but actually it's

a launch vehicle composed almost entirely of cryogenic tankage. The cryo-

genic tankage will probably look much like our conventional launch vehicle

tankage today. To start with, it will be circular in cross section and carry

the launch and bending loads as well as the internal propellant pressure loads.

It will have a new wrinkle, however--the attachmnent of probably hot aero-

dynamic surfaces which lead to concentrated load inputs. There will probably

be a second shell structure associated with the booster. This will be an exter-

nal fairing which will serve as a heat shield. It will have some concentrated

loads at a few attachment points which are widely separated to accommodate

thermal expansion. It will be unsymmetrical as indicated in Figure 5 and it

will have large thermal gractients from the underside (which is the stagna-

tion area) to the back surface.

The orbiter concept is not quite as well defined today. Figure 6 shows one

of several competing orbiter concepts which would satisfy both Air Force

and NASA require.ments. The orbiter is dominated by a huge payloa' bay.

This particular class of orbiter would have an external primary structure

to carry the launch thrust loads and the bending loads which would approxi-

mate closely the mold line of the vehicle. As indicated in Figure 6, it is a

very unsymmetrical structure aud has a number of bulkheads as weln as

frames and longerons. The tankage would be suspended within the struc-

ture at a few points to accommodate thermal contraction. While it's shown

here in circular cross section, I'd like to emphasize that the need to utilize

the volume of this vehicle efficiency may drive the designer to rather unsym-

metrical cross sections. The thermal envilronment of the orbiter is con-

siderably more severe than the booster and therefore there will be heat

shields at least on the underneath surface a- d insulation to protect the

vehicle during entry.

There have been a number of studies of the space shuttle to date and there

has been one message which r.as come through in each of these: the shuttle

shows a rather severe weight sensitivity problem. This means that the

shuttle will require a degree of structural analysis sophistication which
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simply has no precedent in the major vehicle systems of the past. Several

of these are indicated below.

NEED FOR UNPRECEDENTED DESIGN ACCURACY AND EFFICIENCY I
UNSYMMETRICAL, COMPLEX SHELL STRUCTURES

ADVANCED MATERIALS, INCLUDING COMPOSITES
(ORTHOTROPY, NONLINEARITY)

ELEVATED AND VARYING TEMPERATURES
(VARIABLE STIFFNESSES, CREEP, THERMAL STRESSES)

CYCLIC LOADS AND TEMPERATURES
(RESIDUAL DEFORMATIONS, DESIGN FOR FRACTURE
CONTROL)

The first problem is that many of the shell structures that are currently

conceived for the shuttle are very unsymmetrical. The need for extreme

efficiency in the shuttle will undoubtedly force the reliance on advance

materials and this may very well include the first real application of com-

posites to genuine primary structure. This, of course, will bring with it

the attendant characteristics of orthotropy and possibly nonlinearity which

will have to be dealt with by the analysts. The shuttle will be subjected

to elevated and varying temperatures and again the need to achieve great

efficiency in the structural design may force the analysts to take into account

the dependence of material properties on temperature, for example. Creep

may very well become an important factor in shuttle design and, of course,

thermal stresses will be there. It should be pointed out, too, that with 100

reuses proposed, cyclic loads and temperatures are a major problem for

the shuttle. This will lead to worry about residual deformations. It will

certainly force the designer to consider design for fracture control and

this will require rather detailed knowledge of the stresses around stress

raisers, etc.

Referring now to Figure 7, I think that with respect to the need for advanced
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methods in computer programs the zhuttle obviously will require at leas'

moderate extensions of our on-the-shelf analysis capability. I'm not

prepared to say that it absolutely demands automated shell design programs

for direct synthesis but it certainly provides a ready market for procedures

for rapid design that lead to minimum weight.

ADVANCED METHODS AND COMPUTER PROGRAMS

MODERATE EXTENSIONS FOR ANALYSIS

RAPID DESIGN FOR MINIMUM WEIGHT

DESIGNER ACCEPTANCE

FOCUS ON USER CONVENIENCE AND RELIABILITY

METHODS VALIDATION THROUGH TEST

Figure 7. Messages for the Shell .. nalyst

I've been scooped several times already today with respect to the next

point--designer acceptance. I was prepared to say that I think the most

important problem of all is getting the designer to use not just the new

capability that we might develop for the shuttle but the best of the capability

that we alre'ady have on the shelves. And, of course, this means that the

analyst needs to focus more than he does even now on user convenience and

on simplicity in order to achieve the kind of reliability that enables the

relatively uninitlat'ýd to make use of these programs in a design sequence

with a certain amount of safety. We have to remember too, of course, the

designers' inherent distrust of unproven methods. This means that we must

take every opportunity to compare new methods with existing data and we ought

to take everr opportunity ' o promote the generation of additional data.
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I hate to end on a negative note but while I've pointed to the need for con-

siderable extension of analytical methodology for the shuttle, I have to admit

that the schedule for the shuttle doesnt;. really admit the development of

much of this and its application to the shuttle itself. I would think, there-

fore, that new methods for the shuttle would be developed rather selectively.

BAIRD: I want to mention two developments that have come out

of our Air Force flight vehicle technology programs that may significantly

influence the airplane of the future and have some effects on the shell analyst's
job. These are the fly-by-wire flight control system and composite materials

for structural components. In thb. fly-by-wire control system, when the pilot

moves his control stick, it produces an electronic signal which is transmitted

to the cortol surfaces over electrical wires. Hence the term fly-by-wire.

It replaces the conventional system in which motion of the control stick is

transmitted to the control surfaces through a system of linkages and hydraulic

components. Advantages of the fly-by-wire system include low initial cost,

low maintenance cost, short control surface response times and light weight.

I don't have to tell anyone in the audience the importance of light weight in an

aircraft structure. Currently, the weight of an aircraft is minimized by the
designer through analysis, tests, choice of materials and configuration. I

believe that fly-by-wire control systems coupled with th3 use of composite

materials for aircraft components can provide the capability for further

weight reductions via aerodynamic tailoring or a form of variable geometry
structures. What I mean by this is you can add aerodynamic devices to the

wing or the tail structures and control those devices when you maneuver.

These devices will change the air load distribution and therefore can be made

to decrease such things as the bending moment on the wing structure. This

is what we call maneuver load control. You can also use the fly-by-wire

flight control system to control flutter and this we call active flutter control.

If you couple these two devices with the composite structure, which is ani-

sotropic and allows us to make this structure twist and deform in a given

manner, then when you maneuver you can then unload the tips, decreased

bending moment, and you can also effectively change aspect ratio of the. wing

which essentially increases performance.
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One other area that was touched on earlier is that of transonic maneuvering.

What this allows you to do is raise the buffet limits and coupled with the fly-by-

wire flight control system it now makes feasible remotely controlled vehicles

that can fly at high g levels much higher than a pilot could stand.

GRAFTON: I'd like to select just a couple of topics to get a discus-

sion around the table here going. One of them is something that I've always

been concerned with and that is this question of validation. The need for

I validation of analysis techniques has been long recognized. Let me just

pose a pragmatic question. When do you hare sufficient confidence in

analyses that you're willing to talk about eliminating tests? I raise this

question because it does have a severe economic impact in many cases on

what it's going to cost in the course of development of the system.

BAIRD: I don't think we're ever going to have that and I'll

tell you why. If we continued to design structures the way we do it today

then maybe eventually we could do away with part of the tests. But when

you keep using new concepts such as changing configurations with fly-by-

wire control systems--which I firmly believe we're going to see 10 to 15

* years from now--then I don't think we'll ever be able to replace a significant

number of the tests which we have to perform to guarantee structural inte-

grity.

RIEDINGER: Static testing requirements may change. However, with

the fatigue spectrum we are stuct with I think that fatigue tests are mandatory

forever.

GRAFTON: Let me just point out one factor in this regard. As you

get more sophisticated and more complex in the analysis that you undertake,

if the cost of accomplishing that analysis keeps increasing, the first question

that program management is going to ask, whether it's Internal or whether

it's a customer, is: What does that buy me if I still have to test? I think

that's something that has to be borne in mind. But I personally feel thaL we

will eventually back off in terms of the amount of the development testing

that we may feel we need in the course of evolving a new design. Howevez,
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we are always going to want the confirmation testing in the course of

developing new aeronautical systems. There's no questi-, about that either

in my mind. I think one of the challenges here is whether you can reach a

point of confidence in analyses that will permit you to forego a major por-

tion of the development test activity to show a net savings of the cost of

development.

BAIRD: I think the only way you can do that is to get enough

experience with the analysis techniques that we're using today and see how

well we predict structural failures before you can make a conclusion like

that. Study the amount of structucal failures that we've had. For example,

since World War II out of 33 static test programs run on Air Force aircraft,

there have only been seven that went through the test program without a major

failure, and of those seven there was only one that was a first model. The

others were B and C models ;f an original model. That isn't a very good

record of major failures, so I don't really see how we are ready to reduce

testing at this point in time.

GRAFTON: We must also remember that as we get into structures

with new functions and different application3 we're going to be right back

insisting on development tests for the understanding that's required. I

think, Bob, you people are i ecognizing this in the ,:huttle as you're getting

into the details of what may be required.

LEONARD: Well, the shuttle of course is a g-.od example of this

g:• situation where the nmed for ultra efficiency anci accuracy on the design makes

it even more imperative to get plenty of development test r,:sults. In this

discussion so far we seem to have mixed up qualific-.tion testiria and dcvelop-

men.t testing. I certainly can agree that, for structui'es oi the futL:re, analysis

is never going to replace qualificatior testing which basically ;,z there to

uncover the stupid mistake rather than to uncover deficiencies in analysis.

I would think, however, that we ougi t to be able to mininize the required

need for development testing b> improving vur a: tL/s A) , ing cur

confidence in analysis. I agree with Dick, we can never eliminate tests.
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GRAFTON: I think at this time I will open the discussion to comments

and questions from the audience.

COMMENT: With regard to the matter of test versus analysis, I'd

like to offer the following comment. I think that if you have the proper com-

m=:ication between the analytical people and the experimental people, use of
analytical results in advance of the test often provides a much better test and

can also save a lot of retesting. It has been my experience that a test is often

run with very little thought ahead of time and things go wrong which would

have been avoided if even limited analytical work had preceded the test. Even

if the analysis isn't absolutely correct, it points you in the right direction.

QUESTION: Would the panel care to comment on what they see as

the future of design based on reliability concepts directly rather than indirectly?

In other words, the quest for reliability is always present, but now we tend to

build it in through deterministic framework. We operate deterministically

in attempting to reflect the realities of a statistical situation. Philosophi-

cally, it appears ideal to handle the reliability problem directly but techni-

cally it appears to be a very difficult alrriost insurmountable challenge. How

far in the future do you see such capability being developed?

BAIRD: Well, Flight Dynamics Lab has sponsored work to make

these kinds of changes--such as getting rid of the factor of safety, limit load

and ultimate load ideas and going reliability criteria in this area. Your

question is when do you think you will see it. I don't think we'll see it in

the next ten years.

GRAFTON: I guess I'd like to make one comment in that area having

moved out of the structures field and into an area deeply involved in opera-

tions research and manipulation of statistical problems. I guess I could

think of no worse nightmare perhaps than trying to run a Monte Carlo simu-

lation of a statistical shell structural response problem including nonlinearities.

COMMENT: I would like to say that at this point we dc not have even a

deterministic large scale design capability suitable for handling something
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like an aircraft fuselage with all of its cutouts, rings and longerons. We have

an analysis capability, but not a design or optimization capability ior struc-

tures of this complexity. So before we begin to think about incorporating

statistics into the design process, we need to first learn how to handle the

deterministic case and perhaps automate the entire design process.

LEONARD: One more comment relative to deterministic versus

statistical design for reliability. It is obvious that a major barrier to our

achieving the latter in the near future is the lack of the kind of statistical

data base that permits the definition of allowables on a reliability basis and

I might add the cost of getting this kind of data base will always be a tre-

mendous barrier. So I'm not sure that we'll ever really achieve this.

GRAFTON: I will try to summarize very briefly a few of what I

consider to be the key points we've tried to touch on this afternoon. Some

of the real challenges in the field of computerized analysis of shell struc-

tures--I suspect are net really technical challenges. They are what I wc-.id

categorize as economic challenges and they have to do with how we conduct

ourselves in the course of an analysis. This isn't new to the engineering

profession--it's been with us for many years and I think we're in an environ-

ment today that sees an increased emphasis on it. I do not want to unduly

discourage new development; however, I think we have to recognize one of

the prime challenges of today's environment is to truly use effectively the

technology capability that we essentially have in hand or near in hand today.

I have an associate that made the comment to me that part of the problem

here is the fact that it is much more fun to conceive children than it is to

raise children. I think that is a point we might all uear in mind in the course

of tru'.y getting the capability and the utility out of computcrized analysis

techniques that we have been building over the past year,, and will want to

continue to build into the future.
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DYNAMIC FINITE ELEMENT ANALYSIS OF ARBITRARY THIN SHELLS

by

Ray W. Clough(') and Edward L. Wilson(2)

ABSTRACT

A brief review of the development of finite element procedures for the

analysis of thin shells is presented, together with a discussion of the four

types of approximations involved in the application of the method. Then 'cwo

factors which influence the efficiency of the finite element solution are con-

sidered: the properties of the individual elements (including curvature,

deformation refinement, etc.) and the nodal degree of freedom representing

rotation 'about the shell surface normal. Comparative analyses are presented

to illustrate the influence of these factors in practical cases.

Finally, the formulation cof thq finite element system equations of motion

is discussed and techniques of solution are outlined, taking account of both

linear and non-linear classes of problems. A series of examples (both linear

and non-linear) are presented which demonstrate the effectiveness and generality

of this dynamic analysis technique.

I. Professor of Civil Engineering, University of California, Berkeley.

2. Associate Professor of Civil Engineering, Unlversity of California, Berkeley.
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DYNAMIC FINITE ELEMENT ANALYSIS OF ARBITRARY THIN SHELLS

by

Ray W. Clough and Edward L. Wilson(l)

INTRODUCTION

Since the earliest phases of its development, the finite element method

has appeared to be ideally suited to the analysis of general shell structures

because of its flexibility in accounting for arbitrary qeometries, loadings

and material property variations. Indeed, it was evident that a general

shell analysis program could be developed as soon as effective plate bending

and plane stress elemeiv,•s were available; and early efforts with the pio-

neering elements of these types clearly demonstrated the feasibility of the

finite element aprroach to shell analysis [1,2].

In these or'qinal developments, only flat plate elements were considered,

thus their membrane and bending responses were uncoupled at the element level

and the element stiffness matrices were formed as simple combinations of the

previously developed plane stress and plate bending stiffnesses. Rectangular

elements were used for the analysis of cylindrical shells, while triangular

elements were employed in the idealization of general shell shapes.

After these preliminary studies, further progress with the finite element

analysis of general shells was delayed by the inadequacies of the available

triangular plate benaing ele.crt•. However, with the development of an

efficient gener,3 plate bending element (3], the study of the shell analysis

problem was cotUnued, and tiree different shell progeams based on flat tri-

angular elements were soon developed at Berkeley (4,5,6]. These all use

the plate bending ele'nent of Reference 3, and differ only in the refinement

with which the membrane behavior is represented.

(1)Department of Civil Engin'.ering, University of California, Berkeley.
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Although the flat plate elemert is appealing in its simplicity, it

imposes a seemingly undesirable georetric approximation in the idealization

of general shells and considerable efforts have been directed toward the

development of curved shell elements which might lead to improved efficiencies.

Some success has been obtained with both cylindrical [7) and general shallow

shell elements [8,9,10] based on thin shell theory. However, recent work

on the derivation of general curved three-dimensional solid elements appears

even more promising [11,12). These ,new elements automatically account for

varying curvatures and thickness within the element region, and also include

a shear distortion mechanism which becomes signif, ant in thick shells.

The purpose of this paper is to describe briefly some of the more

effective shell elements which have been developed to date and to compare

results which have been obtained with them. Both static and dynamic analyses

will be discussed; non-linear geometric effects will be included in some

analyses for comparison. Specific factors which will be dealt with are

the relative efficiencies of curved and flat plate elements, the number of

degrees of freedom to be considered at the element nodes and the relative

merits of consistert and lumped mass formulations of dynamic problems. Also

a brief summary of the approximations involved in the finite element ideali-

zation of a general shell problem will be pres-!nted.

FINITE ELEMENT APPROXIMATIONS

A finite element analysis of a general shell structure introduces

several different types of approximations in the formulation. First is the

geometric approximation involved in replacing the actual continuous shell

surface by an assemblage of discrete structural elements. In order to

simplify the evaluation of the shell stiffness, each of the elements usually

is prescribed to be of a single limited form which may range from a flat
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triangle in the simplest case to a surface of linearly varying curvature.

It is evident that the assemblage of these specially shaped elements can

* iprovide only a limited approximation of an arbitrary shell surface.

The second basic assumption is that the strains (and displacements)

in each element may be only of a limited form, as specified by a prescribed

set of nodal interpolation functions. Depending on the complexity of the

strain variations that are to be represented in the actual shell, these

prescribed strain patterns may provide a fair to good approximation. Clearly

the refined elements which include linear or quadratic strain variations, will

provide more realistic approximations than the basic constant strain elements

for any given degree of mesh refinement.

The errors due to both the qeometric and the displacement function

approximations tend to vanish as the element mesh is refined. For any

given mesh size, however, the refinement which is imposed by the chosen

interpolation functions should be made consistent with the level of geometric

aporoximation. Thus, it would not be reasonable to assume highly refined

displacement interpolations in a flat plate idealization of a doubly curved

shell. Similarly, it is inappropriate to employ a curved shell geometry

in an element in which the strains are assumed to be constant. Inasmuch as

any desired degree of ac.iracy can be achieved by mesh refinement with

either simple or refined finite elements, the only meaningful criterion

for selection of the optimum degree of element refinement (with regard both

to geometry and to displaceis..nt interpolations) is computational efficiency,

i.e., the amount of com'p,,ter time requirea to achieve a given level of

accuracy in any p;.cL i .-obl•e situation.

A third approximatii which may be present in some finite element

shell analyses is that the assumed displacement patterns may not maintain
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inter-element compatibility as the shell is loaded and deformed. Usually

the finite element interpolation functions are such as to maintain con-

tinuity in a flat plate assemblage; however, incompatibility will develop

if the elements meet at a finite angle and if the membrane and bending

interpolations are of different forms. Some types of curved elements pro-

vide improved performances in this regard; in any case this discretization

error also terds to vanish with reduction of mesh size.

The four,' approximation is basic to all shell theory, regardless of

whether the analysis is to be performed by the finite element method or not.

This is the assumption that the shell may be treated as a two-dimensional

surface and involves simplifying constraints on the variations of displace-

ments •hrouqh the shell thickness. A finite element formulation may employ

iny standard assumptions of shell theory for this purpose, such as the

Kirchhoff hypothesis. However, it is interesting to t.ote that somewhat

less restrictive assumptions can be made in forming a shell element by

degeneration of a general three-dimensional element, with the result that

shear distortions may be accounted for without difficulty by this approach.

FACTORS AFFECTING SOLUTION EFFICIENCY

Element Properties

From the preceding discussion, it is apparent that the types of

elements employed in a finite element analysis may have a major effect on

the efficiency of the analytical procedure. To illustrate this effect in

a specific example, :even different elements were employed in the analysis

of a simple cylindrical shell roof structure. These elements are divided into

three categories: (1) flat plates, (2) curved triangles based on shell theory,

(3) degenerate three-dimensional hexahedrons of quadratic form. They are

portrayed in Fig. 1, and their principal features are listed below.
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1

FLAT TRIANGLES

ZA. 
U, v - linear
w - cubic
5 COF per node

B. u, v, w,- cubic
9 DOF per nod*

QUADRiLATERAL ASSEMBLAGE

zr.u. v - partially

constr. quadratic
i Y ev - - cubic

L '000,5 46 DOF per external node
v xu Cerners generally not in

sam plane.

CURVED TRIANGLES

Z,W QUADRATIC 0. u, v - linear
CURVATURE w - cubic

5 DOF per node

L•gv E. u v., w - cubic
9 DOF per node

DEGENERATE 3-D

u F. x: Z quadratic
No deformation on lines
in 4 direction

ySv 5 COF per node

L/000ý xG. Similar to F, but with
selcctive integration
of strain energy.

FIGI TYPES OF ELEMENTS CONSIDERED
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(1) Flat Plate Elements:

A. Simple Triangle [41. The membrane stiffness of this element is rei,-

sented by the well-known constant strain triangle [13] while its plate b, vg pro-

perty is given by the fully cmAnpatible HCT element [3) based on cubic displacement

patterns. It has five degrees of freedom (DOF) per node.

B. Refined Triangle [51. This element also has the HCT bending stiffness,

but provides a refined membrane behavior by ermloying the same cubic inter-

polation for the in-plane displacements. Interelement compabitility is tO.ereby

maintained, but a total of 9 DOF are defined at each node, Including membrane strains.

C. Cuadrilateral [141. This element has the same HCT bending stiffness,

but employs a partially restrained linear strain triangle to improve the membrane

behavior. For reasons of computational efficiency, four triangle elements are

assembled into a general quadrilateral, the central node being located at the

average of the coordinates of the four corner nodes. The interior degrees of free-

dome are eliminated at the element level prior to assembling, thus the quadrilateral

effectively has only 20 DOF, 5 per node.

A slightly imoroved version of this element is employed in two shell programs

currently in use at Berkeley. It uses the LCtT-11 plate bending element [15), so

a rotational DOF is added at each interior mid-side node. These 4 extra DOF are

also eliminated at the element level, thus the final quadrilateral retains only

20 DOF.

(2) Curved Triangles:

D. Basic Element (161. This is essentially a curved equivalent of the

simple flat triangle (A) above, with linear membrane displacements and cubic

bending displacements. It is based on shallow shell theory, and the surface is

curved quadrilaterally relative to the base triangle.

E. Refined Element [17]. Tais is the curved equivalent of the flat

refined element (B) above, with exactly the same types of membrane and
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bending displacements. It has the same quadratically curved surface as (D),

and also is based on shallow shell theory.

(3) Degenerate 3-Dimensional Elements:

F. Basic Quadratic Element [181. This shell element is derived from a

standard 20 node isoparametric element, by introducing the constraint that any

line thrG:jgh the element thickness (C direction) displaces in translation or rM-

tation without distortion. This is equivalent to part of the Kirchhoff shell

theory assumption, but retains a simple shear distortion capability. The mid-

surface geometry is quadratically curved, and the thickness may v Iratically

as well. The element derivation is based on general three-dimens.. elasticity;

the displacement interpolations are of a bi-quadratic form.

G. Improved Quadratic Element [19]. This element is based on Element (F),

but its stiffness results from a modificd evaluation of the strain energy. The

essential difference is that the number and location of the Gauss integration

points used in the evaluation of the shear strain energy are selected differently.

The details of the procedure used are too coiplicated to be discussed here, but

the essential concept of the improvement can explaired easily with reference to

a rectangular plane stress model (Fig. 2).

This seimple rectangular elerent is notoriously poor in its representation

of simple bending, such as would be induced by the end moments of Fig. 2B.

The assumed displacement functions require that the element edges remain

straight, thus the deformation produced by the pure moment loading is as

shown by the silid lines rather than the correct curved shape shown by the

dashed lines. The difference between ýhese is represented by the shear

strain energy developed in the solid line deformed shape in Fig. 2b; if this

shear strain energy were omitted the stiffness representatioo of the element

would be greatly improved. Of course, it would not be effective to omit the
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[h• (a) ELEMENT GEOMETRY

WITHOUT SHEAR STRAIN

"(b) BENWONG DEFORMATION

•-CONSTRAINED SHAPE(9OSR. E (S) PURE SHEAR DEFORMATION

FIG.2 DISTORTION BEHAVIOR OF PLANE STRESS
ELEMENT
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shear strain energy under all conditioris of deformation- for example, the

strain due to the pure shear loading of Fig. 2c should be retained. The

practical procedure to obtain a suitable reresentation of the shear strain

energy for this element is to use its centroid as the only shear' strain

integration point; this neglects the shear strain of Fig. 2b, and includes

that of Fig. 2c.

This simple example illustrates the Idea of utilizing modified inte-

g.-ation points selected so as to suppress undesirable element behavior. It

is important to note that this modification becomes more significant as the

element becomes more elongated (as h/d gets smaller). It is because of this

fact that the modified integration procedure is so important in improving

three-dimensional elements which are to be used as thin or moderately thick

shell elements. The problem is somewhat less acute when dealing with a

quadratic element such as (F) rather than the simple linear element of this

discussion, but the resulting improvement in performance is still noteworthy.

The structure considered in this element comparison is shown in Fig. 3,
a cylindrical shell supported by rigid diaphragms at each end. The vertical

deflections computed at the mid-span section of the shell are shown in Fig. 4,

the results ':rom a coarse mesh (4 x 5) in the upper graph and the fine mesh

results (8 x 12) below. Comparing the results obtained for the flat plate

elements A, B and C, it is evident that the membrane interpolation functions

have a major effect on the analysis -- a constant strain element does not

have enough flexibility. Comparing elements A and D it appears that the

curvature in element D Is beneficial, however, the curvature is less im-

portant than the membrane interpolation functions, as is apparent in comparing

B and D. The worst performance of all elements is given by F -- it is clear
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that this degenerate three-dimensional element cannot deform like a thin

shell 3lement. However, by merely introducing selective integration as in

element G the results are competitive with the best of the thin shell elements.

Similar conclusions can be drawn from the stress distribution results of

Fig. 5. Although only the longitudinal membrane forces are shown here,

the same relative element efficiency was observed with regard to all

components of shell stress.

Although this single example can hardly be considered as conclusive

evidence, it appears from this analysis that curvature is not essential in

a finite element, and that the form of displacement assumption is as

important as the geometric assumption. The degenerate threc-dimensional

element with selective strain integration appears to offer great promise as

a general analytical tool.

Nodal "Sixth" Degree of Freedom

It will be noted in the element descriptions of Fig. 1 that most of the

elements have 5 DOF per node, when defined in the local element coordinate

system. However, when the element properties are transformed to the global

coordinates for assembly, a sixth degree of freedom must be considered.

The manner of treating this sixth DOF has a major effect on the analysis

efficiency as will be explained in this section. For convenience, this

discussion will consider a flat plate system in which membrane and bending

stiffnesses are uncoupled; similar observations apply to curved elements,

however.

With reference to a local (x, y, z) Cartesian coordinate system, the

stiffness of an element may be expressed
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rI

N k11  k12  a 0 0 0 u

k21  k22  0 0 0 0w

Q 0 0 k33  k34  k35  0 w

M 0 0 k4 3  k4 4  k45 0

My 0 0 k 3  k54  k55  0 0y

T 0 0 0 0 0 0 zL.

or, in abbreviated form

S a k r . (2)

In Eq. 1, each term in the forceý and displacement vector represents a

subvector of dimensions corresponding to the number of element nodes, and

the stiffness matrix terms are square matrices of the same dimensions. The

2 x 2 set of stiffness submatrices represents the membrane stiffness while

the 3 x 3 set is the bending stiffness. The sixth row end column of k are

associated with ,.he "sixth" degree of freedom, the rotation about the normal

to the element surface. In ordinary shell theory, this type of displacement

is not Involved in describing the structural displacements; nor is it needed

to represent the element stiffness in the local coordinates, as will be noted

from the fact that the terms in the sixth row and column are zero. It is

included to facilitate the transformation to the global coordinate system.

The relationship between translational displacements expressed in the
A, A

local coordinates and in a global Cartesian coordinate system (x, y, z) may

be expressed

v V (3)

where • is an appropriate arrangement of the direction cosines. The rotational

displac..ent relationship is expressed similarly
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Xe) xozliy l (4)

Thus, the complete trnsformation becomes

[_ 0 _ ; I , r 
( 5 )

and the transformed element stiffness matrix is given by

A

k T (6)

In general, the element stiffness matrix expressed in global coordinates,

k, will be fully .populated eveo, though the local coordinate matrix is very

sparse. Thus the sixth degree of freedom becomes a factor in the analysis

after the global transformation and a variety of procedures havy been employed

to account for its effect.

in principle, the 6th DOF need cause no complication in the analytical

* Ii procedure. It is possible merely to carry out the transformation ?s indicated

*1 and to consider the full set of 6 DOF at each node of the assembled structure

in the displacement solution. A problem will arise in this procedure if all

- I the elements associated with any one node lie in the same plane because¾
the resultant stiffness in the 6th DOF at this node will be zero. This

singularity of the stiffness matrix can be eliminated easily, howe-er, 6y

merely replacing the zero didgonWl term by any arbitrary number. The major

disadvant3ge of this Oirect analyti'al approach is the loss of computational

efficiency. Only 5 DrF ner node are needed to rerresent the deformations

of the shell. The 6th DOF is an unnecessary quantity and to include it

isreises toe equation solution time ey a factor of approximately(6/5)3

1.728.-tich is a OIgnificant cost.
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In order to eliminate the sixth DOF, it obviously is necessary that the

global coordinate system be associated with the tangent plane at each node

of the assemblage. A practical expedient is to take as the normal the

average of the aormnal direcfions tssociated with each of the elements

connected at the node. When the structural stiffness has been transformed

to this coordinate system, the sixth DOF may be eliminated by merely eliminating

the correspording row and column from the stiffness matrix. (In actual

practice, this degree of freedom would be omitted in the assembly process [4].)

Eliminating this DOF is equivalent to introducing a constraint irn the struc-

ture corresponding with the normal rotation at each node.

In most circumstances, this constraint has a negligible effect on

thE structural behavior b'rcause the structural configuration would permit

only small rotations of this type in any case, and the coupling stiffness

coefficients are small when the angle tc.tween elements is small. Comparative

.tudies made with the same finite element system, merely including or exclud-

ing the sixth DOF have shown that the results are essentially the same for

any practical structure. An example of such studies is shown in Fig. 6 [20] --

il ctrciular cylindrical shell is clamped at one end, and allowed to deflect

under its own weight. Five different lengths were considered, ranging

from 25 to 200 feet; the plane quadrilateral element "C" was used with a

mesh having 4 elements in the circumferential direction and from 5 to 10

in the longitudinal direction, depending on this length. The vertical

def'iecti-cns co.aputed at the mid-point of the free end for the five cases

are listed in Table I. These results show that even in the very flexible

cantilever cases the sixth DOF constrafnt r auses only a negligible reduction

of deflection -- much less than one percent.
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FIG.6 INFLUENCE OF SIXTH DEGREE OF FREEDOM-
CANTILEVER SHELL

Table 1: Deflection of Cylindrical Shell

Deflection of Point "0" (ft)

Length 5 DOF 6 FOfferen

25 0.03695 0.3696 0.03

50 0.2374 0.2375 0.04

100 1.303 1.307 0.31

160 4.501 4.509 0.18

200 8.064 8.075 0.14
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In any case where the actual structure is free to rotate without

constraint, it is evident that the nodal constraints in the 5 DOF system

will have a more significant effect. In order to investigate this condition,

the vibration frequencies were evaluated for a very flexible circular cylinder

supported by hinges at one end and free at the other. The dimensions and

physical oroperties of the shell are shown in Fig. 7. Taking account of

double symmetry, only one quarter of the shell was considered in the analysis,

using 5 elements in the circumferential direction and 7 longitudinally.

The first three modes of vibration computed for the 5 and 6 DOF systems are

listed in Table II. The influence of the nodal constraint is clearly evident

in the first mode frequency. In this structure, the rotation about the

suppcrt hinges should be uncon,;Zrained and the frequency of this mode should

be zero. The constraint completely invalidates the result for the first

mode -- however, it is evident that the effect on the frequencies of the

higher modes is negligible, a fraction of a percent.

(h the basis of these studies, it may be concluded that the constrdint

of the sixth DOF is a practical expedient for increasing computational

efficiency in ordinary shell analysis. The sixth DOF can be retained if it is

desired for any reason, as in the analysis of structures which may undergo

rigid body rotations. In such analyses, there is no physicai justification

for the inclusion of an artificial membrane stiffness associated with the

normal rotation; however, it has been found expedient in some- programs to avoid

singularities and solution sensitivity by introducing a small external spring

in this DOF.
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E&i INFLUL,4CE OF SIXTH DEGREE OF FREEDOM -

HINGED SHELL

Table II: Frequency of Hingtd Cylinder (rad/sec)

Me DOF 6 O•F
1 0.000274 0.000001311

2 0.fl0422i 0.004211

3 0.,04863 0.004841
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LINEAR DYNAMIC ANALYSIS

Equation of Motion

The dynamic analysis of shell structures idealized by an assemblage of finite

elements is not significantly different from the analysis of other types of

structural systems. The equations of motion for an elastic structural system may

be written as

M + c r + k r - Pt) (7)

in which M a the mass matrix

c - the viscous damping matrix

k - the elastic stiffness matrix

r - the nodal displacement vector

P a the corresponding nodal force vector
!4 t)

and where the dots ,note differentiation with respect to time.

The stiffness, damping and mass matrices are formed by a direct assembly

process of the corresponding element matices thich are formed in a loril coordinate

iystem arnd transformed to the global system.

The approximations introduced in the development of the stiffness idealization

were discussed in the previous section. The errors associated with the damping

matrix are difficult to define, since the internal energy absorption mechanism in

the structure is seldom known well enough to permit a formal development of the

damping m•,,ix. Ir..tead it is customary to establish the damping ratio for each

mode of vibration of the s.tructire on the basi; of experience with similar struc-

tures. These modal damping ratios may then be used directly in a mode superposition

analysis, or they may be transformed to an equivalent damping matrix if an

explicit relationship is required. The development of the mass matrix may be

based on a physical mass lumping approach or tne consistent mass method; tne

advantages and disadvantages of both of these methods will be discussed later.
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After all matrices are defined in equation (7) it is possible to solve for

the dynamic response of the system "exactly"; however, in order to reduce the

number of numerical operations additional approximations are often necessary.

In the mode superposition method all the frequencies of the system may not be

required. In the direct step-by-step integration of the equations of motion it

may be possible to use a larger time step.

Mass Approximation

For all shell elements it is possible to develop a consistent mass matrix

based on the same displacement field assumptions as used in the development of the

element stiffness matrix. For some structures this approach leads to improved

accuracy; however, there is a significant increase in computational effort which

must be evaluated in comparison with the physical mass lumping procedure. For

other structures, however, the consistent mass approach yields less accurate re-

sults [21]. For example, in wave propagation problems the consistent mass formula-

tion causes undesirable oscillations near the wave front. If the consistent mass

formulation is used with a displacement compatible element one can prove that the

resulting frequencies are larger than the true frequencies; since most shell elements

have some form of incompatibility this bounding advantage of the consistent mass

formulation is lost. With a lumped mass system the frequencies may be above or

below the true frequencies; this, of course is one reason why more accurate

results can be obtained with the lumped mass model for many structures.

The most important disadvantage of the consistent mass formulation is the

increase in computational effort. The consistent mass matrix for ao element may

be expressed by the following integral equation

m= J I dv , (8)

vol

where p is the mass density and is the basic disOlacement field approximation

within the element. For a simple shell element the displacements are of cubic
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order; therefore, the "erms in the consistent mass matrix involve the integration

of terms of sixth or h gher order. This may cause problems in numerical sensiti-

vity; or, if numerical integration is used a large number of integration points

within the element may be required in order to accurately evaluate these higher

order functions. In fact, the numerical effort involved in evaluating tne

consistent mass matrix may be greater than required for the development of the

element stiffness matrix.

For shells the.. mass associated with the normal rotational degree of freedom

is not defined. As in the formation of the stiffness matrix, the transformation

of the local element mass matrices to global coordinates produces mass terms for

all six degrees of freedom. For flat plates or shallow shells a singularity

in the mass matrix may exist. It is apparent that the frequencies associated

with the normal rotations may be in great error and have little physical signifi-

cance. It appears that the reduction of the nodal mass matrix to five degrees

of freedom by the same technique used to reduce the stiffness matrix is a

reasonable approach.

Mode Shapes and Frequencies

For most systems, the most significant numerical difficulty associated with

the use of the consistent mass matrix is in the solution of the eigenvalue problem

k X = M X . (9)

For large systems, where both the stiffness and mass matrices are symmetric,

positive definite and banded, a direct solution is complex. If the inverse

iteration technique is used, the banded characteristics of the system are

recognized and a single eigenvalue can be determined witn a reasonabl.; amount

of numerical effort. However, if large numbers of eiqenvalues are required the

approach can require a large amount of computer time. The use of a diagonal

lumped mass matrix reduces the required computer storage and time by approximately

a factor of two.
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For many systems where only the lower frequencies are required the Rayleigh-

Ritz method can be employed in order to reduce the computational requirements.

A family of approximate displacements can be generated by the application of

different load patterns to the system. These displacements are then used to

generate an eigenvalue problem of reduced size. Except in the evaluation of the

consistent mass matrix at the element level very little additional computations

are required to use the consistent mass approach with the Rayleigh-Ritz method,

since both the lumped and consistent mass representations yield an eigenvalue

problem of reduced size with a full mass matrix. If a rational approach is

developed which automatically selects the required load patterns this approach

provides a very efficient technique for the evaluation of the eigenvalues of

large shell structures.

Mode Superposition Analysis

In general, the mode superposition method is advantageous when a limited

number of modes can be used to describe the response of the structure. If a large

number of modes are required the computational effort in the evalultion of the

frequencies ,and mode shapes ana in the superposition of the modal effects can be

large. Structures for which the Rayleigh-Ritz rmthod is applicable are ideal

for analysis by the mode superposition method. This approach has been used for

large structural systems subjected to long duration earthquake loads and the

required numerical effort was not significantly larger than for a static analysis

with the same number of load conditions.

Step-by-Step Analysis

The direct sti, Y,'-ep integration of the equations of motion is an

approach which does not r- 4uire the solution of the eigenvalue problem. It is

particularly advantageous for large systems subjected to short duration loads

where a large number of modes are excited. Therefore, this approach i14 generally
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used for blast or impact problems. For structures where nonlinear materials Or

large deformations are important it is the only feasible method.

There are many different techniques available for the direct numerical

integration of the dynamic equilibrium equations. They can be classified into

two groups -- implicit and explicit.

The implicit method requires a solution of equations at each time step.

However, for linear systems with a constant time interval the equations need be

triangularized only once. Only a forward reduction and a back substitution are

required at each time step.

The principal disadvantage of all explicit, or extrapolation, methods is that

they are unstable if the time interval is not selected sufficiently small; there-

fore, those methods are not practical for many types of applications. It is

of interest to point out, however, that the well known 'method of characteristics"

is equivalent to a lumped mass idealization and a simple extrapolation procedure.

This approach essentially selects a time integrdtion procedure with errors that

conceal the errors in the stiffness and mass approximations. Since this is only

possible on simple systems it has little practical value in the solution of

complex shell structures.

Many implicit methods are also unstable. The addition of artificial

damping may increase the stability limit. If the largest frequency of the system

is known it is possible to select a time step to insure stability. For most shell

structures, however, the frequencies associated with the mn, mbrane component are

very large; therefore it is not practical to select the time step sufficiently

small to irsure stability. In qeneral one can say "the finer the mesh the

larger the frequencies". Just one small stiff element may cause the system to

have a very high frequency component.
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The step-by-step method which has been found to be very effective in the

solution of both shell and solid finite element systems is an implicit approach

which is unconditionally stable for all time steps E22). The operations required by

this method are summarized in Table III. The errors associated with this tech-

nique have the effect of producing damping of the high frequency components and

are a function of the ratio of the time step to the period. Therefore, a time

step can be selected which produces an acceptable level of damping in these

higher modes. If the frequency components of the applied loads are examined,

this may serve as a guideline for the selection of the time step. This error

has the effect of truncating the number of frequencies which participate in the

response.

The use of a full consistent mass matrix in the step-by-step approach requires

approximately twice as many numerical operations as the lumped mass idealization.

Also, additional computer storage is required for the full mass matrix; since

it is desirable to retain all necessary data in core storage during the step-by-

step procedure the additional storage requirements can be important.

NONLINEAR DYNAMIC ANALYSIS

Equation of Motion

The force equilibrium equation of motion at time t for a structural system

with nonlinear stiffness properties may be written as

t + C t + (Etat + Kt ) (10)

where (E + . t) represents the internal nodal forces carried by tile system

of structural elements in which

it-At a the nodal forces at the previous time step

Kt - the change in nodal forces during time step

---• U rt " •t-t m the change in nodal displacements during

time step
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Table III: Step-by-Step Dynamic Analysis (Linear Systems)

A. Initial Calculation

1. Form stiffness matrix K and mass matrix M.

2. Calculate the following constants. Assume C = aM + a3K

T = 1.5 At a5 = 3 B3a 4 /r - 4/T 2

a0  = (6 + 3cr)/(T2 + 3 BT) a6 = 2 O3a4 - 4/T

a, = 6 /T 2+ 3(a - Oao)/T a = (O3TN 4 - 2)/2

a2 = 6/T+ 2(a- Oa0) a8 = At/2

a3  = 2 + (a- a 0a)/2 a9 . At2/3

a4  = 4/(3BT+ T2 ) alO t 2 /6

3. Form effective stiffness matrix K* K+ a0 M.

4. Triangularize K*.

B. For Each Time Increment

1. Form effective load vector P*

P* a P + M_ [r.t.At + a2.t.At + a r t]

2. Solve for effective displacement vector r*

K* r* = P*

3. Calculate new acceleration, velocity and displacement vectors

rt - a4 r* + a5 rt.At + a6r-tAt + a7rt.At

:t rt-at + a 8(rt + rt-At

r t-At + At -At + aLrt-At + al r

4.,, Calculate element stresses if desired.

5. Repeat for next time increment.
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K - the tangent stiffness matrix.

Since • can be calculated and the damping is normally neglected in nonlinear

analysis, equation (10) can be rewritten

E+ Ar - t (t-)
This equation can be solved by the same stable step-by-step method used for

linear dynamic analysis. The sequence of operations for a nonlinear dynamic

analysis is qiven in Table IV.

Evaluation of Tangent Stiffness

The tangent stiffness matrix at a particular time is the sum of the

incremental elastic stiffness matrix, Ki, and the geometric stiffness matrix,

Kg,

K K

The incremental elastic stiffness matrix is formed in the deformed position by

the standard approach. For nonlinear materials the appropriate incremental

stress-strain relationship associated with the stresses at that time must be used.

The geometric stiffness matrix is a function of the stresses within the element.

As in the evaluation of the consistent mass matrix, a formal procedure can be

used which is a function of all displacements and all stresses within the element.

It has been found that for both plate and shell structures an approximate equation

for the geometric stiffness yields satisfactory results, It involves only the

membrane components of stress and the displacements normal to the shell surface.

In the element coordinate system it is given by

k I 12] 1 d
"q )Vol I (1 1T21 T22 d2 (12)

where lIand 2 are the c,.ordinate axes associated wich the membrane stresses

and I Is the interpolating function for the displacement normal to the shell.

In Equation (12), TIj are the membrane components of stress.
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Table IV: Step-by-Step Nonlinear Dynamic Analysis

A. Initial Calculations

1. Form stiffness matrix K and mass matrix M.

2. Solve for initial displacements, strains, stresses and internal forces

due to static loads.

3. Calculate the following constants:

0 = 1.5 a2  = a0/0 a6  = T/2

T = Oat a3 = a1/e a7 = 12/6

a0  - 6/ c a84 = al/a 0  a 8 2a7

aI = 6/T a5 = 2/a0

B. For Each Time Increment

1. Calculate tangent stiffness matrix Kt

2. Form effective stiffness matrix K* = K.. + a 0 M.

3. Triangularize K*.

4. Form effective load vector P*.

-EAt + aoL 4[a4t-At + a5rt-,t]

5. Solve for change in displacements r*

K* r* = P*

6. Calculate new acceleration , velocity and displacement vectors

L " a2r - agt-,t - t-At

* ..
Lt = t-At + a6t + +-At

7. Calculate strains, stresses and internal force vector.

8. For next time step return to 1 or 4.
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Also, it has been found that an approximate normal displacement function which

does not involve joint rotations can be used; therefore,-,¢ and 1.2 representI an average surface rotation of the shell element. Also, if numerical integration

is used a very low order method may be employed.

Evalution of Elefment Forces

The evaluation of the eler..ent torces, E, at a given time is the most

important sten in the nonlinear analysis. If they are calculated by summing

incremental changes in forces it is possible to accumulate errors. However, if

they are evaluated directly from the total disolacements of the system, errors

will not accumulate and the need for a very accurate tangent stiffness is

eliminated.- It is of interest to note that for static nonlinear analysis

equation (11) reduces to a check of the equilibrium of the system in the

deformed position.

A formal approach for the evaluation of the force vector E is as

follows:

1. Within each tiement calculate the strain distribution fron tne total

displacements by the direct application of the nonlinear strain

disol acement equations.

?. From the appropridte stress-strain relationship calculate the corre-
* sponding stresses (force per unit area in the deformed position).

3. From virtual work the nodal forces at the element level can be calculated

from the stress distribution.

4. The element forces are transformed to the global system and combined to

form the total force vector E.

However, for most structures with linear materials and small strains, this formal

method Is not required. It is possible to calculate nodal element forces by

multiplying the incremental elastic stiffness by the total displacement in the

deformed position of the element.
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EXAMPLES OF FINITE ELEMENT ANALYSES

Vibration Frequencies of Cylindrical Shell (20)

The lewest vibraticn mode hapes and frequencies of the cylindrical roof

structure shown in Figure 8 vwere computed by inverse iteration, using successively

refined mesh arrangements to determine the convergence behavior of the finite

element method for this class of structure. The type of finite element used was

a quadrilateral assemblage of flat plate triangles (element type C as described

above). The results of the analysis, showing the first six symmetric vibration

frequencies for meshes 2, 4, 6 and 8 elements along each side of one quarter of

the shell, are presented in Table V. From these results it is clear that the

4 x 4 mesh gives quite good behavior, and even the very crude 2 x 2 mesh gives

meaningful values for the first two modes.

Dynamic Response of Cylindrical Shell [20)

The structure of Figure 8 was next subjected to a uniformly distributed

half sine wave impulsive loading, with a peak intensity of 90 psf as shown in

Figure 9a. The first two analyses were carried out without consideration of the

inertia forces, thus they were effectively "static" analyses even though the

displacenents changed with time. One of these analyses was linear, i.e., it

was assumed that the geometry was unchanged during the analysis and the geometric

stiffness was neglected. The second analysis included both of these nonlinear

effects. The vertical deflection of the mid point of the free edge computed in

these analyses is shown in Figure 9b; the deflection is reduced by about 25 percent

in the nonlinear case. Figure 9c shows the corresponding solutions for tne two

dynamic cases in which inertial forces are considered. The dynamic deflections

are larger than the static, as would be expected. Also the nonline.ar vibratory

response is somewhat faster than the linear.
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DIAPHRAGMWEIGHT s 37.5 LB/FT.

! FIG.8 CYLINDRICAL, SHELL ,- ,DYNAMIC ANALYS!S

Table V: Syrimetrlcal Vlbrition Frequencies

Medsh M 1 2 3 4 5 6

2 x 2 8 .614 22 .52 ..... ..... ..... .....

4 x 4 9.643 24.49 33.88 42.81 64.20 68.95

6 x 6 9.765 24.24 34.17 44.99 68.99 70.31

8 x 8 9.777 24.09 34.08 45.95 69.73 70.93
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Sna2-Thjough of Spherical Shell (20)

An example of the snap-through buckling of a spherical shell is shown in

Figure 10. This example demonstrates the effectiveness of the simple incremental,

load-balancing nonlinear analysis procedure described above. The geometry of the

shell is shown in Figure lOa, the finite element mesh in Figure lOb. The vertical

deflection of the middle of the shell produced by increasing load is shown in

{ Figure lOc. It will bL noted that the analytical process is somewhat erratic

as the deflection behavior nearly develops a negative slope, but the inherent

stability of the procedure is demonstrated by the return to the correct behaviorI
in the later stages of loading.

Wind Loading of a Cooling Tower [20)

* A practical application of the nonlinear dynamic analysis procedure is

presented in Fiqures 11-13. The basic dimensions of a typical cooling tower

are shown in Figure lla, together with the finite element mesh for one-quarter

of the structure (actually, half of the shell was included in the analysis).

The distribution of radial wind pressur( about the shell is shown in Fioure llb,

and the assumed time variation of loading is shown in Figure llc. It will be

noted that the peak pressure is 0.2 psi, or 28.8 psf.

The wind is apolied in the negative x direction, i.e., it acts directly

against nodes I through 8 on the x axis. The dynamic radial (inward) deflection

of nodes 1, 3, 5, 7 is shown in Figure 12, in the solid lines. Also shown in

this figure (with the dashed lines) are the deflections computed in a second

analysis using a peak pressure of 1.0 psi. These deflections have been divided

by 5 to permit their comparison with the previous analysis. The deviation of the

dashed curves from the solid lines demonstrates the influence of nonlinearity

in the response.

With the increased loading, the analysis showed that the deflections

became very large after about t 0.55 seconds, i.e., a dynamic buckling occurred.
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Figure 13 shows the deflections building up immediately prior to collapse.

The deflections are multplied many times to make it possible to see the collapse

behavior. The drastic change of the dashed line shape between t - 0.55 and

t a 0.60 shows that collapse hAs already started.

CONCLUSIONS

1. The finite element method provides an effective means for the analysis

of arbitrary shell structures. The linear response to dynamic loadings which

excite only a few modes of vibration may be computed conveniently by

mode-superposition. The linear response to hiqh rate, localized loads,

and analyses accounting for material or geometric non-linearities may be

obtained by simple step-by-step procedures.

2. Shell analysis programs based on many different types of finite elements

have been found to give satisfactory results. Valid comparisons between

them can be made only on the basis of computational efficiency, and the

quadrilateral formed of flat triangles has been found to be among the most

efficient.

3. In developing a general shell element, the approximation made with regard

to element geometry should be consistent with the displacement interpolation

approximation. Preliminary results indicate that shell elements which are

degenerated from quadratic isoparametric three dimensional elements

(and therefotc nave a consistent geometric and deformation assumption) may

prove to be more eifficient than present types.

4. Constraint of the sixth DOF (rotation about the shell normal) is desirable

for computaticnal efficiency, and has no significant effect on the shell

behavior except in cases where the shell is free to rotate as a rigid body.

In this cype of system, a complete 6 DOF formulation should be used.
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5. The consistent mass formulation leads to a higher order approximation of

inertia forces than of the forces associated with elastic deformations,

whereas in most systems the inertia forces are of lesser ;mportance. For

this reason, and also because other approximations (such as interel ement

incompatibilities and numerical ittegrations) invalidate the energy bound

principle, the use of consistent masses is seldom justified in the analysis

of shell structures. A lumped mass approximation is recommended for use with

elements employing low order displacement interpolations. For higher order

elements, a low order (possibly linear) displacement interpolation will

provide a satisfactory mass approximation. It should be noted that a

diagonal (lumped) mass matrix leads to a significant simplification of a

direct elgenvalue solution; however, a banded mass matrix imposes essentially

no penalty in a Raleigh-Ritz vibration analysis.
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QUESTIONS AND COMMENTS FOLLOWING CLOUGH'S PAPER

QUESTION: I have a comment and a question. The comment

concerns the sixth degree of freedom. As you realize, the sixth degree

of freedom may be degenerate. A similar degenerac)r may also arise

due to any mathematical formulation which results in a stiffness matrix

that has fewer elastic degrees of freedom chan the difference between the

total and rigid body degrees of freedom. Thus, the analyst can have a

structure that is kinematically unstable and a degeneracy can arise; the

question is what do you do about it? Well, if you are an analyst, you

understand the sixth degree of freedom is degenerative and you can strike

it out. That's perfectly proper if you have a flat plate and you analyze it

in rotated coordinates. However, the computer should be able to under-

stand this problem. There's no need to delete the sixth degree of freedom

and it is dangerous to do so, I feel. I think the computer should recognize

the inconsistency in the equations that is introduced if you introduce a load

in the sixth degree of freedom and it should automatically delete any extra

.equations in the solution process. In other words, you can perform the

decomposition independent of the degeneracies. You can deco,, pose a

singular stiffness matrix. However, when we proceed to the backward

solution process, yo.1 will then reach a point where you must divide by a

zero diagonal. If the right-hand sides are also zero, the equations are

consistent and you can proceed. If they are not, you have an inconsistency

in the formulation; then the analyst should be thrown off the computer.

My question is concerned with the collapse of the structure in your transient

response analysis. It's been our experience that this collapse may be a
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pseudo-collapse due to the time interval being too large compared with the

high frequencies of the system and my question is, is this a real collapse

of the structure or are we talking about an analysis collapse?

CLOUGH: I agree that you can get a pseudo-collapse from

numnerical effects. In this particular instance, however, I'm sure it is a

collapse associated with the development of instabilities in local parts of

the structure as evidenced by the geometric stiffness terms that are genera-

ted. In addition, the collapse clearly is associated with a time scale related

to the dynamic response of the complete structure.

As far as your comme its on the sixth degree of freedom are concerned, I

agree with what you say in general. However, in a flat plate assemblage

approximation of a shell structure, the sixth degree of freedom is not a

degenerative degree of freedom, of course. What you're talking about is

throwing out this degree of freedom as a part of the numerical analysis

procedure. I'm talking about eliminating it as a result of structural intui-

tion, I would say. I'm throwing it out and recognizing that in doing so I'm

constraining the structure relative to that degree of freedom. This is an

actual physical constraint and it shows up in that one example of the rigid

body rotation capability.

COMMENT: We've had some experience with the sixth degree of

freedom alco. As Prof. Clough has pointed out, if six degrees of freedom

are used at every node, then it is possible in modeling sheil structures to

end up with uncoupled degrees of freedom or an implied uncoupling in the

final stiffness matrix. Under these circumstanc s, iuizn'2. .- difficulties

can cause the run to be aborted or large errors to occur in the rotational
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displacements (but not in the translational displacements). On the other

hand, it is possible in modeling a shell to eliminate the rotation about

the normal to the shell surface and use only five degrees of freedom at a

node. Because of the finite angles between the plate elements, however,

this leads to unwanted constraints which may or may not cause significant

errors in the solution.

We have used both of these approaches on occasion, utilizing engineering

judgment to decide which way to go. When we use six degrees of freedom,

we insert very soft beams or torsional springs into the structure where

necessary to prevent uncoupling of the rotation. In using only five degrees

of freedom, we rely on rigid body checks of the unconstrained stiffness

matrix to indicate the magnitude of error to expect in solving problems with

the model.

CLOUGH: I think it's very appropriate to do what you do which

is to use your judgment on whether those sixth degrees of freedom are

important to your problem or not. For civil engineering classes of struc-

tures, I'm convinced ihat we don:i permit flexibilities in the structure suf-

ficient that this kind of artificial constraint will ever be meaningful, but in

aeronautical structures and mechanisms in general I'm sure that this con-

clusion is not always going to be true.
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ABSTRACT

The paper briefly discusses: (1) the basic concepts underlying a

mixed formulation finite element shell analysis, (2) a general shell

analysis program based upon a low order rixed formulation flat element,

(3) proposed higher order mixed forinulation flat elements, and (4) mixed

formulation curved shell elements.

A general discussion of the advantages and disadvantages of displace-

ment and mixed finite element procedures is given. The relativa accuracy

of mixed formulation and displacement predictions is discussed. The basic

theory underlying the authors' development of a mixed finite element shell

analysis is presented. Particular attention is given to the problem of

maintaining compatibility at shell intersectinns and at the interfaces of

flat elements used to approximate curved surfaces.

A description is given of the particular low order mixed formulation

element utilized in the development of a static linear program for arb;trary
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shells. Results for analyses of both simple and complicated shell

configurations are given. The significance of the artificial discontinuity

moments which may be generated due to the representation of a curved surface

by flat elements is discussed and illustrated.

Possible advantages and disadvantages of higher order mixed formulation

fl-, and curved shell elements are discussed.
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I1NTRODUCTION

One approach used for the development of finite element analyses uti-

lizes the Ritz procedure in conjuaction with a variational equation expres-

sion of the physical problem (1, 2, 3, 4). Probably the most fundamental

variational descriptions of structural problems are given by the principles

of virtual displacements and virtual variations of the state of stress (5);

for this discussion descriptions which are special cases of these principles

are employed. The behavior of structural shells can alternatively be expres-

sed by variational equations derived from the theorem of minimum potential

energy or the theorem of minimum cpmplementary energy, or by mixed variational

equations [6,7].

'. finite element analysis based upon the theorem of minimum potert.ial

energy yields approximate solutions which (a) exactly satisfy internal compat-

ibility (assuming that the approximate displacement field satisfies the a',nis-

sibility conditions of the theorem of minimum potential energy), displaceRcrnt

boundary conditions, ano the stress strain law, and (b) approximately satisfies

the equilibrium equations and the traction boundat;y conditions. A finite ele-

ment analysis based upon the theorem of minimum complementary energy yields

approximate solutions which (a) exactly satisfy the equilibrium equations, the

stress boundary conditions, and the stress strain law and (b) approximately

satisfy compatibility and the displacement boundary conditions. Finite elei;lent

prc'.edures based upon mixed variational equations yield approximate solutions

that exactly and approximately satisfy the governing field and boundary equa-

tions in some other combination than those described above.

With so many possibilities existing for the development of competing forms

of finite element procedures, the question of which procedure should be

utilized for a given class of structural problems needs to be considered.

it appears that mosL investigators have adopted the displacement approach
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without thoroughly investigating the alternative possibilities. Their

a priori adoption of a displacement approach would appear to be a

consequence of their experiences with frame analyses for which displacement

procedures appear to have inherent advantages over force approaches. It

would appear, howevzr, that the question should be re-examined for each

class of structural problems. Such considerations have revealed certain

applications for w+hich mixed formulations are definitely preferable (4]

and have indicated others for which stress approaches may be preferable [8].

The objective of the present paper is to stimulate interest in the

question of the desirability of developing and utilizing mixed formulation

finite element analyses for structural shells. The consideration of mixed

formulation finite element procedures is motivated by the fact that they

would appear to overcome several difficulties which are associated with

traditional displacement approaches.

Because of the high order displacement expansions that must be used

in order to permit the satisfaction of the compatibility requirements,

displacement plate and shell bending elements are inherently quite complex.

These algebraic complexities result in significant "element form times'

(rather large 'elunent form times" are particularly significant for those

incremental analyses for wihich it is necessary to reform the element

matrices for each increment). The mixed formulation shell elements utilized

to date are significantly less complicated and hence considerably fewer

operations are involved in the formulation of the element matrices.

Because of this relative simplicity the development of a mixed curved shell

element may ue more straightforward than the analogous displacement

formulation development.
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Many of the displacement analyset that have been developed to date

utilize different order membrane, transverse deflection and rotation

expansions, hence, although they satisfy compatibility for plate ippli-

cations, they violate compatibility (i.e., they do not completely satisfy

the admissibility conditions of the theorem of miimum potential energy)

for those applications for which adjacent elements do not lie in a conmon

plane. Adjacent elements do not, in general, lie in a common plane when

a shell surface is approximated by plate elements and/or at folded plate

or shell intersections. The queston, of the importance of these incom-

patibilities, has not been completely resolved. The mixed formulation

elements employed to date satisfy the admissibility conditions of the

underlying variational equation even though adjacent elements do not lie

in a common plane.

There is considerable controversy regarding the inability of displace-

ment approaches to account for normal (to the shell surface) rotational

degreesof freedom. Because mixed formulation procedures do not employ

rotational degrees of freedom, this question does no( arise.

Lastly, displacement shell analyses may be criticized for the fact

that .he moments, which are usually the quantities of primary interest,

are calculated by taking derivatives of the approximate displacement field,

an operation which leads to a considerable loss of accuracy. In the mixed

approach, however, the moments are calculated directly and thus should be

more accurate.

The main criticism, to date, of mixed formulations concerns the

computational effort required to solve the simultaneous eqiations. Because

mixed elements usually have unknowns associated with side points, even
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though the number of elements and the number of degrees of freedom per

element should be the same, the number of equations and band width would

be considerably greater for a mixed approach than for a displacement

approach. Additionally, at common intersections of three or more shells

it is necessary, due to the non-uniqueness of the normal moment quantity,

to introduce still additional unknowns. Ouestions concerning possible

undesirable characteristics of the simultaneous equations caused by the

mixing of displacement and stress unknowns and the resulting appearance

of zeroes (these zeroes, of course, disappear during the solution of the

equations) on the diagonal have been raised. The authors, however, have

experienced little difficulty in solving the equations with conventional

elimination codes (care has been taken to normalize the unknowns so that

numerically they are of the same or6er of magnitude).

The actual signiFicancc of the several suggested advantages and

disadvantages of mixed and displacement formulations has not really been

evaluatel, hence, at this point no definitive statement of the relative

merits of the two approaches can be made. Ultimately the relative merits

of the two procedures can only be judged by comparing the cost of the

computational effort necessary to achieve comparable results for a wide

class of shell problems. Such a comparison must be Aeferred until

decisions concerning the best types of displaczi,;:nt and mixed elements

have been reached and until a single investigator has at his disposal

programs specifically tailored for each of the two procedures. The

programs used for such a comparison must each take advantage of the special

characteristics of the appropriate formulation.
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MIXED FORMULATION

Mixed variational equations may be obtained by specializing the

general variational equations given in references [6,7] or may be con-

structed as alternative statements of a particular partial differential

equation expression of the physical problem. The latter procedure was

employed in the development of the formulation to be discussed herein

[9,10. Other possibilities for expressing the plate equations by a

mixed variational equation of course exist.

The plane stress and bending behavior of a plate may be described by

the following variational equation:

6(F + 11m) 0 (1)

where

F " 'B f- qw- SmT (Mx +M4y) + Mx4xw x

+ My,yy y+ Mxygy wx + 1xy,x wy

-S I[ + )M2+IM

- WsMnds Va w ds

S s ns ' fn

Rf a Mn ds (2)
S3  

A
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S -12 (3)

h/2

mT E h/2 rATT z dz (4)
-h/2

The potential energy for a state of plane stress expressed as a function

of the In-plane displacemnints (u,v) is denoted as It • The symbols

q,w, (Mx, M H, MXY), (E, v), h, al. and AT, respectively, denote the trans-

verse load, the transverse deflection, the bending moments, the elastic

constants, the plate thickness, the linear coefficient of thermal expansion,

and the temperature change.

The surface integral is evaluated over the entire plate B . The

first line integral is evaluated counterclockwise around each element

representing the plate. The second and third line integrals are evaluated

(in a counterclockwise direction) along those pattidns of the plate boun-

daries where V and R are respective'y specified. The symbols Vnn n n
and Ra , respectivelyp denote specified values of effective shear and

n
normal rotation.

The valves of the resultants along a boundary whose outward normal is

denoted by n , are (S denotes the angle between x and n)

*n WM x(Cos 0)2 +M y (sin 0)2 + M X sin 28 (5)

M 1 ( -M) sin20 + M cos 20 (6)Hns y XX

Qn Qx Cos B + QY sin (7)
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The primary dependent variaoles are the reference surface displacement

components (u, v, w) and the moment components (14 , M M ). An admis-

sible state for the primary variables is one in which (a) the prescribed

moment and reference surface displacement boundary conditions are satisfied,

(b) there atre continuous second derivatives within each element, and (c)

the expressions for u, v, w and Mn are continuous across all element

interface-..

The Euler equations for the above variational equation are (a) the

in-plane equilibrium equations expressed in terms. of the displacements u

and v , (b) the moment curvature relationships, and (c) thu transverse

equilibrium equation expressed in terms of the moments. The essential

boundary conditions are the prescription of the reference surface displace-

ments and the normal moment on the plate boundaries and their continuity

across all element interfaces. The natural boundary conditions are the

prescription of the in-plane forces, effective shear and normal rotation

on the boundaries and their continuity across all element interfaces.

Thus, a finite element analysis which utilizes Equ. (1) (a)

exactly satisfy reference surface displacement continuity anid boundary

conditions, and moment equilibrium across element and a,;tual boundaries,

and (b) will approximate slope continuity, slope boundary conditions, force

boundary conditions, the enuilibrium equations and the moment curvature

relationships. It needs to be emphasized that this approximation of slope

continuity is not at all the same as the violation of compatibility by a

non-conforming displacement element. In the latter case certain of the

admissibility conditions of the governing variational equation are violated

(this violation may vanish in the limit as the element size shrinks to
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zero) whereas in the former case they are not.

The displacement approach for plates admissibility requirement of

continuity of slopes is a consequence of the fact that the minimization

of the potential energy is equivalant to a fourth order partial differen-

tial equation expression of the p-oblem. The slope continuity admissibil-

ity condition is not a requirement of Equ. (1) because this variational

equation is equivalent to a second order partial differential equation

description of the plate problem.

It Is of interest to examine the specialization of Equ. (1) for beam

bending (in the absence of thermal effects):

6F 0 (8)

where

F - qw + M W + I (M)23dx - EVaw - ERaM (9)

The symbols Va and Ra denote specified shears and rotations. The

admissibility conditions for the primary dependent variables w and M

are continuity and satisfaction of the displacement and i.oment boundary

conditions.

Equ. (8) is equivalent to the following differential equation expres-

sion of the beam bending problem.

d2w
dx

and

299



d2M (11)

dx2

A finite element analysis for beams can be simply developed by approx-

imating M4 and w as linear functions within each element and relating

these expansions to node point values of 14 and w . The resulting mixed

formulation beam element has four degrees of freedom. Alternatively

defining a cubic expansion for w in terms of the node values of w and

W Ox and utilizing the theorem of minimum potential energy. A displacement

finite element analysis may be diveloped. The resulting displacement beam

element ulso has four degrees of freedom.

It is of interest to compare results obtained from these two anal!'ses.

A comparison was made by utilizing the same number of elements for each of

the two procedures. Employing the same element representations resulted

in identically sized system matrices and hence the same computational effort

for solving the simultaneous equations. It should be noted, however, that

the formation of the mixed formulation element matrix takes considerably

fewer operations than the analagous step in the displacement analysis.

Consequently, a more meaningful comiparison would have resulted had the

number of mixed elements been increased until the total computational

efforts of the two procedures were identical. It was unfortunately not

possible to obtain a sufficiently accurate measure of computational effort

-to permit this refinement.

Results for a simple beam problem (Figure 1) are presented in Figures

1, 2 and 3. The convergence of the mixed formulation analysis is clearly

illustrated (the question of convergence of analyses based upon stationary

principles such as Equ. (1) is apparently not easily answered from a
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theoretical consideration). The use of the mixed formulation achieves an

Increased accuracy for the moment predictions at the expense of displace-

ment and shear accuracy.
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MIXED FORNULATION FINITE ELEMENT SHELL ANALYSES

"Mixed formulation finite element analyses for thin plates have been

reported in references [10, 11, 12) (an analysis for thick plates is

reported in (9]; difficulties with this analysis for Irregular grid

representations have been txperienced). The flat bending elements reported

In [10, 11], in combination with displacement membrane elements, have been

uscd to approximate the behavior of general shells (12, 13]. Mixed formu-

lation elements have also ')een used in the solution of eigenvalue problems

[14).

The bending element reported in [12] is of much higher order than the

one reported in reference [13] and discussed herein, and for a given number

of elements leads to much more accurate results. A comparison, however,

needs to be made of the computational effort necessary to achieve a given

accuracy; it Is the author's opinion that the higher order element wll1

prove to be the more economical. An added advantage of the higher order

element is that it should lead directly to rather accurate predictions for

transverse shears, whereas, the lower order element does not directly lead

to such predictions.

It is stated in reference [12) that the utilization of the twelve

degree of freedom mixed formulation bending element results in about the

same accuracy as does the utilization of the twelve degree of freedom dis-

placement element [15]. It is also noted that the computational effort

for forming the mixed formulation element matrix is less than that required

for the displacement element matrix. However, it is not noted that the

resulting number of equations and band width are considerably Increased

and, hence, if standard solution procedures are used, an increased compu-

tational effort will be required to solve the mixed formulation equations.
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The equations obtained from the mixed formulation analysis have many more

zeroes within the band than their displacement formulation counterpart

and, thus, it may be possible to develop an "euation solver "which utilize

this characteristic to reduce the computational effort. The authors, to

date, have had some success in such a development.

The low order flat triangular element, used by the. authors, employs

the approximation& of linear expansions for the reference surface displace-

ments (defined by "corner node" values, see Figure 4) and constant value;

for M x, MY and MXy (defined by "side node" values of the normal moments).

Four of these twelve (six bending and six membrane) degree of freedom

triangular elements are combined to form a quadrilateral element (the four

triangular sub-elements do not, in general, lie in the same plane) which

has after the elimination of the unknowns associated with the five internal

points, sixteen degrees of freedom. The element matrix is given in [13].

The element matrix formation time can be reduced by noting that the matrix

[11] may be written in the form (the notation is described In (13]):

061 - 2 02 -01

2S(a21)

[H] - 2A -(02 +03) 0l " 02

-(02 + 03) 03 82

where
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In addition to the several examples presented in [13] three example

analyses will be considered herein.

The first two examples demonstrate the applicability of the analysis

to singly and doubly curved shells. The first example considers the axi-

symnetric bending of a cylindrical shell, see Figure 5. Some indication

of the consequences of approximating a curved surface by flat elements is

obtained by comparing the results for 50 and 150 element spans, see

Figures 6 and 7. For this example, where there is very little membrane

action, it will be noted that the prediction for moments is more accurate

than for transverse deflection. The second example (see Figures 8, 9 and

10) considers the pressurization of a toroidal shell and illustrates

applicability to doubly curved shells.

The third example illustrates the potential of finite element shell

analyses for applications to extremely complicated shell structures. The

finite element results presented in Figures 11, 12 and 13 were obtained

by State of California, Department of Water Resources personnel utilizing

the program described in reference [13). The model test results are taken

fFom reference [18]; additional experimrsatal results are available in

reference [19]. The structure consists of a 600 Y-Junction with three
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[ external stiffener plates (with external flanges) and one internal splitter

niate, see Figure 11. Results [18] of measurements taken from an instru-

mented plexiglas model subjected to internal pressure are shown on the

figures as circles (the stress curves were drawn thru these points).

"Superimposed upon these curves are finite element results obtained by

repiasenting (approximately 2400 degrees of freedom) the complete structure

by a rather coarse grid of flat elc .nts, see Figure 14 (Figure 14 is
taken from a computer plot of the grid).
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CURVED SHELL ELEMENTS

Concern has been expressed that analyses which represent a curved

shell surface by "1at elements (see Figure 15) might be rather inaccurate

due to artificial discontinuity moments generated at the intersections of

the flat elements.

For the purpose of this discussion a structure made up of a series

of triangular plate panels, which is identical in shape to a flat element

idealization of a shell, will be called the AFPS (associated folded plate

structure). The point of concern is that the finite element solution

might represent the betavior of the AFPS rather than that of the shell (a

very serious concern as the two behaviors may be grossly different). If

a low order plate element is utilized then one would not expect the finite

element solution to be a good approximation of , behavior of the AFPS as

it would require a rather fine subdivision of each plate panel (rather than

one element per panel) to accurately capture their complicated behavior.

However, even if the finite element solution should only grossly approxi-

mate the behavior of the AFPS this could be very undesirable. The above

discussion suggests that low order flat elements, because they are less

capable of representing the behavior of the AFPS, may at times be more

accurate than higher order ones for shell analysis purposes.

Experience gained from the application of the shell program discussed

in [13] has led the authors to the following general conclusions: (1) The

values of the normal moments calculated at the element side points reflect

the influence of the artificial discontinuity moments to a greater degree

than the element moments (reported for the centers of the quadrilateral

elements). (2) The three factors which tend to greatly magnify the
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Figure 15. Representation of Arbitrary Shell wilth plate Elements.
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difficulties are non-positive Gaussian curvature, large R/t ratios, and

variable element sizes.

In an attempt to illustrate the above observations the authors per-

formed a study of the simple example of the pressurization of a thin

cylindrical shell. Utilizing symmetry a 600 segment of the shell was

analyzed. The shell configuration is shown Irn Figure 16 along with three

different flat element representations; the node points lie on the middle

surface of the cylinder. The results presented in Figures 17, 18 and 19

are for R/t = 100 . The values of the hoop moments (Me) have been multi-

plied by a factor such that a magnitude of 1.0 indicatns that the extreme

fiber bending stress is equal to the membrane stress (the membrane stress

predictions were identical for all cases). The "folded plate solution" is

an exact analysis of the AFPS; the "finite element solution" was obtained

using the analysis described in [13]. The results presented in Figure 17

illustrate that the side point moments reflect the artificial discontinuity

moments to a greater degree than do the element moments; in fact for

equally sized elements the element moments are exact. (Because of these

recognized inaccuracies, the side point moments are not shown in subsequent

figures.) It is to be noted, for this example, that when the AFPS has

panels of equal lengths that the average hoop moment and the displacements

of the nodes are identical to those of the shell. Inspecting Figures 19

and 20, it is apparent that any small deviation of tne ratios of panel

lengths from 1.0 results in a drastic change in the behavior of the AFPS.

Thus, except for the case of equally sized panels, the response if the AFPS

is considerably different from that of the shell. Unfortunately the finite

element solutions are highly influenced by the basic trends of the AFPS
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behavior (the displacement predictions are particularly inaccurate). The

increased significan,-e of these inaccuracies for large R/t ratios is illus-

trated by Figure 20 where the dependence of the finite element predictions

upon the R/t ratio is given for this example. It is the authors' opinion

that these inaccuracies are not nearly so significant for shells of posi-

tive Gaussian curvature.

One obvious remedy for this difficulty is to use curved elements for

those shell configurations where b flat element representation may lead

to problems. The development of a general curved shell element has been

impeded by the difficulty of including the rigid body mot~on terms in the

displacement expansions. Two possible approaches suggest themselves:

(a) use of polynomial expansions which contain the rigid body motion terms

in the limit as the element size shrinks to zero, and (b) use of Fourier

terms in the displacement expansions to exactly account for rigid body

motion. The former approach has the advantage of relative simplicity and

the disadvantage of limiting the maximum element size that may be employed.

The latter approach has the advantage of permitting the utilization of

very large elements 4nd the disadvantage of extreme algebraic complexity

due to the difficulty of satisfying the element interface admissibility

conditions and evaluating the necessary surface integrals.

Recently a mixed formulation doubly curved triangular shell element

which utilizes polynomial displacement expansions has been reportee (203.

The authors have undertaken the development of curved mixed formula-

tion elements walch completely describe rigid body motion. Only a few

brief comments concerning the development will te given at this time as a

detailed report will be given in a later publication. The authors have
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found It necessary, in order to easily satisfy the aknissibility condi-

tions, to restrict their attention to coordinate line elements and •,

particular type shells, e.g., cylindrical, spherical, conical, etc. It

might appear that such restrictions would seriously detract from the use-

fulness of the development, however, it is felt that when such elements

are used in combination and in c(anbination with general elements, such as

those given in [13] and [20], and when provisions are made for permitting

boundary elements to have non-coordinate line boundaries, and for grids

to have "hanging nodes," that it will prove to be quite practical and

useful. "Hanging nodes" are the terminatlon c" grid lines which bound

small elements in the sides of adjacent larger elements. One possible

way of considering non-coordinate line shell intersections would " by

using a fine grid of general flat (13] or curved [203 triangular elements

adjaceit to the intersection and relatively large coordinate line elements

for the remainder of the shell.

An analysis which utilizes coordlnae Ine curved cylindricai shell

elements has given, for the example presented in Figure 16, essentially

exact results for all element idealizations.

CONCLUSIONS

The feasibility and practicality of developing and utilizing mixed

formulation finite element shell analyses has been conclusively demon-

strated. Relative advantages and disadvantages of displacement and mixed

formulation finite element solutions have been suggested but not firmly

established. Finally the importance of using cu-ved elements for the

representation of thin shells of non-positive Gaussian curvature has been

illustrated.
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QUESTIONS AND COMMENTS FOLLOWING HERRMANN'S PAPER

QUESTION: In this last example of your curved beam, how was

your load vector computed when you took the distributed load? Was it a con-

sistent load vector? Did it include the moments in addition to radial forces?

HERRMANN: Yes, it was a consistent vector.

QUESTION: If you had eliminated the moments, would that have

yielded better results here?

HERRMANN: We didn't try that.

QUESTION: A philosophical point. You said that you were getting

excellent agreement wih the evenly spaced grid, even when the stress dis-

tributions within your elements departed radically from the true stress

distributions of the structure at points. This excellent agreement that

you were obtaining was simply based on an empirical procedure by which

you picked the point at which you evaluated the stress. Is that a correct

assumption of the situation?

HERRMANN: That's true. After running some of these simple

examples, we gained enough experience to know how to interpret our results

in that way. Yes, it's true that certain parts of the element could have very

fictitious results.

QUESTION: Could another interpretation of your experience be

that we cannot really rely on that sort of experience? That is, must we

have an element in which the stresses everywhere agree with the true stress
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distribution of the structure?

HERRMANN: I think the engineering experience is valuable and I

think we can rely upon it, but I do agree that for certain types of shells--

very thin shrills--it is important that we develop curved elements.

COMMENT: I'd like to report on an application of a mixed method

using a curved triangular element. For example, a program for shell

analysis was done at MIT two years ago by Carlos Brato. I was involved

in this and I can report that excellent results were obtained for practically

all cases he studied; and he really tested just about all kinds of shell sur-

faces. He used shallow shell theory for the element, linear functions of

the coordinates for the displacements and linear functions for the stress

couples as well. He didn't use any side points and with this the results of

the stress couples at the nodes were always good. He made some compari-

sons with the displacement method and always his results were at least as

good as those with the displacement method. Also I'd like to mention that

there are other kinds of mixed formulations in which you can take the ro-

tations to represent the bending behavior and stress functions to represent

the membrane bahavior. Also in this shell theory one would assume if you

take the stress couples you're making Avi e equal M o1

and if you want to include the general shell theory where this is not so,

you would have four stress couple unknowns instead of three.

HERRMANN: I might add that we've looked at curved shells and

we've repeated these same examples with a curved mixed formulation ele-

ment and obtained excellent results for all gradation of element sizes.

Another comment Is that there are many diffei'ezit combinations that you

333



can use and there's one thing that we would like to look at, which is includ-

Ing the membrane behavior by a force or a complimentary energy approach.

We have such a membrane element and I would like to see what would happen

when we combined it with the mixed formulation bending element. We have

not done this to date.

QUESTION: It appears that the example where the curved element

gives trouble is also one which physically is very unstable in that it's ideally

suited for the symmetrical loading and with any other type of loading you get

ck tremendous side sway. When you have something with very little bending

properties, almost like a balloon type structure, probably this is a physical

indication to watch out for. In this type of structure also you probably should

be using large deformation theory so maybe an elastic analysis like this is

sort of meaningless anyway. The specific question I had for you is, what

is the potential for extending the mixed model to dynamic analysis?

HERRMANN: There is a reference to this in my paper. I've

spoken with two different investigators, one said he had no problem at all--

it extended beautifully. The other person said he had difficulties. I don't

really want to pass along their difficulties or their successes. I'll leave it

to them to report it. I'd like to add a comment related to Prof. Clough's

statements concerning the order of expansions versus the geometric

approximations. At least on the surface of things, it looks like a higher

order element at times will give you poorer results when you're having

curvature difficulties because the higher order element can more closely

capture the complicated folded beam or folded plate behavior and you really

don't want this. You want to avoid capturing it, So it appears that, at
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least at tinres, a low order approximation is consistent with neglecting

curvature. If you want to use a higher order element, it's probably desir-

able to include curvature effects.

COMMENT: I'd like to make just one observation on a possible

problem that may occur in dynamic analysis using your mixed model. You

have emphasized that your mixed model is excellent for reproesenting

stresses. If this is your primary purpose, fine, but in the dynamic analysis

deflections completely control your inertial forces. Consequently if you are

not representing deflections with adequate accuracy your dynamic analysis

will tend to break down.

HERRMANN: It's possible. Some of the references I've given in

the paper use higher'- approximations for the displacements and I

personally think that higher order elements are far superior to

what I've presented hei. f1 the mixed formulation has any future, it wiil

be with these higher order approximations.

COMMENT: I completely agree with this author iW his observa-

tions about flat versus curved elements. Some of this information has

been in the literature before and he's added an additional element to it

showing that there's a trend in the displacements and the stresses which

extends from one end of the arc to the other. He did this for a beam ele-

ment. It was previously done for shell elements. For the shell element,

this trend does not exist. However, the shell eleme.it is not semi-unstable,

as was suggested in an earlier comment. The point I'm trying to rmake

here ia that you can have very definite trouble with shell elements for

shells which do not tend toward instability ia any way.
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STRICKLAND: We have been asked to give a summary of the

important points made in this particular session. I'd like to summarize

by noting two points which have been made. First, if you have two tri-

angular elements coming together at some angle, we need equal order

displacement functions in all variables. Prof. Clough has shown that if we

use equal order displacement functions, we may obtain good results using

flat elements. The other point concerns the mixed formulation. In the

mixed formulation the potential depends only on the variables and their

first derivatives. Consequently, as pointed out by Prof. Herrmann, it

is only necessary to satisfy continiity of the parameters and not continuity

of the slopes between elements. This may be done in the displacement

method by using that equivalent Kirchhoff hypothesis or in fact it may be

accomplished by degenerating the three-dimensional element to a corres-

ponding two-dimensional element.
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FINITE-DIFERENCE ENERGY METHOD FOR NONLINEAR SHELL ANALYSIS

David Bushnell*
Bo 0. Almroth

Lockheed Palo Alto Research Laboratory
Palo Alto, California

Abstract

Two computer programs, BOSOR3 and STAGS, have been developed for the

nonlinear analysis of shells. BOSOR3 performs stress, stability, and vibre-

tion analyses of ring-stiffened, segmented shells of revolution with various

wall constructions. STAGS performs similar analyses for shells of general

shape. The analysis method for both programs is similar to the finite-element

method in that extensive use is made of matrix algebra in the development of

the governing equations. These equations are derived by the digital computer

in terms of mesh point displacement variables. Several example cases from

BOSOR3 and STAGS are given. showing effects of various finite-difference

schemes, comparison with finite-element results, and complex nonrinear be-

havior involving large-defbitctions and redistribution of stress during

loading.

*Staff Scientist

**Staff Scientist, Senior
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FINITE-DIFFERENCE ENERGY METHOD FOR NONLINEAR SHELL AJLYSIS

David Bushnell
Bo 0. Almroth

Lockheed Palo Alto Research Laboratory
Palo Alto, California

INTRODUCTION

Application of energy principles in computerized structural snalysis has

been limited for the most part to the finite elemert method. During the past

few years the authors have developed general computer programs for the analysis

of shells in which the principle of minimum potential energy is used in con-

junction with the finite difference method. Two programe have been developed:

BOSOR3 (Ref. 1) is a program for calculation of stress, stability., and vibra-

tion of segmented, ring-stiffened shells of revolution with various wall con-

structions; STAGS (Ref. 2) is a program for the calculation of stress, stability,

and vibration of general shells. Both programs are based on the usual thin shell

approximations. In STAGS and BOSOR3 the expression for the total energy, orig-

inally an integro-differential form, is converted to an algebraic form by sub-

stitution of appropriate finite difference formulas for displacement derivatives

in the kinematic relations and by numerical integration over the shell surface.

This algebraic form is "minimized" with respect to the mesh point displacement

components ui, vi, and wi.

The algebraic forms for the total potential and kinetic energy of the

system are derived through extensive use of matrix algebra. The developments

are similar to that used in the finite element method, and are ideally suited

for programming on the digital computer. Other investigators (Refs. 3,4)

have als.o based their analyses on energy minimization in which the displace-

ment derivatives appearing in the kinematic relations are replaced by appro-

priate finite difference forms.
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BOSOR3 SUMMARY

The BOSOR3 program represents the codification of three distinct analyses:

1. A nonlinear stress analysis for axisymmetric behavior of axisymmetric

shell systems (large-deflections, elastic)

2. A linear stress analysis for axisymmetric and nonsymmetric behavior

of axisymmetric shell systems submitted to axisymmetric and non-

symmetric loads

3. An eigenvalue analysis in which the eigenvalues represent buckling

loads or vibration frequencies of axisyiumetric shell systems sub-

mitted to axisymmetric loads (eigenvectors may correspond to axisym-

metric or nonsymmetric modes).

The independent variables of the BOSOR3 analysis are the arc length, a ,

measured along the shell reference surface and the circumferential coordinate,

9 . The dependent variables are the displacement components, u, v, and w

of the shell wall reference surface. For the three analyses listed above, it

is possible to eliminate the circumferential cc-irdinate, e , by separation of

variables: in the nonlinear stress analysis e is not nresent; in the linear

stress analysis the nonsymmetric load system is expressed as a sum of har-

monically varying quantities, the shell response to each harmonic being cal-

culated separately; and in the eigenvalue analysis the eigenvectors vary

harmonically around the circumference. Thus, the e-dependence (where applic-

able) is eliminated by the assumption that u(s,e), v(s,A), w(s,q) are given

by un(s) sin ne, vn(s) cos ne, vwn(s) sin no or by un(s) cos ne, vn(s) sin nA,

w n(s) cos no. In the BOSOR3 analysis the first three harmonically varying dis-

placement components correspo3nd to values n > 0; the last three to n 5 0.

The advantages of being able to eliminate one of the independent variables

tannot be overemphasized. The nunber of calculations performed by the can-

puter for a given mesh point spacing along the arc length s is greatly re-

duced, leading to significant reductions in computer time. Because the

numerical analysis is "one-dimensional" a rather elaborate composite shell

structure can be analyzed in a single "pass" through the computer. The dis-

advantage is, of course, the restriction to axisymmetric structures.
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&TAGS SUMMARY

Sana •yse The STAGS computer program represents the codification of two distinct

analyses:

1. Nonlinear stress and stability analysis for general shells

(large deflections, elastic-plastic)

2. An eigenvaiue aual.ysis in which the eigenvalues represent

vibration frequencies of arbitrarily loaded shells.

The independent variables of the STAGS analysis are the arc length measures

along reference surface coordinate lines which need not be orthogonal.

Th. deDendent variables, as in BOSOR3, are the mesh point displacement

components u,, vi, and vi. In this analysis the independent variable,

cannot be separated, so that a "two-dimensional" numerical analysis is

required. The advantage of the STAGS computer program is its very broad j
range of applicability. It has been used, for example, for calculation of

collapse loads of axially compressed cylinders with cutouts and elliptical

cones (Ref. 5,6). Vibration frequencies of cylinders with reinforced cutouts

have been calculated (Ref. 7). STAGS can be used to determine the buckling

loads and post-buckling behavior of thin shells with arbitrary initial im-

perfections. A two-dimensional nonlinear analysis give5 a more complete

description of the shell behavior but is much more expensive in terms ofi

computer time.

In this paper the analyses on which BOSOR3 and STAGS are based will be

described, nutaericel results will be given, various problems encountered

during the development will be mentioned, and future proposed work will be

outlined.

BOSOR3 ANALYSIS

References 8 and 9 give details of the analysis on which the BOSOR3 code

is based. Only highlights from the bifurcation buckling and vibration analyses

will be repeated he:e.
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The results from the nonlinear axisymmetric stress analysis are used in

the eigenvwlue analyses for buckling and vibration. The "prebuckling" or

"prestress" meridional and circumferential stress resultants N and N2 0

and the meridional rotation X0 appear as known variable coefficients in

the energy expression 'bich governs buckling and vibration. This expression

is a homogeneous quadratic form. The values of a parameter (load or frequency)

which render the quadratic fo'rm stationary with respect to infinitesimal var-

iations of the dependent variables represent buckling loads or natural fre-

quencies. These "eigenvalues" are calculated from a set of linear, homogene-

ous equations.

The same linear "stability" equations, with a "right-hand-side" vector

added, are used for the linear stress analysis of axisymmetrically and non-

symmetrically loaded shells. The "right-hand-side" vector represents load

terms and terms due to thermal stress. The variable coefficients, N1 0 ,

N20) and Xo, mentioned above are zero of course since there is no non-

linear "prestress" analysis in this case.

The energy method used in the eigenvalue analysis is based on the defi-

nition of the Hamiltonian corresponding to an n-wave deformation pattern:

H, U,+ ý U - T4.4-XT&I+ U()
k.I I k.I 1 1.1

where

V = shell strain energy

Uk = strain energy of kth ring stiffener

T = shell kinetic energy

k
T = kinetic energy of kth ring stiff'enerr
iUi = ith set of constraint conditions.c

The functional Hn is given in terms of the shell wall displacements and

their derivatives. Integration along the shell meridian is performed

, umerically. The derivatives with respect to the meridional coordinate
"s" are simulated by two and three point finite-difference formulas.
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The derivatives with respect to the circuraferential coordinate 0 are elim-

inated because U = unsin ne, V = v ncos ne, W = wn sin no. In this way H.,

which is originally an integro-differential quadratic form, becomes an alge-

braic quadratic form. The constrai.-t conditions are equations of displace-

ment and rotation compatibility at junctures between shell segments and at

the shell boundaries.

The algebraic quadratic form H is expressed as:; n

H. = tqj[[K]J+ [K 2]+fl1[M]., . (2)

The vector Lq] represents the dependent variables. These include the dis-

placements at the meridiopal stations in the finite difference mesh and

Lagrange multipliers corresponding to the constraint conditions. The matrix

[K1 ] represents the stiffness matrix (including constraints) of the unde-

formed and unstressed structure; [K2 ] represents the contribution of the

known prestress terms Nl0, N2 0 , Nor, and X0 to the stiffness matrix; and

(M] represents the mass matrix. These riatri,:es are symmetric.

The problem is to find the values (eigenvalues) of a parameter which cause

H to be: an extremum. In vibration problems the eigenvalue parameter is then2
square of the frequency 0 . In buckling problems the eigenvalue parameter

may be the pressure or temperature amplitude or any line load or moment

applied to any ring. If some applied load is regarded as the eigenvalue

parameter, the kinetic energy terms T and Tk are zero. The lowest
s r

eigenvalue then represents the bifurcation load and the eigtnvector repre-

sents the mode shape. If, however, the applied lue.d is fixed and 02C is

regarded as the eigenvalue parameter, the terms Ts and Tk are non-zero.sr

The eigenvalues and eigenvectors then repr,--nt frequencies and mode shapes

for prestressed -hells of revolution. Minimization of H n with iespect to

all of the q-components generates a set of simultaneous linear homogeneous

algebraic equations, the coefficient matrix of which is symmetric. Non-

triviajl solutions are obtained for these equations on the digital computer.
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Derivation of (K1 ], 1 K2 ], and (M]

In the following derivation variables are used which are defined in Figs.

l(a) and l(b). These figures show a segmented, ring-stiffened shell supported

at the end A by a ring and clamped at B. There are two intermediate rings,

one in segment #1 and one between segments 1 and 2. Fig. l(a) shows the

structure and Fig. l(b) shows the corresponding finite-difference model.

It is necessary first to define the various components of strain energy

and kinetic energy. The shell strain energy Us can be written as:

U, fLLSJI} +LwJ[No]{co}+LdJ[P]{J}]rds (3)
2JA

where

teLSJ LNt N2, N 12., ,, M 2 1 MJ

IWIJ Lx, 0, YJ
[Nt0  0 0

[NO] f (N20 0~ (4)
0 0 (N~o+N 20oj

Ld = Lu, v, YwJ

-p/Xl 0-_p

[P) = 0 -p/Rj o0
-P' A I•-RI + I/,R2
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and

N, C,, C, 2  0 C34 CIS 0 £1

N2  C, 2 C2 2  0 C24 C 25  0 C2

N12  0 0 C33  0 0 C36  £, (5)

MIC1, J4 ' 0 C4 - C45  0 X I

Ml2  CIS C25  0 C45 C55  0 X2
MA 0 0 C36  0 0 C66  2X12

£= u'+w/RI +X•o

£2 = -nv/r+r'u/r+w/R2  (6)
r•2 v'-r'v/r+,,u/r+xo,

X2 -no/r +r'X/r ("M

2X1 = 2(-nylr+r'Olr+v'IR2 )

= w'-u/Rl

= nw/r - vR 2  (8)
y = Ynu/r- rv'/r- r'v/r).

eqaThe first term in the integrand of equation (3) is contained in

1equation (3) of Ref. 0; the second term appears in equation (2) of

Ref. 11; and the third term appears in equation (9) of Ref. 12. The co-
efficients C of the constitutive equations (5) are given for various

types of shell walls (eccentrically stiffened, layered orthotropic, fiber-

wound, corrugated) in Ref. 13. The kinematic relations (6)-(8) which re-

late infinitesimal buckling strains, changes in curvature, and rotations

to infinitesimal buckling displacements are given in equations (4.23)

and equations (3.16) of Ref. 14 and equations (7) and (12) of Ref. 10.

Figure l(b) shows the shell meridian with stations 1,2,3,4,...,13

identified. The Hamiltonian Hn is expressed at these stations in terms

of the displacement components ui, vi, and wi, and the integration in

equation (3) is replaced by summation over all stations. The tangential

displacement components ui and vi occur at stations midway between the

stations for wi and w i+l A similar arrangement of mesh points was used

by Stein in Ref. 3. At the ends of each segment there are "fictitious"
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points, ehown as circles, which correspond to w-values. The effects of these

fictitious points are discussed in the section on numerical results. The

arrangement of mesh points and displacements shown in Fig. l(b) has been

determined to be superior tV an arrangement in which ui, vi and wv corres-

pond to displacement campon,.nts at a single point. More will be said about

this in the section on numerical results. The station spacing in each seg-

ment is constant, but different spacings are used in different segments

(h, j h2 in Fig. l(b)). The displacements and their derivatives at the ith

station are:

"- (u-u,-01)/h v' (v,-v,_,)/h W- (w,+a-w, )/2h, (9)

- (wd+i-2wa+w,.VA2

It is convenient to define the vector Lqij by

Lqj N * '} 1wi,-i, us-itv,- it wit .l,", .w÷, (10)

From equations (6)-(l0) it follows that

{to,} = [[R,)]q} (12)

(d} - [Dj{•q} (13)

in which [Bil], [Bi 2], [Ri], and [Di I ere given in Ref. 9.

Ineertion of equations (5) and (ii)-(13) into equation (3), and re-

plac-ement of the integral with summation over the number cf stations in

the finite-difference mesh leads to

Us = - r rAsjqj[[•B,, T+ X,[ i ] J[C) B+ x.,E•BzI

+ [RY][N.,] [R,] + [D,)][P,] [Da] {q,}. (14)
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- -q•,t J t•.', @A¸ % . .. -a..e•,•, •,~f~ ,'. •- • . - - , •,,-•- -.---o, - -•,- -

The integration weights Asi are equal to h for all stations except the

end stations of each segment, at which hsai - h/2.

The strain energy of the kth ring stiffener can be written in the form

U:

.*U!• = *4Lu,4, w. , X;. l Gk) + W.* (15)

k*in which rc is the radius to the centroid of the kth ring and us, vs,*
and ws are the axial. circumferential, and radial displacements of the

k kring shear center. The GG and are the ring stiffness matricesrig her ener Te 1 an 2. .

given in Ref. 9. Displacements us, vs, and vw are related to the dis-

placement vector q by matrices [Ek]1, [Ek]2, and [T] given in Ref. 9.

Subscript j is the meridional station number corresponding to the dis-

crete zing attachment point. The final expression for the strain energy

of the kth discrete ring is

i ,-Lqj [T]
T [ LX.2]r[ G E,[ X.,•,][T]{qj}. (16)

The kinetic energy of the shell is given by

T. n2f mU2+V2+W2)d (!7)

which, by use of equations (4e) and (13), and with numerical integration

can be written in the form

N

T n• 2 mjr'sqd [D)T[]r[(D]~q (18)
3I4
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The quantity mi represents the mass/area at the ith station and [I] is

the identity matrix. The kinetic energy of the kth ring is given by

+ 1*.09 + + +.1y - 191jy]
S2 (19)2We /k 2k

k k k k k k

The quantities pr? Ak, Ip3 1, I and I sn are the ring material mass

density, cross-section area, and area moments of inertia with respect to

axes normal and tangential to the shell reference surface at the ring

attachment point J. Subscript c denotes ring centroid and j denotes
meridional station corresponding to the ring attachmer" . In this
work the centroid is assumed to coincide with the shc ar. Hencc,

the ring kinetic energy can be written in the form

S= 2W l•,% J[A"[T]r[T E + ,.L 0 ]E [T 1](E• + o•E [T] + [R] T[T,] R ] {qj) (20)

where [Tk] and [T-B] are given in Ref. 9.

The mth ccnstaint conditicn Um can be w-ritter in the form

{ t, t, j 1I* I . IUlm,= 11, A7%,AT -4" M'fl +x1Q IV+I o (21)
+r; I

in which subscript I refers to the mwridional station corresponding to

the mth Juncture between segments, and [Q ] and CQ ], given in Ref. 9,1 2,

contain terms involving the meridior.. i discontinuities eI and d2

(Fig. la) ana the circumferential wavenumber n. The X , IX, Xm, and

are the mth set of Lagrange mu~tipliers associated with the Ith station

at which constraints are imptsed on the quantities u , v , w and X.

For example, the constraint con-itions between Segments #1 and +2 in

Fig 1 (m = 2) G = T) arise from the requirement that the motion during

buckling or vibration of point D relative to point C involves no defor-

mation of the ring cross-section. The quantity X m corresponds to
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*
compatibility of axial displacements u and u X; 2 corresponds to

compntibility of circumferential displacements v and v ;*+X to
*+ m 

3

compatibility of radial displacements w and w X to compati-

bility of meridional rotaticns X" and +

Dir•l!acement boundary conditions applied at the A and B ends of the

meridian (see Fig. 1) take the form

U m' = [, , r, A4, "]CK ]C[• +,.,Q "2 (22)
W*

in which at the end A of the meridian m = 1 with

KAI 0 0
0 0K2 0

[g". 0 0 KA o (23)

0 0 KA

and at the end B of the merA.lian mn K +I(K = -umber of shell segments)

with

[KM 0 0 0

L 0 K8 2  f" iiS0 0 K 2 3

K 0 0 0 K(14J
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The quantities KAl, KA2, etc. and KBI, KB2 , etc. are assigned values,

either unity if the corresponding displacement is zero or zero if the

corresponding force component is zcro. The displacement conditions

correspond to a shell which is supported at distances and d2

from the reference surface. For the shell in Fig. l(a) the KAl, KA2,

etc would all be zero and the KBI, K2' etc. would all be unity.

In Ref. 9 the constraint conditions (21) and (22) are written in terms

of the vectors q +I and Lq-J as symmetric quadratic forms:

U = tq-,), q+J[A (25)

with

S AiAT, 3 AT] (26)

7x7 7x4 707S[0] [QT17 (01

407 4x4 4x71f F] = Q T (0 0 1 I T] (2 7 )

7x7 7x4 7x7
[0] [T]T  [0)]

SI [Q•T+ XO,Q"2] (28)
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The boundary conditions (2,1) take a similar form:

[[] KQT] T 
(ofjq-U ~= q-,)3 ,q~j (KQT] [0] [0] L A (29)

IThe three coefficient matrices (K 1 ], CK 2] and [M) in equation (2)

can now be wiritten through use at' equations (14), (16), (18), (20),

(21) and (25). The following expressions are obtained:

LqJ[K 1]{q} Lqjq, r1As5[Bjj] T[C1] [B, 1] + 6j[T]T (E1]T[G1 E] [ 1 TI]) {qj} (30)

q +

LqJ [K2] {q} = qIJ [.,gAsAXjgB 11, T[C1i [B,1] + Xj[Bj,2]T[Cj3 [Bi 1]

+ X~[h12 TCCI] (B12] + [,R,)rN.1I (,R,3 + [D,3]T(P1] [D&b

+61{(TI Tr(X.[Ej )T[GI + G2] [E2] + x.E2Ir[G , + G2] [El] (31)

+ X.[E 2VT[GI + G2] [E23 + (El ]T[G 21 1EI )(T]}] {qd

q+

Lqj [Mf q} =:x Lq [mjrjAsj[D] T[I] [D]

+ 6fp,rj(A(7I T(E, + LLE2]T[TAI [E, + Xeii2[T + [R'JT[T,] RI)] {q,). (32)
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The 61 and 81 are Kronecker deltas, and [F 1 ] and rF I refer to eq.jation

(27) with the first and second 1.,rts of the matrix Q, respectively

[equation (28)].

The coefficient matrices [K1 ], F.K2) and [M] have the form snown in

Fig. 2. This matrix corresponds to the shell modeled as shown in Fig, l(b).

The bodndary conditions at A contribute the elements [KQTI and [KQT]T;

the compatibility conditions for conformity of displarements and rotation

at the juncture between Segment +l and Segment #2 contribute the elements

QT] [QT]T [T], and [T T; and the boundary conditions at B contribute

the elements [KQT] 3 and [KQT]3. Expression of Hn at each of the stations

1 through 13 leads to the sub-arrays of elements so labeled in Fig. 2.

It can be shown that the equations generated by minimization of H
n

[equation (33)] with respect to the displacement components ui, vi and

wi (indicated in Fig. 1(b)] are the Zuler equations of the variational

problem in finite difference form. The equations corresponding to
AH2/-ui = ( and -n/BVi = 0 represent equilibriuM of in-plane forces

at the stations where the ui and vi are specified; those corresponding

to aHnn i I?, 0 represent equilibrium of normal forces at the statior's

where the wi are specified.

Solution of the eigenvalue prcblem

The buckling loads or vibration frequencies are calculated from the

set of linear, homogeneous, algebraic equations

[(K ] + [K2 )] +1 2 [M•]{q} = 0 (33)

for which non-trivial solutions exist if

I[K,]+[K,] + -'[,flI = 0. (34)
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The matrices [K 1 ], [K 2 ] and [M] are strongly banded. In vibration problems

for prestressed shells a "classical" eigenvRlue problem

[KI + K2]q+fltM]q = 0 (35)

is formulated, and the power method (Refs. 15,16) is used for calculation

of the lowest few eigenvalues 0 for a particular wave number n. The

number of eigenvalues which can be determined accurately depends on the

number of mesh points in the finite difference analysis and the complexity

("waviness" in the meridional direction) of the mode shapes. Successive

eigenvalues are determined accurately by means of orthogonalization and

spectral shifting.

In buckling problems the eigenvalues of [K1 + K2 J for given n can

be found by "plotting" [KI + K 2 versus the eigenvalue parameter X

(X --PN 1 0 , or other load) to obtain the load for which [K 1 + K2 ] first

vanishes. This technique was used in Ref. 17 for calcalation of bifurca-I
tion loads of shells of revolution. On the other hand, a technique of

successive approximation for buckling problems can be used. Thiz technique

involves the definition of a sequence of "clas ;ical" eigenvalue problems

which yields a sequence of loads that converges to the load for which

SK1 + K2 1 = 0. A typical "classical" eigenvalue problem in the seqdence is

, + K.2q +[ALK2q = 0. (36)

Suppose the original load is pI. The prestress terms r N 20, "or

and Xo which appear in [K2 ) are calculated for this load by means of

the nonlinear analysis described in Ref. 8. Then from equation (36) a

value Xl is obtained. The new load is p2 = pl(l + Xl). New values of

N1 0 , N2 0, etc. corresponding to P2 are now calculated from the nonlinear

analysis of Ref. 8 and a new matrix [K2] is obtained. Then X2 is cal-

culated from equation (36). The next value of the load is P3 = P2 (l + X2 ).

The iteration process continues until Xkk the kth correction, is smaller

than some preassigned number. Convergence in some typical cases in dis-

cussed in the section on numerical results.
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BOSPN3 INUERICAL RESULTS

The computer program based on the nonlinear stress analysis of Ref. 8

and the linear stability and vibration analysis presented above has been

checked through cases for which solutions are known. A rather extensive

investigation has been performed of the convergence properties of the elgen-

values with respect to number of points in the finite difference mesh and

with respect to number of iterations required for the solution of nonlinear

problems. Additional numerical results, including comparisons between test

and theory, are given in Ref. 18.

Convergence properties

Table 1 gives six examples of the convergence of the sequence of eigen-

value problems as defined by equation (36). The first two examples are for

an externally pressurized shallow spherical cap with an edge ring and a con-

stant applied edge moment, M (see Fig. 3(a) for geometry). The zeroth

iteration represents the program user's initial guess of the critical load.

in Example 1 the convergence criterion for the pressure (0-1%) is satisfied

after four iterations. Example 2 represents a problem in which nonlinear

effects are dominant because of the large edge moment Mo = 0"8 in-lb/in.,

applied to the spherical cap. Convergence of the pressure is rather slow,

arid calculations are terminated before the solution has converged to the

'-cQuired accuracy of 0-1%. With a better initial guess for pcr or if

iterations are allowed to continue, a solution of pcr = 0*582 psi is ob-

tained. Examples 3-6 all apply to the same axially compressed cylindrical

shell for which various numbers of mesh points are used (see Fig. 3(b) for

geome-try). The first three examples give results from single-precision

calculations ard the last example gives results from double-precision

calculations. The accuracy required for computer "approval" of the solu-

ticrk is 0.01%. it is seen that roundoff errors cause some difficulty in

Example h and prevent copletely oonvergence in Exanple 5. it is also

clear from Example 5 that n .,onverfence criAVerion could be chosen (such as

1%) which would lead to "approval" of the solution 8135.2 lb-in. This load

Js not within 1% of the correct loa/ (7788.1 Lb/in.). It is evident from
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the double-precieion calculations of Example 6, that round-off errors cause

the discrepancy. Figure 4 shows how round-off errors can lead to erroneous

results when calculations are performed in single precision. The loads

corresponding to 41 and 51 mesh points are "converged" solutions in the

sense of Table 1, but they do not have the required accuracy when compared

with the solutions labeled "Double Precision". Further increase in the num-

ber of mesh points with single-precisior calculaticns leads to further de-

terioration in the accuracy of the results.

Tal -, 2 gives buckling loads for a sphericas shell with an edge angle

o= 1600 and a free edge. The geometry and loading is shown in Fig. 3(c).

The wave number n = 2. Loads are tabulated as a function of the number end

the distribution of mesh points. Run times for the Univac 1108 digital

computer are also given. These are the times in seconds required for cal-

culation of the buckling load for a single value of the wave number n.

Nonlinear prebuckling effects are included. It is seen that much accuracy

is gained in this case by division of the shell into two segments. Mesh

points are concentrated in the edge region v;here the modal displacements

vary rapidly. For two cases double-precision calculations were made as a

check on the single-precision results.

Figure 3(d) shows a cylindrical shell stiffened by small and large rings.

It is desired to find the buckling pressure of this shell. In the analysis

the small rings are "smeared out" (see Ref. 13) and the intermittant large

rings are treated as discrete elastic structures. The large rings cause

significant local disturbances in the prebuckling and buckling modal be-

havior, as seen in Fig. 5. It is therefore advantageous to ane'yze tie

single shell in segments, concentrating mesh point6 near the large ringg

where prebuckling and buckling modal displacements vary rapidly.

Comparison of two finite difference schemes

Figures 6 and 7 show comparisons between a finite-difference scheme in

which all the displacement c-nponents ui, vi and wi are specified at the

same point (Scheme #l) and the scheme indicated in Fig. l(b) and equctions

(9)(Scheme #2). In the Scheme #1 central differences are used everyrwhere
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except at the ends "A" and "B" of the shell, where forward an' backward

* differences are used, respectively. With Scheme #1 the coupling between

adjacent ui and vi values is weak, since no second derivatives of these

variables appear in the energy expression. This sitlation often leads to

the "jumpy" behavior of the eigenvector and affects the accuracy of the

eigenvalue. Figure 6 shows the fhndamental vibraiior. mode of a ring-

stiffened cylinder as calculated by the two schemes. The cylinder and

ring geometry are shown in Figure 3(e). Figure 7 shows the buckling modal

displacement u of the axially compressed cylinder depicted in Fig. 3(b).

Convergence of the critical load with nunber of mesh points is far more

rapid with th? finite-difLerence Scheme #2 than with Scheme #2.

Comparison of Numerical Behavior With and Without W-Fictitious Points

Note that at segment ends in th finite-difference model shown in Fig.

l(b) there exist "extra" mesh points for the normal displacement compnexnt

w. In a straightforward central difference formulation these so-callel

"fictitious" points are required for expression of the first and second

w-derivatives with respect to arc length s. Figures 8 and 9 show com-

parisons of finite-differrice formulations in which the w-fictitious p.Ants

are included and not. included. In the latter case forward differences are

used at beginnings of segments and backward differences at segment ends.

Figure 8 shows convergence of critical axial load for a free-clamred

,2yliner with diameter 20 inches, length 40 tncbe:-; and thickness 0.-:

inch. Both finite-differenice formulations converge to tne exact so. tion

for a free-edge cylinder, which is 0.37 of the classical buckling loaA.

It is interesting to note that convergence with fictitious points is not

monotonic but, as would be cxpe ýted, the buckling loads so calculated are

always lower than those calculated without fictitious points,

The presence of w-fictitious points can sometimes lead to erroneou'•

solutions in the cuse cf eigenvalue problems. Figure 9 shows buckling

loads end mode shapes f~r an axially compeesseP clamped cylindricai z.ell

with radius = - _nches, length = 2000 inches, thickness = 1 inch, modulus

E = 107 psi and Poisson' ration p 0.3. One-half the cylinder is analyzed,
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symmetry conditions being imposed at one end. The buckling loads are given in

a table included as part of Fig. 9. Linear prebuckling analysis is used,

end the circumferential wavenumber is fixed at 15. The lowest two eigen-

values arp calculated for the finite-differex. ýe model in which w-fictitious

points are included, and the lo(west eigenvalue is calculated for the case

labeled "without fictitious points". The table shows convergence with in,

creasing numbers of mesh points. Notice that the lowest eigenvalue for the

case "with fictitious points" changes drastically with increasing numiber of

mesh points and that the second eigenvalue for this case is always slightly

lower than the first eigenvalue for the case without fictitious points. The

lowest eigenvalue in the first case represents an extraneous solution, and

in fact tends to approach the buckling load for a shell with a free edge at

the juncture between the two segments when the mesh spacing becomes large.

Figure 9 shows the buckling mode shapes for the first and second eigenvalues

of the case with fictitious prints. The eigenvectors corresponding to the

lowest eigenvalue of the case without fictitious points are identict i to

those on the right-hb-.d-side of Figure 9.

STAGS AMNALYSIS

The BOSOR3 computer program applies to problems in which the independent

variables can be separated: analysis of shells of revolution with respect to

nonlinear axisymmetric and linear nonsynmmetric behavior. This separation of

variables leads to a "one-dimensional" iLumerical problem -- e formulation in

which the coefficient matrices of the governing equations in finite-difference

form have very narrow ba-dwidths, of the order of 10 variables. Such problems

can thus be solved on the digital computer in seconds to minutes. Very "dense"

meshes can be used because of the small amount of core storage space required.

However, the class of probleixs whi:h ý"n ',e solved is necessarily rather

limited.

The STAGS code has been d veloped for the linear ard nonlinear analysis

of shells of gerneral shape und'-r genera] loading. It is not possible to

separate the independent variables for such Droblems, and one must thus live

with a "two-dimensional" rnumei!rical analysis. Such analyses lead to coefficient
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matrices wiJth bandwidths of order 100, and computer solutions require from

several minates to more than an hour per case. Finite-difference mesh density

is limited both by computer time and core storage available. The advantage

of such an analysis is of course its generality.

In the analysis of shells of revolution it is frequently very useful to

predict stability limits by means of an analysis in which one searches for

load values which correspond to non-uniqueness of equilil rium. These loads

or eigenvalues frequently correspond to failure of the shell. Such bifurca-

tion buckling analyses are less meaningful in the case of nonsymmetric shells,

since these shells almost always fail by large-deflection collapse, analogous

to the behavior of a very shallow spherical shell or arch clamped at the

edges and s'ibjected to external pressure. Bifurcation buckling can occur only

into buckling modes which are orthogonal to the prebuckling displacements.

In the case of general shells, deformations on the fundamental load-displace-

ment branch (through the origin) generally contain components of all possible

buckling modes. These modes grow rapidly as the load limit point is reached.

It is therefore necessary in the case of general shells to perform a complete

nonlinear analysis and to find the collapse load as a maximum or "limit point"

in the load-displacement curve. The STAGS program is intended for the non-

linear analysis of general shells. The scope of the program and of extensions

which are now in progress is shown in Table 3.

For a problem of this type one faces the choice between finite-difference

and finite-element u=thods for discretization of the basic equations or of

the shell geometry. Finite-element methods have a somewhat wider range of

applicability as presently it is necessary in the finite-difference arproach

to define mathematically the reference surface of the shell and a suitable

set of gridlines. However, the range within which the finite-difference

method is applicable is still very wide, and the method appears to be quite

superior in terms 04 computer economy, particularly for application to non-

linear problems. Thus a two-dimensional finite-difference analysis was

selected as a basis for the STAGS program.

In order that the STAGS program not be unduly restrictive the finite-

difference model is general enough to allow the use of nonorthogonal surface

coordinates or gridlines. This c ice extends the finite difference aaalysis
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into an area which previously has been one of exclusive dominion by finite-

element methods.

In the following paragraphs the shell strain energy density function

for an isotropic material is developed. The contribution to the total

energy of symmetrically placed discrete stiffeners is discussed in Ref. 5,

and this capability has been extended so that stiffener eccentric.ty effects

are included in the latest working version of STAGS. The discrete stiffener

energy will not be included here in order to saie space. Treatment of dis-

crete stir_ "ers is analogous to that described in connection with BOSOR3.

The expressions for strain and curvature change used in STAGS are

(Ref. 19]

= (Y + Y) +i R + 1 P
CI 2 2 -o prY

(37)

00K +j bP yp - bo yp

where b is the curvature tensor and Y and or are the displacement

gradients defined by

U= 1- u b w (38)

= V +b 1u

While the strain tensor -used is a standard expression, the curvature

change tensor is not well know.n. This tensor differs from Sander's (Ref. 20)

curvature change tensor in that it ts ,alid for much larger out of plar-e

rotations. A complete and rigoroui derivation is given in Ref. 19.

The strain energy density expression in tensor form is

1 E [l-u,) a aP' + a Pa 1 C C + _XaPK
-7 =-p L It f O 2 OI(9
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After the metric tensor aS has been expressed in terms of the Lame co-

efficients of the shell surface and implied summations have been carried out,

U becomes

D I4 2 4 A cos• (A s 4 8

U . (A sin e)- - o (A sin ) x 9

2 ~B X

+2r l ~2 2 ~-2 2 -(B 2 2. (vco 2ec

[l-(l-V) Sin2 (AB Sin 0) ex A + 2B(A sin e) £[(1-v) + 0S] 03xy

4B Cos (B Sin e)-4 • C + (B sin e)4 2
A A

+ E AsnG_4A cosO 0 Asi )

2. B (Asiner V

= 2 ]2 2 
22

+2h 1-(1-v) sin en (AB si ) Y + 2 (AB sio p e)t n(i-v) s Cos

A (B ein e)_ KA Yj (B sin e)' K (40)

Here A and B are the coefficients .,f the f'irst fundamental f'ormf

ds2 ~Adx 2 2AB (c..s o) dxdy +B 2d 2(1

and e represents5 the engle betw4eenl the fburface coordinate lines x nnd y.

The strain energy expression (340) can be used for practical analysis after

the strains end changes of curvatures have been expressed in terms of the

physical components of displacement. Such equations are long and compli-

cated. They are not shown here, but are available In Ref. 6.
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Plasticity Theory used in STAGS

The plasticity theory used in the STAGS computer program has b!een pro-

posed by Besseling (Ref. 21) and is based on a principle which originally

was suggested by White (Ref. 22). This theory is very promising because

it is rather simple in its application yet retains .such features us strain

hardening and the Bauschinger effect. The White-Besseling theory as applied

in STAGS assumes that the material consists of several components which all

have identical elastic properties and exhibit ideal plasticity (no strain

hardening) but have different yield strengths. As the strain is the same in

all components the stress-strain curve will experience a decrease in slope

as the stress reaches the yield limit for any of the components which then

ceases to take additional load. The composite thus exhibits strain harden-

ing with a piecewise linear stress-strain relation. Use of only one com-
ponent will, of course, result in application of ideal plasticity theory.

As the stress is reversed after loading beyond the yield limit for one or

more components, yield will occur in the reversed direction at an average

stress in the composite which is lower than the stress for original yield.

To introduce the Bauschinger effect this way is appealing because it re-

flects the microstress theory which is now generally accepted as the ex-

planation of the Bauschinger effect.

STAGS NumerI.cal Method

The numerical solution is based upon a two-dimensional finite-differ-

ence approximation. The shell surface is covered with mesh lines parallel

to the coordinate lines, and the unknowns of the system are the normal

displacements, w , at the grid points and the tangential displacements,

u and v , at the same points or at points between adjacent grid points.

The mesh spacing is variable over the surface.

The finite-difference formulation with u, v, w all located at grid

points is called "whole-station" spacing. The formulation with u and v

points located between w points is called "half-station" spacing.

Three alternative finite-difference schemes have been explored:
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1. "whole-statlon" sipacing with membrane and bending ,energies
integrated over the same shell element area

2. "whole-station" spacing with membrane and bending energles
integrated over different shell element areas

3. "half-station" spacing with membrane and bending energies
integrated over the same shell element area

The first scheme has been discarded because it leads to "Jumpyi solutions as

encountered in the "whole-station" scheme in BOSOR3 (see Figs. 6 and 7) and

because it fails completely in cases where the mesh spacing varies, Schemes

2 and 3 are illustrated in Fig. 10. For the "whole-station" scheme 2, u,v,

and w are located at the stations represented by small circles. In the
"half-station" scheme 3, u and v are located at the dots labeled 1, 2, 3,

and It. For Scheme 2 the membrane energy is integrated over the area elements

bounded by (xiI, YJ-l), (xi. 1 , yj), (xi, Yj), and (x±, Yj-l), for example.

The bending energy is integrated over the shaded area Rij. For Scheme 3

both membrane and bending energies are integrated over the shaded area, Ri,

and the functional values and derivatives of the displacements are evaluated

at the large dark point located at the centroid of R i3. The second scheme

seems to give the best numerical behavior in the case of shells of such a

wall construction that no coupling exists between membrane and bending energy.

The third scheme shows promise for more complex wall constructions, since it

is riot necessary to integrate over diffcrenL elements of area for membrane

and bending shell energies. Some comparison of results with Schemes 2 and 3

will be given in the section on numerical results.

After replacement of the displacements and their derivatives in Eq. (40)

by finite-difference approximations, the strain energy density at mesh station

i can be written in the form

AU 1 z i* Di zi (42)

where Di is a 6 x 6 positive definite matrix of constants and Zi is

the vector of strain and curvature changes at station i. DI arid Zi

are functions of the geometric parameters of the shell; in addition,

Di is dependent on the material properties. The vector of stress
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resultants at station i is given by

Si = D Ziz (43)
I th

""AUI is a 4 order polynomial in the displacement components since the

components of Zi are either linear or quadratic expressions in the

displacement components.

The total potential energy, V, of the shell is obtained oy com-

bination of the strain energy and the work done by the external forces,

V =U -W

m

where U AU. 8

and W= X F + X"QU

Here X denotes the vector of displacement components, F is the vector

of external forces, ai is the area (Rij in Fig. 10, for example) of the

ith subregion, and Q represents the pressure-rotation effect. A necessary

condition for static equilibrium is that the total potential energy be

stationary.

"Minimizationdleads to a nonlinear equation system where the right-hand

side is composed of terms corresponding to applied loads or displacements,

temperatures or initial geometric imperfections. Through solution of the

nonlinear system for increasing values of the load parameter the d1.splace-

ment configurations are fcund as functions of the load and collapse pre-

dicted as a limit point in the load-displacement curve.

Modified Newton-Raphson Method

For solution of the nonlinear system a modified Newton-Raphson itera-

tion scheme is used. This is illustrated in Fig. 11 for the one-dimensional

case. In the regular Newton-Raphson approach the value of the unknown X
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is estimated and the function as well as Its derivative is determined for

this value. The correction of the estimate ii the function value divided

by the slope. convergence is very rapid, as seen schem.atically In Fig. 11(u).

In the modified method the slope is retain.,*L at its value for the first

estimate and only the function value is recomputed for each iteration. Ob-

viously convergence is now much sLower, as seen in Fig. 11(b). flowt-ver, in

a two-dimensional numerical analysis the computation of a new slope cr)•res-

ponds to factoring a very large matrix. The computer time required for onri

iteration with the regular Newtou-Ruphson method is often more than ten -imes

that required for one iteration with the modified method. Therefore it ".s

advantageous to retain the slope even after the load has been ch'nged. After

a few load stepoi the rate of convergence deteriorates, and the matrix inuat

be refactored to obtain a better estimate of the slope at the current load.

One refactoring of the matrix gives the "exact" slope at the previous load

step.

Various Strategies Used for Nonlinear Analysis

To use a computer program for nonlinear shell analysis requires con-

siderable experience. The computer time depends on the strategy chosein.

When convergence is difficult the step size may be decreased or the cc-

efficient matrix refactored. The case can also be expedited through choice

of a less severe convergeice criterion. In addition, over- or under-

relaxation can be used depending on whether convergence is uniform or

oscillating. The strategy adopted varies with each case and with the

load level of a particular case. It is necessary for economic analysie

that intermediate data be saved on tape for subsequent restart of the

case after the strategy has been reconsidered.

The use of initial imperfections may also be considered as a part of

the strategy. In a buckling analysis for a circular cone, for example,

it is necessary to include a small imperfection which is not orthogona~i to

the critical buckling mode. For an elliptical cone or cylinder with suf-

ficient eccentricity all symmetric modes are present. These will grow

rapidly as the critical load is approached. If the eccentricity is very
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small the growth of the "buckling pattern" at each iteration is small in

comparison to round-off errors in the total displacemento. Hence, it is

difficult to set a suitable convergence criterion. For marginal cases

initial impe'rfections can be used to expedite the analysis. If' there are

planes of symmetry in load as well as in geometry, bifurcation is possible

into modes which are antisynmnetric with respect to these planes. Such

buckling modes can be found only through inclusion of antisynmetric initial

imperfections.

STAGS EXAMPLE CASES

The scope of the STAGS computer program may best be illustrated throu.gh

presentation of some of the results which have been obtained inl its application.

Axially Compressed Elliptic Cylinder

Numerical results were obtained with STAGS for an elliptic cylinder with

a length of 1.0 in., a thickness of 0.0144 in., and semiaxes of 1.75 in.

and 1.0 in. Young's modulus was 107 psi and Poisson's ratio was 0.3. The

cylinder was subjected to a uniform end shortening with the edges free to

rotate but restrained from moving in the radial and circwrifer Uitial direction,,.

The objective was to calculate collapse loads for the cylinder.

Since the "buckling patterns" were expected to be confined to the areas

of least curvature, it appeared that antisymmetric behavior with respect

to the normal plane through S = 0 (Fig. 12) could be excluded. Hence,

the analysis was restricted to a 1800 arc (0 5 S 5 4.4 inches) with symmetry

conditions enforced at S = 0, 4.4. A uniform finite-difference grid was

chosen with 1l points in the axial and 29 points in the circumferential

directions. Results obtained with finer grids indicate that use of the

chosen grid leads to accurate computations of the collapse load.

Due to the symmetry of the prebuckling deformation about the plane at

midlength and about the normal plane through S = 2.2, it As necessary to

excite nonsymmetric deformations by the use of small antisymmetric imperfections.
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Despite the presence of these imperfections a deformation pattern develop:s

at collapse which is symmetric about both of these planes. Therefore,

further analysis was restricted to arc lengths covering half the cylinder

length and one quarter of the circumference.

For the particular cylinder considered (aspect ratio of 1.75) it is

possible to determine the critical load without the use of symmetric im-

perfections. As the load is increased, a very sharp maximum is found in

the load-displacement curve (point A in Fig. 12). Beyond point A conver-

gence cannot be obtained; hence the postbuckling curve cannot be directly

determined for the perfect shell.

The displacement mode which develops at collapse for a perfect shell

is used as a guide in the choice of a suitable initial imperfectLon mode:

wimp /t=- g sin (r) cos (6 e)

Load-displacement curves were computed for several different values of the

imperfection amplitude ý. The results are shown in Fig. 12, in which the

total axial load in powu-ds is plotted versus the end shortening divided

by shell thickness. The normal displacement at S = 2.2, x = L/2 is

shown as a function of the axial load and F in Fig. 13. From Fig. 12

it can be seen that for a sufficiently large imperfection amplitude, the

first sharp maximum does not exist - the curve is smooth and it is possible

to find equilibrium configurations in the postbuckling range. After such

coafigurations have been found they can be used as starting values for an

analysis in which the imperfection amplitude is gradually changed until a point

is found on the postbuckling curve for perfect shells. After such a point is

found it is easy to establish the postbuckling load-displacement curve for a

perfect shell (curve ABC in Fig. 12).

After the first sharp maximum A the postbuckling curve exhibits two

additional limit points B and C which correspond to secondary buckling.

The curve was not pursued beyond the third maximum because the deformations

are then so large that the applicability of the basic equation.,; is question-

able. Also the buckle pattern is close to the point of maximum curvature

and bifurcation into an antisymmetric mode is likely.
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In a test on this shell, sudden changes in the deflection pattern

(buckling) would be noticed at A, B, and C. ]Notice that the shell may

carry more load than the initial peak A indicates. While the pritr.ary

buckling load A is rather sensitive to imperfections it appears that

the second maximum B is relatively .nsensitive to imperfections. Hence,

it may be suitable as a design limit. Results similar to these have been

presented by Kempner, et al., for oval shells (Refs. 23, 2h). However,

Kempner's shells are not elliptic and a direct comparison is not possible.

The curves 6w versus S at the bottom of Fig. 12 are "buckling modes"

calculated by substracting displacement vectors obtained in two sequential

steps in end shortening and normalizing the result. Such a subtraction

yields the shape of the fastest growing displacement component, which might

be interpreted as a buckling mode. As one traces one's way along the load-

deflection curve OABC, the axial stress in the shell is constantly being

redistributed by the local growth of normal displacement. For example,

early in the "load" history the most rapid growth of normal displacement

occurs at the point labeled S = 2.2, the area of minimum curvature.

This growth relieves the axial stress there and permits loading above the

initial peak A. At point B the moat rapid growth of norma2s displacement

is about halfway between the ends of the minor and major axes. This growth

relieves the axial stress in the corresponding area and thus permits load-

ing to an even higher peak, C , where the rapid growth of normal displace-

ment occurs near the end of the major axis in an area of relatively large

curvature.

Collapse of Axially Compressed "Pear-Shaped" Cylinder

The "pear-shaped" cylinder shown in Fig. 1 4 (a) is typical of the fuselage

cross-section of a proposed space shuttle vehicle configuration. The behavior

of this shell subjected to uniform end shortening was investigated with the

STAGS code. The theoretical results given in Figs. 14(b-d) are based on a

finite-difference model with 45 circumferential nodes and 9 axial nodes

covering l/2N of the circumference and 1/2 of the length. Approximately 75

milngtes of UNIVAC 1108 computer time were required for generation of the

complete load-deflection curve with single-preclsion calculations.
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As seen from Fig. 14(b) the linear range in this case represents les:s

than 1/30 of the total load history of the shell. The rapid change ill Slop'--

of the load-deflection curves at about P = 100 lbs. corresponds to rapid

growth in normal deflection (buckling) of the flat p.ortions of the shell.

Associated with this rapid growth in w Is a redistribution of the axial

stress so that the curved portions begin to take up a larger percentage of

the total axial load P. As more and more of the axial load is born by the

curved portions, the slope of the load-end-shortening curve increases until

Just before collapse, at which load the entire structure fails. Figures

14 (c) and 14(d) show the circumfer:ential distributions of normal outward

displacement w and axial compres3ion/length N at the shell rnldlengthx

for P = 1164 lbs. At this load both w and N are growing very rapidly

with P in the curved portions 0 g • 450 and 90 0 < 157-1/2°.

The rather complex behavior in this case indicates the need for a

flexible strategy for calculation of collapse loads of shells. Small load

steps and frequent refactoring of the equation system matrix are required

in the load region between 100 aud 200 lbs. even though the displacements

are relatieely small in this range. Farther out on the load-end-sho,'tening

curve, where the displacements are larger, rather large load steps can be used

and few refactorings are necessary. Efficient use of the STAGS code, or any

code for predicting nonlinear behavior of shells, requires a sophisticated

iteration strategy built into it and a well-trained user to take advantage

of this strategy.

Comparison with Finite-Element Method

Results from a linear version of the STAGS program were compared with

those from the REXiAT program, a general-purpose finite element code (Ref.

25). The axially compressed "pear-shaped" cylinder was used as a test case.

Figure 15(e) sho.: the normal displacement as a function of circ•tnferential

coordinate e calculated with both programs. With STAGS the "whole-station"

scheme was used with 9 axial and 97 circumferential mesh points. With REXBAT

4 axial and 150 circumferential elements were used. These seemed to be the
optimum distributions of mesh points for the two programs. Many fewer stations

.are required in the axial direction since w(x) for given e resembles a

half-sine wave.
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Figure 15(b) shows rates of convergence of normal displacement w with

increasing number of circumferential stations for STAGS and REXBAT. Six

axial stations were ubed in STAGP and 5 axial elements were used in REXBAT

(same number of mesh spaces in both programs). In STAGS the "whole-station"

scheme was found in this case to be much superior to the "half-station"

scheme. Further comparisons of fiinite element and finite difference codes

should be made to obtain an unbiased picture of the relative advantages of

each method in various cases.

Nonlinear Analysis of Clamped and Simply-Supported Cylindrical Panels under
Concentrated Load

The STAGS code was applied to shaljow cylindrical panels with geometry

and material properties given in Fig. 16. One-quarter of the panel was in-

vestigated, symmetry conditions being used at the midlength and midciicum-

ference. Two cases were treated: a panel clamped at the two curved edges

and a panel simply-supported at the two curved edges. The straight edges

were free in both cases. Ten axial and nine cireumferential mesh points

were used in the "half-station" fihite-difference analysis. In the clamped

case there was no collapse because of development of axial membrane tension.

Collapse in the case of simple support is indicated by a maximum in the load-

deflection curve and by an abrupt decrease in value of the coefficient matrix

determinant as the limit load is approached.

Axially Compressed Cylinder with Cutout

The benefit derived from the use of a variable mesh spacing has been

evaluated by re-examining the axially compressed cylinder with cutouts

for which test results are reported in Ref. 5. The cylinder geometry and

material properties are given In Fig, 17, The cylinder has two diametric-

ally opposite cutouts and a radius-to-thickness ratio of 400. It.is re-

ported in Ref. 5 that a reasonably accurate analyLis for such cylinders would

require excessive computer time. Numerical results for a finite-difference

net with 9 ax.Lal x 20 circimferential points presented in Ref. 5 are shown
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here in Figure 17 (curve A). Due to improvements in the efficiency of the

computer program, it is now possible to obtain much better results even with

constant grid spacing. Curve B is obtained with such a net (16 x 2C) A

finite-difference mesh was designed also in which the minimum grid spacing is

identical to that used for Curve B, but which gradually increases away from

the cutout until it is approximately doubled. The displacements correspond-

irg to this analysis are practically identical to those obtained by use of

grid with constant spacing, but the computer time is reduced by about 40%.

Curve C was determined by use of a minimum grid spacing of 0.2 in. at

the edge of the cutout. The spacing increases with distdnce from the cutout

by a factor of 1.2 from one mesh point to the next until the maximum grid size of

0.6 in. is obtained. For Curve D the minimum spacing is 0.12 in., the factor

is 1.5, and the maximum size is again 0.6 in. It apl-ears that the results

obtained by use of the latter mesh are in very good agreement with the ex-

perimontal results.

The computer time corresponding to the determination of one of these

curves is approximately 0.5 hours (UNIVAC 1108, single precision). For

analyses with even finer mesh sizes, therefore, the analysis was restricted

to loads below 845 lbs. The results in Table 4 show that aaditional refine-

ment of the mesh would not substantially change the results shown in Curve D.

Conclusions and Further Work Needed

The energy method with finite-differences is attractive with respect to

suitability as a basis of efficient computer programs and numerical stability.

Matrix methods are used extensively to develop the governing equations.

In fact the only "hand" analysis involves establishment of the Hamiltonian

in terms of stresses and streins and the choice of appropriate kunematic

relations. The digital computer derives the equations. This simplicity

of approach permits great flexibility in the analysis. It is easy to in-

corporate thermal effects, smeared end discrete stiffeners, orthotropic

layers, variable thickness, and segnent.-d shells. Furth.-rmorc, large-

deflection effects, plasticity, and non-orthogonal nets with variable
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mesh spacing present no major obstacles. The methb. appears to be competitive

with the finite-element method in terms of generality, and from preliminary

comparisons more efficient on the computer, particularly for nonlinear

problems.

The BOSOR3 program is a genera] compl. shell of revolution analyzer.

Ring-stiffened, segmented shells with various wall constructions are analyzed

for stress, stability, and vibrations. Nonlinear large-deflection effects

are included in the axisymmetric prestress analysis. Two finite-difference

schemes, "whole" and "half" station, are explored, and the "half-station"

scheme is found to be much superior in terms of rapidity of convergence

and numerical stability. The advantage of dividing a simple shell into

segments in order to achieve greater accuracy with less computer time is

revealed. A method is described in which a "nonlinear eigenvalue problem:'

is solved by iterative sc'.ution of a sequence of "classical" eigenvalue

problems. Finite-difference schemes in which w-"fictitious" points are in-

cluded and neglected are compared, and i1 is found that solutions with the

w-fictitioas points tend to converge faster with increasing numbers of mesh

points, but that extraneous eigenvalues sometimes appear when these "extra"

degrees of freedom are present. Large complex shells of revolution can be

analyzed with a reasonably dense mesh in very short computer times because

of the narrow bandwidth of the coefficient matrix due to the one-dimensional

character of the numerical analysis. However, the applicability of BOSOR3

is limited to shells of revolution.

The STAGS program is a general dhell analyzer. Eccentrically stiffened

isotropic shells with variable thickness are analyzed for stress, stability,

and vibrations. Nonlinear large-deflection effects and plasticity are

included. The program requires more computer time per case than BOSOR.3

because of the two-dimensional character of the numerical analysis and hence

much wider bandwidths of the coefficient matrices. The advantage of the

code is its greater generality. Approximate bifurcation bucklirg models

are not necessary because detailed pre and post buckling behavior is re-

vealed in the general nonlinear analysis. Limited evaluation indicates

that the two-dimensional e.ergy method with finite differences appears to

be faster on the computer than the finite-element- method, particularly in
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the case of nonlinear problems. The difference in time in the cases studied

is attributable to faster convergence of the finite-difference solutions

with number of degrees of freedom and shorter times required for formation

of stiffneas matrices, particularly after the first iteration for nonlinear

solutions. Various finite-difference ichemes, including "whole" and "half"

station with constant and variable mesh spacing are explored. Preliminary

results indicate that the variable spacing "whole" station scheme with dif-

ferent elemental areas of integration for bending and membrane energies

gives the most rapidly convergent solution with the greatest degree of

numerical stability. Applicability of this scheme to shells in which

coupling exists betv.en membrane ard bending energy is an open question.

The modified Newton-Raphson method in which the coefficient matrix is factored

only when required for convergence seems to be the most efficient and re-

liable of those explored during the development of STAGS. The strategy chosen

for solution of nonlinear problems is important for computer economy as well

as accuracy of results. Variation of conc-rgance criterion, relaxation par-

ameters, imperfection amplitudes and shapes, load steps, and other numerical,

physical, and geometrical parameters all play a part in the solution of non-

linear problems. The importance of strategy will increase as more and more

sophisticated programs requiring ever larger investments of computer do'.lars

are created. This is evident if one hopes to solva, for example, the large-

deflection, elastic-plastic and creep problem for a general shell with tem-

perature-dependent material properties. STAGS example cases reveal complex

behavior of nonlinear systems. Redistribution of stress during loading is

an example. This phenomenon leads to rapid variatirns in the slope of load-

deflection curves and post-buckling strength which exceeds initial buckling

loads.

Work is in progress to include branched shells in the BOSOR3 program

capability. Inclusion of plasticity in the axisymmetric large-deflection

prebuckling analysis is an effort warranted by the frequent occurrence of

buckling of practical shells of revolution at loads above the proportional

limit of the wall material but below lcads corresponding to material failure.

The STAGS capability is cul .-.? being extended to include thermal loading,

orthotropic shell wall properties, bifurcation buckling, and cutouts of

general sL-pe. Further extensions needed for the solution of practical
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problems include introducion of temperature effects on elastic-plastic

material properties, temperature-dependent creep, and dynamic response

and buckling. The need for further comparative evaluation of the finite-

difference and finite-element methods for linear and nonlinear problems
cannot be overemphasized. Investigations of various finite-difference
schemes such as "whole" and "hal2" station should continue, and efforts

should be made to place the finite-difference energy method on a firmer

mathematical foundation. Various strategies for the solution of complex

problems involving geometric as well as material property nonlinearity

should be continuously investigated. Application of these methods to a

large variety of problems will reveal on a broad basis their relative ad-

vantages and disadvantages, thus permitting the establisr-ment of appropriate
"confidence" or "usefulness" indices for computer programs based on them.
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TABLE I. CONVEIGENCE OF SUQUENCE Of EIGENVALUE PeoBLEms ([K +Kl]lq} +AJKiq} - 0

Ex. It Ex. 2 Ex. 3 EX. 4 Ex. 5 Ex. 6
Iteration Sph. cap Sph. cap Cyl. Cyl. Cyl. Cyl.
number M. - 0-2 M. - 08 11 pointu 41 points 91 points 91 pta. D.P.

k p, (psi) p., (psi) N,, (lb/in.) N,, (lb/in.) N,, (Ib/in.) N,, fib/in.)

0 020000 0&1000 77500 7750.0 7750-0 77500
1 0-65002 0-1407 7960-0 7766.3 7917.8 77755
2 0-78577 &1927 8021-9 7777.7 80980 7784.0
3 0-77928 &2546 80396 7781"5 8247-0 77868
4 0-77965 M3221 8044-6 7782-5 8103.4 7787.8
5 0-3883 8046-0 77784 8128-1 776881
6 04462 80464 7771.2 8135-2
7 0-4917 7779-6 8216.1
8 0-5245 7781.4 8260-4
9 W5466 8192'8

10 0:5609 W0098
S1 0-5699 8257"6

tEx. 1 and 2 are for externally pressurized spherical caps with
edge rings (see Fig. 3(a)). Ex. 3-6 arc for axially compressed,
longitudinally stiffened ,'ylinders (see Fig. 3(b)). Ex. 6 cal-
culations in double precision.

TABLE 2 BUCKLING LOAM OF A SPMICAL. is..LL. a - 160'. A - 0. E - 0"91. v - 0-3 cONVE3tGEWCE WtTH
NUMER AND DIMThITlON OF WES POINTS: COMPUER TIME

Buckling Buckling Univac 1108
pressure pressure computer time

Number of How distnbuted p. x 10t (lb/in1 ) p., x 10' (lb/ins) (seconds)
mesh points single double single

preision precison precision

30 I Segment 19-345 8.511
4G I Segment 2&-978 10-235
50 I Segment 30-730 10-186
60 1 Sewaent 32-650 11-794
70 1 Segment 33-761 10-411
80 I segment 34417 11,847
90 I Seguent 34.866 9"614
97 1 Segment 35056 10-069

10,10 2 Sepents
(0-1350) (135-160") 33-594 4-574

15.15 2 Segments
(01-135')(135'-160') 35.405 5-626

20, 20 2 Segments
(0--135")(135-460') 35-872 6-9"6

25, 25 2 Segments
(0W-135*)(I35*-160') .6-039 8.595

30,30 2 Segments
(0W-135')(I35-160) 36090 9434

35,35 2 Segments
(0'135)(135"-160') 36-160 36175 10-670

40. 40 2 Segments
(0r-135*)(135*-160) 36-157 11-981

45,45 2 Segments
(0'-I35)(I35-160) 36-206 36-223 13-223
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TABLE 3

SCOPE OF THE STAGS PROGRAM

Present C~pability Under Development

General Get.'etry for Ref. Surface Thermal Loading

Geometric Nonlinearity Variable Elastic Properties

Cutout. on Coordinate Lines Bifurcation Buckling

Eccentric Discrete Stiffeners General Form of Cutout

Initial Imperfections Orthotropic Material

Variable Thicl.iess White-Besseling Plasticity Theory

General Boundary Conditions

General Loading

Displacement Loading

Variable Grid

TABLE 4

DISPLACEMENT I AT P = 845 LBS.

Finite-Difference Mesh Min. Spacing Factor Max. Spacing w
No. Axial 110. Cirmum.

0, ,ints Points

D 13 21 .12 1.5 .60 .008T7

E 18 25 .12 1.2 .6c. .00850

F 21 35 .3.2 1.2 .30 .00858

G 21 38 .08 1.2 .6o .00873
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QUESTIONS AND COMMENTS FOLLOWING BUSHNELL'S PAPER

QUESTION: You gave .- tha size and time for the one-dimensional

calculation with the bandwidth of 7 and 100 unknowns and you talked about a

serr i-bandwidth of 100 for the two-dimensional problem. What size in

terms of number of unknowns do y'u think would be feasible for a nonlinear

study? And what would be a reasonable length of computer time on the

UNIVAC 1108, for example, to get the results? I have no feeling but I think

it' an interesting thing if we can get an insight so modelers can be a better

feeling ;ihat they can afford to model. They'll obviously model in as much

detail as they can afford in terms of computer costs and computer time.

BUSHNELL: To give some numbers--for the pear-shaped cylinder,

for example--the load deflection curve became nonlinear very soon. it

took 75 minutes of 1108 time in single precision. The semi-bandwidth was

63 and about 1200 degrees of freedom were used. Really what you want to

know also is how many times for the entire case a linear equation was

solved and how many factorings were required. You don't factor every

load step. That's wasteful. It's really the amount of time per some kind

of computation that is a little hard to identify. I think we'll be getting into

some of this in the panel discussion tomorrow. In general, the time goes

up as the square of a bandwidth and linearly with the number of degrees of

freedom, so that's cubic with the number of degrees of freedom if you have

a square plate with a regular array of nodal points. I presume the computer

time starts increasing rapidly when you have to start using auxiliary storage;

you have a lot of input-output. I don't think we've solved any problems with
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the full capacity of the STAGS program, mainly because of expense.

QUEST'rON: Do you have any feeling of what would be a reasonable

length of tin..e to have such a problem as this run? In other words, is eight

hours reasonable?

BUSHNELL: I don't think that eight hours is reasonable for two

reasons. First, it's not possible for administrative reasons. Second,

that's not really the way these problems are solved. They're solved in

pieces; that is, you go a little ways up the load-deflection curve and then

look at the deflections. Then you change your nonlinear strategy in order

to make the next part more efficient. You never really let the case run

eight hours and then look at the results and say, "my gawd, I forgot to put

in the modulus. " None of our runs have taken more than two hours of com-

puter time or involved more than some seventy load steps. Typically, we

make one factoring for every ten solves and a factoring takes about ten to

twenty times as long as a solve.

QUESTION: With your STAGS program, have you ever solved the

problem of a cylindrical segment cantilevered from one straight edge and,

if so, which of your finite difference schemes did you use? I used a simi-

lar procedure to what you'rr- speaking of here to try and solve that problem

and had a great deal of difficulty.

BUSHNELL: No, we haven't solved that one. The venetian blind

problem is as close as we came.

QUESTION: This half station scheme that you use was applied to

cylindrical shells by Chang and Vilistos at the University of Illinois some-
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where in the late 1950's or early 1960's. They showed that if you compute

the governing equations using a minimum energy approach and compare

that to the finite difference/equilibrium approach you get the same set of

equations provided you use a staggered or half-station differencing scheme.

If you do not use that staggered scheme, that is, if you use the whole station

approach, you do not get the same set of equations. Have you taken a look

at the problem from this point of view for the more general shell of revolu-

tion.

BUSHNELL: I think this point really should be looked at in more

detail than I have given it. I foutcd that if the mesh spacing is constant with

that of the whole station spacing, the equations do look the same except at

the boundaries. You can get almost anything at the boundaries depending on

what you do with fictitious points, but in the interior they're the same. If

somebody would have time to look at these various schemes, at the areas

you integrate over, at how you make the finite difference model for various

types of shell (not just isotropic but also shells in which ,ou have coupling

between membrane and bending), it would be a verr worthwhile project.

COMMENT: In trying to determine the natural frequencies of cylin-

ders, I had the same experience as you did. That is, if one uses the whole

station scheme, the natural frequencies for the very low order modes

(N = 2 and 3) are significantly in error.

QUESTION: Have you found a critical band size as related to core

size beyond which computer times go way up?

BUSHNELL: We haven't run any systems for which this is true. We

block, factor and solve in and out, on and off the drum all the time.
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QUESTION: How about when you run out of core and start to use

auxiliary tape storage?

BUSHNELL: We don't use auxiliary tapes, except to store the

final data. Every so often data are stored on tape so that they will be

available for restarting the same. case at some later time. During a run

data are stored on drum and everything is buffered. It's not as bad as

having to stick with tapes or sequential input-output. 'There's random

access capability on the 1108 so you don't have to count through a whole

lot of stuff to get to the data you need.

I
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A LARGE DE M-CTION TRANSIETIT AIALrBIS OP

ARITRARY StELLS USING nN= DIFFRE S

Raymond D. Krieg, Staff Member

and

Henry C. Monteith, Staff 4ember
at Sandia Corporation, Al'xquerque, N. H.

A cmlputer program for the transient large displacement respinse

of shells is described, Finlte differAnci• s .. vsed in time aM sprke

to solve the cquazions. The paper is written In two parts. The first

part is a derivation of equations and the second part is a discwsion

of several aspects of the numerical methods used to solve the equations.

Advantages of rotory inertia and transverse shear in the differencing

are illustrated and their disturbing behavior in the solution is explained.

Roundoff and stability of time integration methods are discussed and illus-

trated.
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ABB.REVATIONS AND S)4BOLS

a• - Base vectors in Euclidian three space of coordinates on
the reference surface.

a0 a f * e - Cartesian component of the base vector, a..

a det [a.0l - Metric of the reference surface.

dar - Differential reference surface area In deformed configuration.

d - Unit vector along deformed fiber. This vector coincides

in the initial configuration with the unit normal to the

reference surface.

B - Components of the strain-rate tensor.

S° Body force load vector.

f - Net load vectoi.

- Base vectors of the shell coordinate system which coincide

with a on the reference surface.

g - Metric of the shell coordinates.

da - Differential mass element.

a1  - Mass (i - 0) and mass moments (i - 1,2) of a finite section

of the shell.

8% - Moment*

n - Unit normal vector to the surface.

No - Membrane generalized stress.

S- Position vector of generic particle in the shell.

&r - Position vector of a generic particle on the reference surface.,

q - Shear generalized stress,

R - Relator

396



IM) Stress vector wh~ich acts on the svirface with

=nit normal., v.

Ti Cauchy stress tensor comzponents.

1

x - Shell coordinates. The x3 coordinate is along

the vector d.

11 Unknown function in the vector equation of motion.

This function does not appear in the comporent for&

of the equation.

%1 Unit normal to the boundary of the deformed reference

surface element. Note that -*n a 0.

p - Initial material density.

()w.()f - Components with respect to reference surface base vectors

(a - 1,2).

( )2_ - Cafrtesian comnpzents In Euclidian three cpace (-. 1,2,3).

- Denotes a vector.
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OIN ODION

Computer programs to analyze the large deflection transient motion of

shells have been available for roughly a decade. Peech, Plan, Wit.mer

and Herrmann[1] wrote the computer program DEPMSS to solve the problem

for symmetric beams and rings which included a quite accurate plasticity

model. This program used finite differencing in space and time. Other

programs such as GIRLS(3J and UIIVALVECEI,•] have been written for ehels

with one dimensional reference surfaces usi:g the same basic ideas. These

ideas are now being extended to the two-dimensional reference surface.

Leech, Morino, and Witmer[6J are developing PETM; SBlsby, Sobel and

Wrenn[7] are developing STAR, aid the present paper concerns GRIW7E

These programs are Lirected at the very nonlinear problem, particu.larx2y

at material nonlinearities with unloading. Gecmetrical d, scriptions in

these programs are also very general, however and are capable of handling

problems such as the elastica, for example. These radical changes in

material and geonetry mean that the "stiffness matrix" must be extensivelf

revised at frequent intervals of time. This reformulation of the stiffness

matrix makes the finite difference approach attractive, since It basically

reformulates the "stiffness ratrix" at every sweep through the equations.

The shell formulation used in GRIVE? is not a standard formulatlon. The

equations of motion are expressed in a global sense and use both a general

shell coordinate system and an inertial Cartesian coordinate system. For

these reasonsp the equation derivations are covered in more detail than usual.
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]Rotory inertia and transverse ahear are included in the formulation. The

purpose of inclusion is not primarily for accuracy in the basic formulation.

Instead, it is to simplify the nmerical techniques used to solve the equa-

tions. This is explained further in the third section along with an Im-

portant disad'antage of rotory inertia and transverse shear.

Roumdoff errors are always a consideration In numerical techniques. The

computer program GRIMVT uses a velocity formulation of time integration.

Although it is identical in the real number systoe to the usual displace-

ment formulation. it can produce quite different results when computer

arithmetic is used. This is illustrated in the third section.

In that same section, time integration methods are discussed. The Nemark

beta methodf8J and Houbolt method[9j are quite popular at the present time

in linear analyses, since they are both unconditionally stable. Unfcrtu-

nately, they are also both implicit methods. For a non-linear problem, the

explicit methods, or more precisely, those which do not require the inverse

of the "stiffness matrix", are much more attractive. A study is made of

explicit time integration methods to determine whether one exists which is

unconditionally stable.

The differencing grid is illustrated in the third section. A method is chosen

which is not particularly economical in storage space but does not have the

difficiencies cf at least one other consonly used method.

Results of the conputer program are omitted here, but will be reported upon

in the oral presentation.

399

-* -



WIVATIOIUS AND DISCUSION OF MAMM

The geouetrical concepts in shell theory are fairly c€iplex and are

usualy complicated by coordinate systems and indices. This report Is

no exception.

,I fixed rectangular Cartesian coordinate system vith the set of base

vector s J ej', 3 is used to describe all vectors. In particular,

the accelerations and velocities of particles are ixpressed In Cartesian

ccmooene8s, A shell coordinate system is also used. !vo coordinates de-

fine the reference surface and the third coordinate is Intially normal to

this. The generalized stresses and the strains are expressed in terms of

these coordinates. The base vectors of the reference surface e h, 131

are expressed in terns of their rectangular Cartesian components. In this

vay, the Christoffel synbols and the curvature tensor are avoided. The gad-

ients of the coaponents of the reference surface base vectors take their

place in the derivations. The coordinate systea are shown in Fiure 1.

The shell coordinate system is taken as a convected coordinate system. The

coordinates of any particle are then the same for all time., but the base

vectors , a change in both magnitude and direction.

A hybrid notation is used in this report. The method of mixin together

couponents and vectors in a single equation Is found to be a convenient

method, since two coordinate systems are needed. All second-order toensors

and some vectors are represented in shell coordinate component form. These
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FIGURE 1. SHELL SEGMENT WITH SHELL COORDINATES AND AN
INERTIAL RECTANGULAR CARTESIAN COODINATE
SYSTEM.
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coordinates are considered to be curvilinear, and both contravariant and

covariant components are used. The summation convention is used between

repeated upper and lower indices. If the index is a Roman letter, the

suzmation is over the values 1, 2, and 3. If the index is a Greek letter,

the stnmation is only over the values I and 2.

The accelerations, velocities, positions, and base vectors are considered

simply as vectors in the usual three-dimensional Euclidean point space.

These vectors are denoted by a wavy underscore to distinguish then from

scalars.

The Cartesian components of the above vecors, which arise later, are dis-

tinguishable from the shell components by italicized Roman letters. All

"Cmrteeian indices are placed as subscripts, since there is no distinction

between contravariant and covariant components. The summation convention

between repeated indices in a term is still used.

Eguations of Motion

The Drinciples of linear and angular momentin in a global sense are given

by Wrngen[!±O) as

P bP

- f x-f Z(V) f V,

P P P

where P is a part of the body with bondary, aP, vhich consists of
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a fixed set of particles. The surface tractions on the part of the

boundary with normal v is denoted by t(V)p the position vector is p,

the body force per unit w-ss is f, and mass and boundyry area elements

are denoted as dh and da, respectively. The stress vector Is repre-

rented as the Cauchy stress tenisor (T ii ýE) , where Ojdenotes the cOU-

ponents of the unit boundary normal, and g denotes the base vectors i.•

the body defined as:

A, (2.2)

The particles in the body are located by means of the embedded coordl

nate systeu (X x 2,x 3 ). The reference surface of the body is defined

by(1 x2 0 ndtecoriatxis taken to be a physical coordi-

nate which is normal to the reference surface at time zero. The base

vectors on the reference surface are designated as (a*,d) .

The base vectors and dual base vectors on and off the reference surface

are related as follows:

i 1(X1 ' 2, 0 Ri a1 (x 1 X 2 0)
J 

(2.3)

For ease of discussion, the function Ri ll be called the relator

function. The relator, which is a function of position in the body

and the selection of a reference surface is restricted such that the

S•4o3
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relator and its inverse exist everyere in the shell.

The metric off the reference surface can *be shove to be

-1

Integration over the body in Equation (2.4) can be expressed as a
triple integral where dm is replaced as pR-F& dxdxd2t3 and the

first and last terms of Equation (2.1) are:

P X

and (2.5)

A basic assunption is now invoked on the motion of particles, vii:

the position vector of a generic particle is taken to be approximated

by
123 12 x~d 1 2  (2.6)

for all time.

The second time derivative of Equation (2.6) is substituted into

Equation (2.5) and integration carried out on x3 over the shell

thickness. Equation (2.1) is nov expressed as:

j2 df.f'dx2  (2.7)fx f ; xl ,. xx 2f~v

AX2
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vhere % .IpR ft3

x

a, p_ x dx3  (2.8)

22 pR; (x)2 3

are the generalized shell masses and the generalized body force low.ding

function Is

r pi dX3(2.9)
3

The boundary,, BP consists of tvo type.e One type I 1 assumed to be a

surfaco' of the form (x 2,2#c), vhere c Is sice constant. The traction

Integral in- Equation 2.1 for this type or surface (the lateral surfaces)

is stated as
+X3

ft(vJda .Sf(f d(xV~i ~-)1 ld2 (2.10)

vhere a and 1- are defined at a generic point based on the base vectors,

,n and ,I n , vhere n and n are unit nonids to the reference

surface and x 30-surface, respectively.

The second boundary type, called an edge., is defined as a boundary surface

fomed by the loci of fibers 1 Edges are restricted to have continuous

]A fiber is taken to be a line of ccnstanz x1 andx
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partial derivations with respect to x and x except at a finite

number of places.

Itf d 1 is an elemental length along a path of constant xz on the efte

boundary, then

_1

If di is an elemental vector length along the reference surface, which

can be written as

tdx I+ z2dx2

where

an 2 d

and dx 2 are the same for both cases, then the two elemental

lengths are expressed using Equation 2.3 such that Equation 2..1l can

be written in component form as

via R[ Ct~dj) a k) x(R ,3 a dx3) ~

From Bowen llthis can be written in terms of the determinant and then

rearranged and simplified as

r

where V denotes the components of the unit normal to the edge of the

reference surface which is tangent to the reference surface.

Wo6
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Eqwution (2.12) is a very ey.biguous expression in the use of indices.

The ccmponents. v. , are associated with the base vectors, g and the
NF

ccnponents are associated with the base vectors, a. The traction

integral in Equation 2.1 for an edge boundary is then

ft,(V)da uf4ýTi R R j a dX~ir

This expression is substituted into Equation (2.7) to obtain

ff~i~~i f~m - )~ dx Ofn~ a + v~ d l,4 (2.13)

r

where the generalized stresses are defined as

•=£•Ti• -l
=J 1 -RiT' R dx J,~ -12 (2.14)

X33

and qC R3Ti R dx a 1.,2- (2.15)

and where kv is taken as 2-3ro., The loading terms have all been combined

into f , a load vector per unit reference surface area and defined as

* ^-rij 1 +3i t *a(.6
£m~~+[T i v3 R,R j a ~ .(.6

-X3

1407
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Equation (2.13) Is the form of the linear momentun principle which will

be differenced. The form is identical to that of ErIckseer12] except

that inertia terms are included here, hnother difference is that the

surface quantities are related to three-dimensional quantities here.

A ireakness of the indicial tensor notation in shells is apparent In

Equations (2.14) and (2.15). Tw systens of base vectors are associated

'with the indices* The Cauchy stress coaponents are in terms of &, but

-1~i~
it !40 Np and q are in terms of t. This ambiguous use of indicea is

inherent if cinponents are used, but only appears to be a problem in the

definition of generalized stresses.

The reduction of Equation (2.1b) to a usable form is complicated by the

position vector, p. which must be specified in an inertial frame or with

respect to the center of mass of the section of the shell, P. If

is the center of mass of P1, with respect to an inertial frame., then

can be decomposed as

p p+? +x 3 4 (2.17)

'where & is the position of (x1 z2, O) for a generic particle: with respect

to the center of mass. Equation (2.lb) Is expanded in terms of Equation

2,17, and the vector pc is noted to have zero as its coefficient if Equetion

2.2a is satisfied identically. The result is then

4o8
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2
II~X r x a+d x-1I d(1 x(NWaa+q ed~v di,

1 2-

"" ffmx , m"+ i m 4a) xl dx 2 +f d x (Mft a )r d4_ (2.18)

J4 mR-1 .1 xdX3  (2.19)

The last term in Equation 2.16 has a moment shear omitted since it is in

the direction d and its cross product with d is zero.

The reduction of Equation P to a usable form requires the use of the

divergence theorem in the forms derived in Appendix A. Equation A.3 Is

applied to the first texv in the lino integral on the left side of Equation

2.18., and the partial derivative of p is recognized as a surface base vector

to give the result:

Ir

+ at l~l l + n Nl Bao)
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The second term in the line integral of Equation 2.18 is converted with Equation
A.2, vhere v is replaced with pRx d. The result is:

f~tx d qC d4 ~ff [Pt x(. Q+ d qdI)dx ] a" ft'W. (2.21)

Equations 2.20 and 2.21 are substituted into E'ruation 2.2.8 and the terms

are regrouped as follows:

x 1 x

-d qj. x1~ dx2.fl?-W2 a r . .

x x x

'tr f

If the area elements in Equations 2.13 and 2.22 are very small, then the

first integral In Equation 2.22 is zero. This is shown by converting Equa-

tion 2.13 to an area integral. using Equations A.2 and A. 1 j, vith the result:
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Cn - Sa ý' - dx 0 (2.23)

xI x

If Equation 2.23 is satisfied for every arbitrary area, then the intei~and
mulq be seroe Th.ic, i- tA---, - isei that the integrand or the first integral

in Equation 2.22 is zero. The condition on the area can be relaxed slightly,

however. If the integrand of Equation 2.23 is non-zero, but constant over

the area, the first integral in Equation 2.22 will still vanish. since the

constant can be factored out, leaving

f2

(If pzJi1 dxl dxa x (constant vector).

The vector on -,he left is cpproxim-tcly zero, since pt is measured from the

center of mass.

The second inte&ral in Equation 2.22 is zero if R - since Na

as defined by Equation 2.14 is then symmetric. This condition holds for

a point on the shell where d is constant in some neighborhood of the point.

The term is, in fact, almost proportional to the local curvature. In any case,

the term is a vector which is normal to the surface.

If a small reference surface area is used, then d is approximately constant

and can be factored out of the integrals on the right side of Equation 2.22.

If a3 i6 approximately d, then the r--sult can be stated as

Sx x Ir

I r



where t is some arbitrary scalar function and some averaged value of • on

the reference surface is denoted as do * Only the components of Equation

2.24 which are normal to d are useful since il Is unknown* The Equation
~~0

2.13 and 2.24 then form a set of 5 scalar equations which is usual in this

type of shell theory,

The integrals given as Equations 2.13 and 2.24 are the equations of Motion

which are used in the computer in component forma The shell is decposed

into segments and the integrals applied to each segment. The mean vlue

theorem is applied to the acceleration integral, and the resulting acee-

eration is assigned to a particle inside the region. Segments adjoinift

the shell boundaries have rortions of line integrals which are evaluated

along the shell boundaries. In these segments the accelerations are assigned

to a particle on the botmdary of the shell (and segment) rather than to a

particle in the interior of the segment.

The integral formulation includes the boundary conditions. Either enough

inormation is known on the boundary to evaluate the integrals (stress

boundary conditions . the integrals do not need to be evaluated (dii-

placement boundary con~itions), CoA.lmtions of these are the mixed

boundary conditions.

The density parameter mI defined by'Equation 28 is made zero by proper

choice of the reference surface in the program. This simplifies the appl-

cation of various edge conditions. They can be sunmarized as follovs:
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Either d-

2 2

and
A OI.--. - i1~

•w~~r" . ... e- . 4 .. .... ... . .. ... . -0

I!

o tr - 0

II

orfNcf 0 k)~4.
I?,

Up to the present time, omly three of the combinations have been put into

the program. The remaining conbinations vwil be installed in the future0

Strain Rate Velocit Relation

As stated in the introduction, the computer program GRIVEr was written

specifica13y for nonlinear materials. Many of these materials are strain

rate sensitive. For this reason, the usual strain-displacement relation

14 renaced by a rate relation vhl.ch may be integrated In time where

:,eceesa4.



The Euerian strain rate tenisor ccrnponents are defined t13 J as

a .6 (2.25)

The base vector can be expanded using Equations 2.2 and 2.6 as

as + X3  d.and d

Partial, derivatives of p vith respect to t and ze can also be found using

Equation 2.6.

The resulting forms of the strain rate canponents are:

3 a ad

(2.26)

+ .f d a& Ba ad
+ -t +

ax" 2  axa B7aX

and

iE 3 2 d~a. a

and '3 mO
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The ccmponent E 1i simply d w d which is of course zero since d has unit

magnitude. A linear term in x3 in the component B also vanishes since thecI3

partial derivative of (d d) with respect to xa is also zero.

The quadratic term in x3 in the expression for Ea Is dropped in the computer

program from an ordering consideration*

The resulting strain rate expressions give zero strain rate under aln possible

rigid body motions* This Is demonstrated directly from the general expresion

for rigid body motion given by

+ V -po)

where the body has an angular velocity v about the point P and a linear

velocity voat this point. Equation 2.26 is used to expend p and and

coefficients of Mike powers of x3 are equated to give:

j Vy +vxP
"7k' "o ~r

and davxd

These expressions are substituted into Equations 2.26 which are further

simplified using the sibstitutions:
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[ - -

W. w

The resulting expressions for strain rat, components are

.Qa x••,.1a )+a . (,,, )+

Pernutation of a taziple scalar product changes its si~gn so that all terus

cancel in pairs.* It uay be noted that exclusion of the (x 2tern will

not affect rigid body strain. The san~si~s for •3is slailar to that fo•

Generalied Stresses

The aeneralized stresses defined.In Equations +.l1, 2.15 and 2.19 required

the stress cmponents Tri . The strain rate conponents found s ere at

14.6



Constitutive relations are usually stated in terms of mixed components of

stress rate and strain rate. In effect: all of the difficulties of the

tensor notation seem to be concentrated in the computation of generalized

stresses.

The base vectorgi Is expanded using the definition of 9 fron Equation 2.2,

the expansion of P using Equation 2.6, and the definition of a to produce

. - ,- +x 3  + 3 . (2.2T)

The inner product of this expression with a is compared with Equation 2.3

to give the components of the inverse of the relator:

( -1 +

(~ .

(R*3 ) 1

The quantities D! are defined as

.. • .. (2.28)

For small transverse shear strains, d is approximately normal to the deformed

reference surface. The ecoponents D. and 4 o a are approximately zero so

that the inverse relator and the relator are approximated as:
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1. R~32

The determinant foflows imediatel•y as
"1 +x 3 tr(+.)÷ (x3) det((JXl) (2.30)

FEquations 2.2? and 2.28 awe used to obtain

The two t=em appoxitio- given by Eqation (2.32.) i used to shift "e

indices of Ea. The nfmed tensor is truncated to two terms shich are:

R I aGx 3Jl atcr (L,,,~ )D+(X) etIP0)()]0

(2.31)

The twotropim, hcogeneaus, linear elastic constitutive equation ss

expressed in tensor components a s

S•418
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't t

TO ,6 dt + 2111 iio dt (2.33)

o o

The contravariant stress components are found using Equation 2.31. The

generalized stresses are then approximated with tvo term approximations

for B• as:

A0 ufTP [ + 3  + 6!,tr ) d 3

q- fT 3 ct ( 1 + x3tr(D)) dx3  (2.3k.)

0x fJ c [6% + X3 (DO+ 6!,0tr (IF.y)dz3

Ccciplete Shell Theom

The three most important and most involved parts of the shell theory are

derived in the previous sections. These equations are still in vector form

and must be supplemented by other equations to form a complete shell theory.

The necessary equations are presented here.

All vectors, vhether they are base vectors. positions, velocities, or accel-

erations vill be expressed in terms of the components of a fixed rectangular

Cartesian coordinate system, Other coordinate systems could.have been used,

for example a normal shell coordinate system or cylindrical coordinate 5system.
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The advantage oZ the Cartesian system is thbat the base vectors are constant

over the space and can be used with equal ease on shells of any shape. Fig. 1

illustrates the two coordinate systems end associated base vectors.

All indices which refer to Cartesian components will be anderlined. For

example aai denotes Z. ei

The sca3ar equations of motion are:

14 po O a,,-+ + q d +f ;I r (2.35)

and

24 (140M4  d 2 jf q %Pa dxd(2.36)
ir X. X

where

d a ,

.ff .3)

M2 1-1 m ,C)dx

In order to obtain Equation 2.36 from Equation 2.214, the base vectors

are taken to be approximately constant over the region of integration. The

reference surface is chosen to make mi= 0 so that defvlition of an M, Is un.

necessary.
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The strain rate components are%

(1 + a +
ax -Cc) + - -

+a -~ j(2.38)

-.o
'33

,wherc the quadratic term in x hao been dropped frcm the expression for

ko.

The required equations for obtaining generalized stresses for the isotropic

elastic case are outlined in the previous section*

The base vector conponents acti and d, are functions of time and are found

by irtegration as follows:

t t

(t_) , (t_,.o, + t-0) + dt]dt

0 0

The expression for di is evaluated in a similar manner,

All equations necessary to the theory have been presented with the exception

of some trivial 4etails, The method of solution of these equations is the

topic of the next section.
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)1ERICAL SOLUTION OF EQUATIONS

The numerical solution of the equations presented Involve several Important

and interrelated topics* These topics are:

1. The advantages of rotory inertia and transverse shear In

the formulation of the problem.

2. The general method of writing the time derivatives in the

fo-mulation to minimize roundoff errors in numerical

integration.

3. The particular numerical method of time integration used

in the formulation.

4. The method of stepping through a two dimensional grid-

work to minimize storage.

The first threc topics will b'Z covered next in the order listed. 'hese

topics are not illustrated with the actual equations used in the computer

program but rather with simplified equations. The fourth topic wbich is

covered last incorporates the conclusions of the first three topics and

incorporates the actUal equations in the program.

Advantages of Rotory Inertia and Transverse Shear

The Bernoulli-Euler equations for a straight beam with small displacements

are combined with the membrane equaticns to produce the following set:
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N XEAS- + f3.1Q,M,Q)

as2

where v and v are the velocity components parallel and transverse to the

beam axis; S is a coordinae along the beam axis; and M, Nj, and Q are tl".

bending moment, membrane force, and shear force, respectively. The functions

fl and f2 are zero for the linear elastic case but may become dominant for

the elastic-plastic case. The point l, including the functions fl and f.

is to show the reason for the restraint of requiring that all the stress

components be evaluated at coamon points along the beam. Another restraint

Is that the velocity components be evaluated at common points along the beam.

The vYlocity locations need not coincide with the stress locations.

The principal dif2iculties in differencing the equati.ons are:

1. It is very difficult to include 4 in the functions fl

and f 2 . To evaluate N and A at time n based on NM, and Q

at time n-1 Is very error prone. Time consuming iterative

methods are required to evaluave N and at time n based on

N, M, and Q at time no

423



2. Lowest order central differencing of all quantities is

Imipossiblee

There are sevyral, ways of comprcmising to carry out the differencing of

Equations 3A.1 One methco which is followed !n principle in UNIVALVE[t4,5. i•:

(N) - (v)

4- 2¢5,] + J -1
N+. E+ f-_. 2( .iO

The plasticity functions fI and f 2 are taken to be independent of Dnear

force, Q. The net effect of this has not been evaluated but could possibly

be serious.

The membrane force rate, t, and the acceleration component, *, are not

properly centered in the equaUtons. However, if the material is linearly

elastic then f1 (MNO) a 0 and the Improper centering of the two quantities

introduces errors which exactly cancel each other. Unfortunately, the plastic

case is an important case.

The set of Timoshenko beam equations corresponding to Equations 3.1 are
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xi F

1P

N -EA WS +f 1 (M,wQ (3.a)

.k (e+ V*+r 3Q"I~wQ)

M -Ex l + fr2Q4,wQ)

where fl" f2, and f3 are again sace plasticity functions. The consideration

of locating the velocities at common points and generalized stresses at com-

mon points 3till holds. This set of equations is much easier to difference,

however.

The genermlized stress rate equations are all Independent so that the shear

stress can be accommodated in the plasticity functions. The first difficulty

with the Bernoulli-Euler equations does not arise here.

The velocities are located at half mesh points and the genetalized stresses

at whole mesh points. All quantities are center differenced. The differenced

equations are illustrated below.

4
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(f) .2 ki

~J ii AS

YJ* II AS1 M~ " 4

() - (V) +(v)

Vy + 2 J

t3 (x3j, -+3  Q34 )

A34 - E (x ) AS~ 3  + f2 (Hj N3 4 , Q34 )

The shear In the third and v• In the fifth equations are averaged values of

quantities a half mesh away. For the linear elastic case this Introduces

errors of order (AS) 2 which is the same order as the derivative approxi-

nations In the differenced equationso Thus, the differencing of Equations

3.2 does not have the second difficulty outlined above for Equations 3.1.

A third advantage of Equations 3.2 over Eqations 3.1 Is that the boundary

conditions are much easier to apply to Equations 3.2. If Equations 3.1

were written entirely in terms of displ&acaents and their time dei.•vative,

then the acceleration at a given position J would Involve displacements at

4,26



; positions J*1 and Jt2. Thus, the boundary conditions enter the difference

equations two meshes away frcz the boundary* Equatiors 3.1 when written

entirely in terms of displacementa and their time derivatives only involve

second derivatives in space. The boundary conditions are only felt one

mesh away.

The boundary conditions require that different difference algorithms must

be used near the boundaries. Since the Bernoulli-uler equations influence

equations twice as far fron the boundaries as the Timoshenko equations, the

boundary logic becomes somewhat easier to handle in Timoshenko theory.

In suwmmry then, Inclusion of rotory inertia and transverse shear simplifies

the handling of complex materials, simplifies and dccreases errors in differ-

encing, and simplifies the ý-ic near boundaries, These same conclusions can

be applied when the eqw'cions are generalized to inul.*de large deflectious

und expanded to tvo dimensional surfaces.

Roundoff Errors in Time Integration

Consider a simple spring mass systm with mass a and spring constant k. The

equation of motion with no external force is

XT= -ku (3.3)

where u is the displacement of th3 mas. The second derivative on the left

side is approximated with a central difference and the resulting equation is

rearranged as:

u,,a(2 a~t 2 u 1,6 U (3.4i)

The constants m and k are known and a stable time step, At < 2el Is chosen.

I u and unl are known frco previous steps, then the new value of u 1 is

4~27



found directly. The approximate solution of Equation 3.3 is easily found

in this manner* Vote that computer storage is required for the displace-

ments at two previous time steps.

Equation 3.3 can also be solved in another way by adding a new variable,

the velocity. vo The equivalent equation pair is

.my - -3cu

U -V

The velocity is now centered at half time steps and the displacement at

whole time steps* The resulting central differenced equations are:

V =aV 2: At)UhV4 nj (z(3.6)

-" n + *I

For known values of yn4 and u. and a stable time step At < 24-• the

equations are used to find values of Vn+4 and ".+l0

In the real number system, Equation 3.6 is equivalent to Equation 3.4. This

is seen by colving the second of Equation 3.6 for vn 1 and then for vn.

and substituting into the first of the equation pair. The result ir

Equation 3.- identically.

Unfortunately, computers do not use the real number systm,, but instead

are plagued with roundoff. Equations 3.4 and 3.6 can behave quite differ-

ently when roundoff is introduced. This is best illustrated with an exanple.

Conaider a apring mass system with (k/m) - I x 106 2ec-e'. This system w2

have a natural frequency of 1 x 103 rad/sec. If a time step of 1 x 105 see

428
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is used, then either of the differenced equations should have a "natural

frequency" of 1.000004 x 1O0 mad/sec.

This problem was run using six place arithmetic with both methods. Start-

ing values were computed from the expected real value solution. The re-

cults at every eighth calculation are plotted in Figure 2 for the two

methods. Agreement is excellent over the single oscillation. Figure 3

is a similar plot using five place arithmetic. The solution of Equv'tions

3.6 ir. virtually the same as before, but the apparent frequency of the

solution of Equation 3.4 is noticeably higher.

Figures 4 and 5 are similar plots using four and three place arithmetic

respectively. In these last plots, the term (k At 2/6) has been lost com-

pletely in the roundoff. The solution of Equations 3.6. however, is very

good with four place arithmetic and only begins to show bad behavior with

the three place arithmetic of Figure 5. A pronounced damping occurs, al-

though the error in frequency is well under 2%.

The plots shown used truncated arithm tic, e.g., the product of 0.11 and

.99 using tio place truncated arithmetic is .10. The same problem was

worked using numbers rounded to the nearest n places, and then rounding

upward. The three methods of rounding gave virtually identical runs for

the velocity formulation of Equations 3.6. The differenccs in the damped

peak amplitude near 620 cycles using the two other methyls of rounding was

less th•a 2% from the value illustrated In Figure 5.

The purpose of this section Ia two fold. The primary purpose is to illustrate

that the velocity formulation of the form of Equations 3.6 is much less prone

to roundoff than the displacement formulatlon of the form of Equation 3o.l
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The same storage space is required for the two methods, so there is no

penalty in using t'he velocity foimulation.

The second purpose of this section is to caution that computer arithmetic

can negate many logical theorems and analyses. For example, if a given

time step is stable, then a smaller step is usually better. This is not

2the case using the displacement formulation of Equation 3.4 where kMt /a

may be lost in roundoff when subtracted from 2. Another consideration is

that when roundoff does influence the results, then linearity no longer holds.

Decomposition into normal coordinates, adding modal responses, and numerical

stability analyses are all based on linearity.

Stability analyses in particular are suspect. If Equations 3.6 are eval-

uated on a computer with specific constants and time step size and if Figure 5

results, then one might incorrectly conclude that the time integration method

exhibits damping. A stability analysis using the real number system separates

the roundoff error into an independenit consideration and eliminates this con-

fusion. Alternately, the specific evaluation method might be carried out

with different accuracy arithmetic to show that roundoff is not a consideration.

The velocity formulation is of course used in the computer program GRIVEM. The

central difference time integration method illustrated is also used in the program

although the velocity formulation should be applicable to any explicit inte-

gration method.

Differencing in Two Dimensions

The sequence of solution of the equations is most easily explained using a

picture of the gridwork. 1igure 6 shows a portion of the reference surface
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FIGURE 6. REFERENCE SURFACE WITH SHELL COORDINATES AND

DIFFERENCING GRID WHICH IS USED IN GRIVET.
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! xlx2
of a chell with (x 1 ) coordinates on the surface. Grid lines are drawn

alonrg lines of constant XI and x .

The differencing in two dimensions is patterned after the differencing of

Equations 3.2. The velocities anci positions, pi. p d, di, d; the generalized

mases, 14, M2; and the forcing function integral fi a dxdx

x x

are located at the grid intersections such as points A, B, C in Figure 6.

I
The stresses T. , and derivatives of positions and velocities such as

aia/XE1 , pnd /ai are located between grid intersecbions such as

points D, F, H mnd K.

The elemental region about which the equations of motion are written are

"urectangular" regiors such as the dashed region containing point 0 in

Figure 6. The stress line integrals along a side are approximated with

the value of the Lintegrand at the midpoiist of the line times the line length.

For example, along cne side, say side D in Figure 6, the integral is approxi-

mated as:

D

where (v 6)D is the product of the physical line length of side D and the

2, component of the unit outer normal on side D. Other covtour integrals

are approximated in a similar manner. The area integratica of shear stress

in Equation 2.46 is approximated as:
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where AG is the physical area of the dashed segment containing point G.

This avexaging is necessary since all components of the stress tensor must

be calculated at the same place, particularly if a yield surface is involved.

The Senerallization of the differencing of Equations 3.2 to two dimensions

can be carried out another way. The "between mesh" quantities such as

stresses and derivatives could be located as shown by the points DEJ or K

in Figure 7. The elemental regions would then be the diamond shaped region

uhich is dashed in Figure T. The diamond shaped region has one important

advantage, ;Iz, that there are only half as many "between mesh" locations

as for the rectangular regions of Figure 6. This advantage is offset by

two advantages of the rectangular region. The first advantage is that the

resulting equivalent differencing method has a smaller error bound for the

rectangular than for the diamond region. The second advantage of the rectang-

ular region is that it accounts for a very important mode s"-pe, the keystone

shape shown in Figure 8. This pattern which is observed in two dimensional

continuum computer programs[b.J , should not be as troublesome in a shell pro-

ram. Curvaturt. along the x axis in FIgure 8 introduces coupling which pro-

ducCs same stres* fcr the keystone mode. The keystone mode, however, could

appear in plate o: cylinder problems where the x axis of Figure 8 would co-

incide with the cylinder axis.

The unnown effect of the keystone mode on the solution of a general problem

prompted the adoption of the rectangular region of Figure 6. The increaaed

storage requirw.ents and canputation time were accepted as known costs of the

choice.
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Z FIGURE 7. REFERENCE SURFACE WITH SHELL COORDINATES AND

DIFFERENCING GRID WHICH IS KEYSTONE PRONE.
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FiGURE &KEYSTONE PATITERN ON A PORTION OF A PLATE.
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A Search for Simple Time Integration Methods

.f the cystwt of equations are differenced in space, then for a linearized

set the equations could be stated in the form

{ci}+ (1C{Iq I - 0 (3.7)

vhare no forcing function is used and the vector { q} Is a generalized dis-

placement function. This equation is to be integrated numerically in time.

The section on roundoff showed the definite advantage of the velocity formu-

lation of this problem if ccwnputer arithmetic is to be used. In the analysis

of this section, the real and complex number systems are used so roundoff is

not a consideration. The displacement fonmUation is identiual to the vel-

ocity formulation in this case.

Various numerical integration methods are available for integration of

Equation 3.T. The simplest is derived by expressing the second time derly-

ative with a central difference expressi.on and solving for the forward dis-

placement, viz,

=q+ (2 (1] - (K] &t2)jqjZ, - {q}11.;j

This integration method is very fast ccumputationally but is limited to smal

time step sizes for stability.

There are also time integration methods which are stable for any time step

size. The Houbolt[9] and Newmark[8) methods are the best known of these

methods. Unfortunately, both of these methods are of the forat
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N

(aW:1 + b[EX) At2)q}L41 'Bý (ýJEI + bj~t2Ex I q}jn

The solution for q4+ then either requires the solution of a set of

algebraic equations or the evaluation of (:axl + b [K] At2). Neither

of these alternatives is particularly attractive, especially •hen the re-

sult I5 generalized to the non-linear problem of intrest.

The pEacea for this problm Is a mumerical integration method of the form

{q}.+ - - E (&4[1J + b3EKl)){q ý (3.8)
3~o

(for some small integer N) which would be itable and convergent for all

time step sizes. Such a method does not exist for N c 2. This is proveD5]

as follows. The solutions of Equations 34 and 3.8 are compared for small

values of At. Three consistancy equatiom are derived by making these solu-

tions coincide to order (At)?. This leaves five arbitrary coefficients in

Equation 3.8. A stability equation is derived by stssining an exponential

solution for the difference equation. This equation In transformed into a

polynomial of order (N + 1) with the linear mapping exp 0 - (1 + z)/(l-z).

Nunerical instability of the differencing method in associated with roots

of the polynomial which lie in the right half plane. The Routh-arwitz

criteria are applied to show that sane value of At will give a root in the

right half plane regardless of how cleverly the remainig five coefficients

are chosen.

Although no unconditionally stable time integration method of the form of

Equation 3.8 exists for N : 2, this does not rule out the existence of very
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stable methods of that form. Until a more complete study Is made, however,

the simplicity and accuracy of the simple central difference method make It

appear most attractive at the present time.

A Disadvantage of Rotory Inertia and Transverse Shear

Same advantages of rotory inertia and transverse shear have been listed but

no disadvantages have been mentioned. An unexpected characteristic of the extra

degrees of freedom from the transverse shear is an additional set of vibrational

modes. Unfortunately, the frequencies associated with these modes are very

high. These high frequencies usually dictate the critical time step size.

Usually the critical time step size in a structural program can be Increased

simply by making the mesh or element size larger. In the transverse shear

formulation, the critical time step size is essentially independent of mesh

sizeO

The shape and characteristics of the high frequency shear modes can be studied

by examining the Timoshenko beam equations.

The transverse shear motte phase velocity is shown by Fungl to be unbounded

for long wavelengths. The frequency of course is bounded and can be approxi-

mated for finite length beams as follows*

FIl¶ggeifi., p. 61-15 gives the mode shapes as

w(xt) - CP(x) sin(Wt + c)

*(x.,t) - #(x) sin(wt + P.)

where #(x) and cp(x) are linear combinations of hyperbolic and circular sines

and cosines of cx/j and Ox/j where x is a coordinate along the beam and I Is

its length. For ordinary Bernoulli-Euler theory a - n ) where )n depends
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upon the boundary corietidos and mode muber and are listed in Table 61.1

of Ref. t[J•. For Teawshenko theory, the values are given by

*2 _P2[T(I +B) +ý, B2

o~gP

*ere p2 0 w2 2 pig

22 2
The Product M~ 2 can be formied and the result solved for p as

2 U b 2_

fTr long wavelengths, d2 and p are very nearly the Bernoulli-Euler values

and the second term under the square root i very small c•mpared to one* A

two term bincmaila expansion then gives the approximate values:

In terns of frequencies then

8 G
w2 hT

4The first frequency Is the ordinary Bernoulli-Euler valuej, while the second

corresponds to the transverse shear brivich.
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Noe in particular that although the bending frequency is a strong function

of wavelengthp the shear wave frequency.to a first approximation, is independ-

ent of wavelength for long wavelengths. It Is this charcteristic vbh•^ clari-

lies the time step problem.

For short wavelengths, finite differencing can sometimes distort solutions

with beneficial results. This Is true of the ordinary differencing of the

Bernoulli-Ruler equations where phase velocity versus wavelength can be bene-

ficially tailored by proper selection of mesh and time step sIzesDQ. Almost

any consistent differenci: will be adequate to describe 3Ing wavelengths.

Furth-rmore, mesh size will have aImost no effect. in essence, the high

frequency shear mode will be present unless the basic mathematical fod2l

is changed.

The critical time step size for the ordinary central difference t.me inte-

grtIon method is glven by

for all frequencies, w. The rotoxy inertia then defines a critical tie step:

h
(20/oYi

Unless a small mesh size is chosen so that membrane behavior becomes a

consideration, the time step size will be dictated by the above transverse

shear mode.
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SUtNARY AID OONCUSIONS

The equations are developed which govern the dynamic large deflection

respo~e of a general shaped sheU including rotory inertia and trans-

verse sheer. The remainder of the paper lists several problem areas

asso.Aated with the finite difference solution of the equations. The

advantage in using rotory inertia and transverse shear is that the

equations are essentially a system of second order differential equations

rather than fourth order. The treatments of boundary conditions and com-

plex materials are thereby simplified, and the differencing of equations

Is simplified and errors decreased. A disturbing factor is that an addi-

tional high frequency mode is introduced by the shear and rotory inertia

wsich usually dictates the time step size for aw conditionally stable

time integratton method.

The velocity formulation of time integration which is used is campared

to the usual displacement formulation and is justified on its resistance

to roundoff errors. The displacement formulation of time Integration is

shokn to be roundoff error prone while the velocity formulation Is very

roundoff resistant. Time intetration methods for an undamped linear struc-

ture which do not require the inverse of the stiffness matrix or solution

of a set of algebraic equations are investigated. No such method exists

vhz.h is uncon&ttonally stable, even if displacements at up to four time

steps are involved. The usual central difference method is used in the

computer program because of its computational simplicity and accuracy.
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APPENDIX A

FOWS OF THE DIVERGENCE THEOREM

"The two-dimensional divergence theorem can be writtenOW as

v %dj INw CL da. (A-1)

a

For the purposes of this report, a modified form of this equation is

required. The desired form can be found from Equation Aol.

A vector, w which is constant over the field., is postulated. Then

Equation A.I is rewritten as:

~ 0 td u9V d (1 •)( . )e• d.

a a

The vector u is constant and may be taken out of the integrals. This is

written as:

av

Inasmuch as the constant vector u is arbitrary, the vector in brackets must

be zero. The first modified form of the divergence theorem is then

i CLd + V da(A2

ba a
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•5--*•.4 .- z•r'"r - • .

The second form of the divergence theorem uses the vector u ( x Pia ) ,

or, more correctly, the ah component of this vector. Eauation A.l is written

then as

ffxa -v.df[u.(pr.a, )]tda,

(P Iu. -a Wt M 2xa *

The vector u is ae.in noted to be constant so that it can be taken outside

the integr•ls and noted to be arbitrary so that the intermediate statement is:

AP (00 aza CL ) J Y )]da

The Christoffel symbols arn cmbined into the covari-nt partial derivative of

Rom. The final result is then

f 4xiftv~dA f[4 a Nft+ ~x s ftLpx nP Ida, (Az3)
J X -J

where B denotes týie nowponents of the deff-med surface curvature ten,..r.
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A simplified form of Equation A.3 is obtained in a similar manmer. The

derivation is citted,# since it follows the above method. The result .,s

simply : O o v d Ns a + N da

vdxCL~ CEBd (AA")

* 450



QUESTIONS AND COMMENT5A FOLLOWING KRIEG'S PAPER

QUZ3TION: Would you give the number of time steps, the computer

time, and the computer used in that last example invclving the cone?

KRIEG: We had Z89 meshes and we ran 750 time steps (Z 1is)

using a CDC 6600. The time for thAt wias 412 central processor seconds.

In addition to that, we requirea 30 seconds to initialize that tape and 146

peripheral processor seconds. So it's roughly a seven minute run.

MONTEITH: This plot routine is extremely fast and it automatically

scales everything. You just give it the angle that you wrnt to view from and

you tell it how far away from it you want to be and that's the end of it.

Actually, it is a three part routine consisting of input, calculation and

the plot. These can be used independently. The plot routine package can

also be taken and used For other programs which have similar inputs.

KRIEG: I might add that the CDC 6600 central processor time

for the ccne movie was about 400 seconds. The entre cost of the movie

was about $80.

QUESTION: Id like to ask ýhe author when his program is finished,

will he be able to handle cutouts which do not lie along the coordinate axes?

KR2IEG: Currently, it cannot. But we hope to provide a capa-

biiity to locally -listort the coordinate syritem to follow cutout boundaries in

the area of a cutout in a shell of revolution. It ccrt•Ainly appeare feasible to

do this ane my in..rior equations should do Lie job. But right now, i can't
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initialize sucn a mesh, and have given the problem only a cursory exami-

nation.

QUESTION: I'm trying to determine where we now stand with the

finite difference method and where we intend to go. Frank Brogan, could

you tell me i- STA•GS can handle arbitrary cutouts?

BROGAN: The linear version r : STAGS does handle cutouts

that don't follow coordinate lines. We have not completed the work to add

this feature to the nonlinear analysis but that should be completed by April

1971.

QUESTION: I'm still trying to recover. from the short computer

time you quoted in that cone example. Is your numerical integration

scheme unconditionally stable? Let nie put it another way: how does the

time increment that you used compare to the period of the highest natural

frequency of the system? Do you kniow?

KRIEG: [he interaction scheme is conditionally stable with a

critical time step of approximately 1/r times the highest frequency present.

As I recall, for my meshwork, the critical time step was 3 or 4 microseconds.

I was using 2 ýksec as suggested by Lockheed. I used a coarser meshwork

than they suggested, however, because I didn't have zoom in my dimension

statements.

Q..ESTION: You feel that you were carrying cut a stable integration.?

KRIEG: That's right. I might add that results obtained using a

1 j;sec time step were virtually identical with the 2 pisec results.
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MEI

QUESTION: Earlier you said that you distort the finite difference

mesh to fit the boundaries of the cutout. Will you encounter serious diffi-

culties then in defining the geometry of the shell subject to that mesh? What

I mean by that is you may no longer have formulas that define the geometry

of the shell in your coordinate system.

KRIEG: To be practical, the local distortion of the coordinate

system would have to be internally generated. The important thing is that

we have allowed for the use of such information. This coordinate system

XI-XZ is completely arbitrary. There's no limitations on it except continuity.

And we calculate positions in the rectangular cartesian system ZI, ZZ, Z3,

so we always have the non-rioving rectangular cartesian system to which

quantities can be referred. And, if you'd like to convert the output to some

other coordinate system, that would be done at print time.

QUESTION: Do you mean that the program contains a transforma-

tion which brings the known geometry into the distorted coordinate system

that you use.

KRIEG: No, we simultaneously carry along two coordinate

systems at every time step. We always know where every point is in

the rectangular cartesian system and we actually find positions in the ZI,

ZZ, Z3 coordinate system. In other words, we define geometry, curvatures,

and all this sort of thing in the Xl, XZ surface coordinate system.

QUESTION: I'd like to get your opinion on two things. First of all,

you use an explicit integration scheme and I would like to have your comments

as to what you envision regarding the possibilities for some kind of an impli-

cit scheme. Secondly, we've seen a finite difference approximation uced by
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Bushnell and Almroth with an energy formulation and then we've seen one

like yours based on momentum formulation. Would you care to comment on

the ultimate capability of both of these techniques for dynamic problems?

By that I mean being able to handle realistic engineering structures, one

with a number of discrete rings, reinforced cutouts and more or less arbi-

trary boundaries and shell wall consti uction.

KRIEG: With regard to your question on dxplicit and implicit

time integration schemes, I spent some time looking for unconditionally

stable time integrators. In particular, I wanted an explicit unconditionally

stable time integrator. By explicit I mean only matrix multiplication and

addition are required. I think i've proved that there isn't any if you use

only positions at the present time step and up to three previous ones. That

is why I stuck to the simplest explicit one. When you go to the higher order

schemes, you begin to pick up strange modes which don't exist physically

and which may or may not damp out. This occurs, for example, with sorme

impuicit schemes such as the Hubolt method. You have another mode so to

speak and although it is very very highly damped you may be pouring energy

into it; and I'm a little bit scared of energy absorbers in perfeutly elastic

problems. The solution technique for an implicit method would, of course,

be much more involved than for an explicit method.

With regard to your second question, I think Bushnell's and Almroth's

method is very good. I wasn't aware of it until now. It seems to be just

a matter of developmeit to get it to work dynamically As far as the

future of the thing, I think there are big advantages to having stiffness

matrices which are symmetric and positive definite. My stiffness matrix
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will not be symmetric. The numerical stability analyses that I have done

assume a symmetric positive-definite matrix and I can only hope that my

equations will behave accordingly. They have so far.

TAUBKA: I have a few comments in summary. Bushnell and

Almroth have described the BOSOR3 and STAGS computer codes. Accord-

ing to Yates, Vincent and Sable, yesterday, these codes are being used in

the production and analysis of very complex shell structures. The corre-

lation between tLeory and experiment in the limited cases that are presented

is quite good. I don't think this says so much for the finite difference method,

but I do think it says that the theory is formulated correctly and the applica-

tions are correct in an engineering sense. We've seen that the non-ortho-

gonal variabl.e finite difference mesh can be used. Up until this meeting, I

think almost everyone thought that this was possibly an area where finite

differences could not be used. That idea should be fairly well disspelled

by now. One advantage of Bushnell's and Almroth's approach is that it uses

matrix algebra extensively and this is will ahchored i-i everyone's mind. I

would say that these codes will be particularly useful in the study of post

buckling behavior. Instead of having to go out in the post buckled region

and find the solution by hit and miss procedures, one could take an approach

which is similar to a modified Newton's approach or possibly the Koiter

theory and expand the solution about those liuit points and bifurcation points

and get starting points on the post biuckled solution right in the neighborhood

of the critical point. This would, I believe, enhance the performance of

these computer codes.

Krieg and Monteith have described the GRIVET computer ccde which can be
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used for the transient response of shells of arbitrary shape. Their approach

is significantly different than approaches that have been used in the past to

do shell dynamics using finite differences. They've used the global equa-

tions of motion along with the convected Lagrangian coordinate system.

Other codes that you might be familiar with such as PETROS, for example,

used the convected Lagrangian incoordinate system but not the global type

of integration approach. STAR which was developed here at Lockheed uses

a Lagrangian approach without the convected coordinates and without the

global Integration as does SMERSH which is a code that I've been involved

with. So, there are many different approaches right now to the calculation

of dynamic response using finite differences and one of the research projects

I believe should be performed in the future is to evaluate these different

approaches, A more intensive study of mesh centering is also called for.

Roy Krieg showed that the velocity formulation tends to hold your solution

accuracy for longer periods of time. This is also known as the incremental

displacement approach which is used by other people and indeed that is an

area where solutions can be improved over a long period of time. A final

question I have, though, is whether the global or the convected coordinates

approach to calculation tend to run up your computing time inordinately

since in each time step you generally have to compute new Christoffel

symbols and so forth for your equations of motion. In the Lagrangian finite

deflection codes that do not use convected coordinates, this is not the case

and I think you buy some time.
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ABSTRACT

A computer program, FESTRAN (for Finite Element STRuctural

ANalysis) is described. The program predicts the static structural

response of plate and shell type structures using the finite element

displacement method. Geometrically nonlinear effects (due to finite

displacements or instabilities) are incorporated directly into these

elements. Rectangular or annular flat plate elements, cylindrical

shell elements, and straight or curved stiffener elements are

included. Either homogeneous or layered composite linearly elastic

material is assumed. Problems are solved either by a matrix

decomposition routine, or by direct minimization of the total

potential energy.

Applications to test problems are discussed, including a

pinched cylinder, an unbalanced layered composite strip under

thermal load, and post-buckling behavior of a curved panel.
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INTRODUCTION

This paper is concerned with the capabilities and limitations

of a computer program, FESTRAN (for Finite Element STRuctural

ANalysis). The program incorporates several kinds of four-sided

plate and shell elements, representing linearly elastic structures,

including both bending and stretching behavior, with some

second-order terms retained in the strain-displacement relations.

These nonlinear terms allow prediction of finite deflection and

buckling behavior. A rectangular flat plate element, an annular

sector flat plate element, a cylindrical shell element, and straight

and curved stiffener elements are included, as shown in Figure 1.

(More details on these elements can be found in References 1, 4, and

5.) Ordinary thin plate and shell theory with transverse shear

deformations neglected, are used to form potential energy

expressions for these elements in terms of independent coefficients

(element degrees of freedom) which are values of the displacements

and certain of their derivatives at the corners of the elements.

Either homogeneous or layered composite materials may be

represented. In the latter case equivalent homogeneous anisotropic

stiffness coefficients are computed.
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DISPLACEMENT FUNCTIONS

Products of cubic Hermite polynomials are used to form

displacement functions. The transverse displacement w as a function

of the co-ordinates x and y is

2 2
wx,y) = J { H01(x) H01(y) wij + H02 (x) H01(y) wxiji=1 j=l

+ H01(x) H02 (y) Wylij + H02 (x) H02 (y) Wxyij 1 (1)

There are sixteen element degrees of freedom representing w: wtj,

the values of w at corner (ij), the slopes Wxij and Wytj, and the

twist curvatures WXyij, all at corner (ij), where the corners are

numbered (1,1). (1,2), (2,2), and (2,1), proceeding clockwise around

the element from the origin of co.,ordinates. The Hkz(x or y) are

the osculatory Hermite polynomials

HoI(x) =1- 3 + 2

01(x a aIo()= 3 (x)2. -2 x)

(2)

H11(x) = a 2 i- (2, (2 + (2L) 3

H a a

where 0 < x < a - length of the y=constant side (substitute b, the
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length of the x=constant side for Hkz(y) ).

This type of function is complete in that it contains all

products xly for ij - 0 to 4, and in that all rigid-body and

constant-strain displacement modes are included (except 'or the

cylindrical shell and annular plate elements, in which some of these

modes are closely approximated). Such functions make it easy to

impose continuity of displacements and rotations across element

boundaries (conditions necessary for convergence of the potential

energy as the element grid is refined) by simply matching element

degrees of freedom at corners bounding edges where elements meet.

Also, after these necessary conditions have been imposed, enough

degraes of freedom are left over to allow imposition of

inter-element curvature continuity when appropriate. The same

functions, with sixteen degrees of freedom, are used for both of the

in-plane displacements u and v (making a total of 48 degrees of

freedom per element). Continuity of u and v, and optional

continuity of in-plane strains, are also achieved by matching

degrees of freedom at corners. Bi-linear interpolation of' u and v

might seem more appropriate than bi-cubic interpolation since only

f 4rst derivatives of u and v appear in the energy expression, while

second derivatives of w appear. Bi-cubic interpolation is

nevertheless used so that elements may ki joined at right angles or

at arbitrary acute angles, in which case w displacements in one

element nust be matched with u or v displacements in another, 2o

that u, v, and w must all use the same interpolation functions.
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POTENT'AL ENERGY FORMULATION

The pctential energy formulation begins with Hooke's law

relating stresses ai to strains cj and the temperature rise AT for a

plane anisotropic material:

3
i E E c Qi AT , i = 1,2,3 (3)j•]

and the following nonlinear strain-displacement relations for a thin

plate or cylinder:

ýu + laW 2  a2wX1 a•x =• 2 a"x. z=a

=v + ±+ A-;- - , (I w.(43VW awa (4)
C2 y =5 R 1C ay' =ay

_ = u. + 2- + 2-w aw -2z (a2w 2- v

£3 xy x ay ax axy "xmy R ax

to obtain the strain energy for an element in terms of displacements

from

3
ITp f • ial dei (5)

vol 1=

After the potential energy has been formed by substituting Equationsý

(3) and (4) into (5) and carrying out the integration through the

depth of the element, stiffness matrices are formed by substituting

the assumed displacement modes (Equation 1) into this expression and

integrating. This process is carried out automatically during the
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setup phase of FESTRAM, using exact zmu0as for polynomial

integraticn, rather than a numerical method. The results are packed

into matrices K(i) in such a way as to miirtize storage

requir-ements. If the 48 degrees of freedom are denoted by a vector

j(i), a concatenation of three vectors U, , ;,nd W

each of length 16, containing the u, v, and w variables

respectively, then the potential energy for element i is expressed

as

48

48 j _ (21), (i) ,k(i)
+ 1~ k1, Kik j k

16 16 k (3ui) (i) () M (i)
+ 16 1 k k zj O ~l~l J k1j

+ 16 16 kc, (3vi)(i M j ('M
E~kl= Nkx k I

+ 16 j k (3wi) (i) ) )
Jil k=l zi Kl j kj k

16 k (41)" (I) i k') (6iJ11 =I =l ~'j k=l J1mi W k ( 6

Here K%10 represents linear terms (due to thermal loads), (21)

represents ordinary quadratic stiffness terms, jk,3uO) and
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Kjkt (3vi are cubic uw2 and vw2 terms, and Kjkt(3wi) and jkt (41)

represent w3 and w4 terms in the strain energy expression.

EQUALITY CONSTRAINTS

With most finite element methods, a set of independent degrees

of freedom is constructed by matching corner variables wherever two

elements meet. In the present method, linear constraint equations

are generated in addition to one-to-one matchingr among the corner

variables. Such equations arise from four sources:

(1) Elements may be joined at arbitrary angles, so that, for

example, the transverse displacements on one edge of one element

must be expressed as a linear combination of the transverse and

in-plane displacements of the other.

(2) Curvature continuity between elements is an optional

additional condition (first pursued by Stanton, Reference 3) which

results in linear equality constraints. Whenever curvatures are

matched between two elements, four equations are generated which

involve contributions from all four corners of each of the two

elements. This option serves to reduce the number of independent

degrees of frcedom (and thus the running times), and to insure

continuity of bending nmments between elements in some cases,

Overall results are generally not degraded, and they are sometimes

imFroved by this procedure.

(3) Force boundary conditions are also an optional additional

condition which serve to reduce the number of degrees of freedom,

usually without any deterioration of results.
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(4) Skew displacement boundary conditions, wherein an edge of a

plate may be required to slide along an inclined surface, for

example, are a fourth source of equality constraints which sometimes

arise.

Equality constraints may contain constant terms which arise

from non-zero prescribed boundary values (displacements or forces).

These values may be prescribed as simple constants, or as

user-defined symbols. Values are not assigned to these symbols

until after the setup phase of FESTRAN is complete, so that

solutions may be obtained for various values of these symbols

without regeneration of stiffness matrices or load vectors

(mechanical or thermal 1oAds may also be prescribed in terms of

user-defined symbols). User-defined symbols are concatenated onto

the end of the solution vector Xm and are kept constant during the

solution process.

Once the required equality constraints have been determined for

a particular job, they are then processed in three stages:

First, the one-to-one constraints are resolved in the normal

manner: by assigning the same degree-of-freedom number to each of

the variables.

Second, the one-to-many constraints are handled by assigning to

the variable on the left-hand side a pointer locating a "correlation

packet" in a storage pool, in which the coefficients and

degree-of-freedom numbers and/or symbol numbers are recorded. Thus,

if X (I) the jth of 43 element degrees of freedom for element i is

related to m1j of the master (independent) degrees of freedom and/or

466



user-defined symbols Xm by

Rl) mij
"M . V1 )iJ tiju (7)

then the correlation packet for this element degree of freedom

consists of two lists: the master degree-of-freedom numbers tij, and

the coeffi-ients aci.

Third, the many-to-many coupled constraint equations are set up

in matrix ferm and processed by Gauss elimination, using a pivotal

selection scheme to choose the variables to be eliminated. Then the

newly dependent variables are exoressed in terms of the remaining

independent variables and/or user-defined symbols, by means of the

packet scheme described above. Finally, any previous packets

containing references to the newly dependent variables are patched

up so that they refer only to independent variables and uset-defiited

symbols.

SOLUTION METHODS

Solutions are carried out by either of two means:

First, a matrix decomposition routine with forward and backward

substitution (Reference 6) is available for linear solutions

(second-order terms in Equations 4 dropped). This routine uses the

"wavefront" method of packing the master stiffness matrix so as to

eliminate needless .4trage and processing of zeroes. The master

stiffness matrix ,. formed directly trom the elemest stiffness

matrices by examination of the correlation packets for each element
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degree of freedom. The (j,k) element stiffness matrix entry for

element i is distributed to the master stiffness matrix by getting

row numbers and multipliers from the i,jth correlation packet and
thmaster column numbers and multipliers from the i,k correlation

packet. In symbols, each master stiffness matrix entry Kmn i

formed by

Kmn O i ij aik R (1) (8)

summed over all i,j,k,u,v for which aiJ" m and =Ikv - n.

Second, a function minimization routine comprising both the

variable metric (Davidon-Fletcher-Powell, Reference 8) and conjugate

gradient (Fletcher-Reeves, Reference 9) methods can be employed for

direct minimization of the total potential energy for either linear

or nonlinear problems. The total potential energy is formed by

summing the element potentials, usinig element stiffness matrices,

and adding a load potential term. Minimization is the only means

provided for solving nonlinear problems. Linear problems may be

solved by minimization, but decompositior, always turns out to be

more efficient.

EXAMPLE PROBLEMS

(1) A 1" by 8" strip, 0.08" thick composed of a layer of

aluminum bonded to eight layers of boron composite material was

modeled by FESTRAN elements so that warping due to cooling of the

material from the bonding temperature down to room temperature might

'468



be studied. The boron composite plies were each .0052" thick and

had fibers oriented at 600, 00, -60O0, 00, G°, -600, 00, and 600 from

the 1,.ng direction, and the aluminum layer was .04" thick. The

results obtained are shown in Figure 2 and are compared with

experimental results and with a bimetallic strip analysis given in

Reference 10. Both the FESTRAN results and the simple bimetallic

strip theory are seen to correlate well with the experimental

results.

(2) A closed aluminum cylindrical shell 10.35" long, 0.094"

thick, with a 4.953" radius, pinched by self-equilibrating loads

(Figure 3) was analyzed, and the results compared with experiment

(Reference 11) and with an Inextensional shell theory analysis given

by Timoshenko (Reference 7). Because of symmetry only one octant

was modelled. Both eight-element and four-element models were run,

using cylindrical shell elements (the eight-element modelling is

shown in Figure 3). Additional runs were made with flat plate

elements joined at angles of 22.50 (eight eiements) and 450 (four

elements) in an attempt to study the additional error incurred in

this problem by using flat plate elements to model a curved

str,'cture. Figure 4 shows a comparison of the four-element

displacement results, along the arc ABCDE (see Figure 3).

Surprisingly, the flat model correlates better with Timoshenko's

results than does the curved model (although it is no closer to the

experimental data points). The error resulting from the use of flat

elements in this case seems to be on the excess-flexibility side,

thus cancelling out some of the artificial stiffness generally
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inherent in finite elements formulated in terms of displacements.

Both eight-element models correlated almost exactly with the

inextensional solution.

Figure 5 shows circumferential bending moment results for the

flat and curved eight-element models, again compared with the

inextensional shell theory analys!3. The results are somewhat

cruder since the bending moments depend on second derivatives of the

approximate displacement functions.

(3) A curved panel is shown in Figure 6, mounted in a rigid

frame, with a force applied to one end through a rigid sliding

block. The panel is steel, 24" square and 0.1" thick, with a camber

of 0.48". Its edges are considered simply supported all around.

One quarter of the panel was modelled by four elements, restricting

this study to doubly symmetric huckling shanes. Again, both curved

and flat elements were used. As the load versus end-shortening

curve in Figure 7 shoran, the responses of the tio models were

identical in the initial linear regime, but differed considerably

after buckling.

It is not clear whether the use of flat elements in this case

introduces excess stiffness or flexibility. The ridges formed where

the elements are joined act like stiffeners, lut between these

ridges the coupling stiffness present in curved *lements is lacking.

While there is no experimental data to corroborate the results

obtained, at least it is clear that the use of flat elements, even

though they are joined at angles of only 2.260, produces results

which are quite different from those predicted by the curved-element

4TO
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simulation.

CONCLUISIONS

The FESTRAN program contains elements with advantages not found

in some other programs: conformity of displacements and rotations

between elements Is assured in all cases; rigid-body and

constant-strain displacement modes are well represented; elements

may be Joined at arbitrary angles; curvature continuity, strain

continuity, and force boundary conditions can be optionally imposed;

laminated materials with full bending-stretching coupling can be

handled; and geometrically nonlinear effects are treated in a

straightforward manner. An efficient decomposition routine and a

reliable minimizer are included. Application of the program to test

problems has shown good correlation with experimental and analytical

results in several cases.

There are serious limitations, though: all elements are

four-sided whereas trangular elements are much more versatile.

Forty-eight degrees of freedom per element are a lot, although the

total for a structure can be cut dow.n by equality constraints.

Storage requirements and consequently running times for nonlinear

problems can be quite high.
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QUESTIONS AND COMMENTS FOLLOWING GIBSON'S PAPER

COMMENT: I'm really surprised at the curved element results

for the pinched cylinder. We've run the same problem with lower order

curved elements and I think our results are much better than yours, com-

pared to Tinoshenko. It's a bit surprising.

GIBSON: That surprises me too.

COMMENT: I'd like to say something more about that pinched

cylinder problem. The curved shell element does give you the Timoshenko

solution as you add more elements to the grid. I think maybe you might have

given the impression with that one grid solution that it might not come up to

it, but it does come up to it very nicely and I think Fred Bogner has those

results in a cocple of his papers

QUESTION: I'd like to Qpeak in support of the author's summary

about the compatability or inccmpatability of flat elements when you have

non-coplanar intersections; specifically right angle intersections. It's

been my experience in developing a cubic bending-cubic membrane element

that unless you igclade the shear deformation you cannot prove compatability

of these elements which have equal membrane and equal bending displace-

ryient fields along the edge. The influence of the membrane shear strain

on the membrane displacement derivative leads to incompatability with the

Kirchhoff assumption of the plate bending on the perpendicular element

and I was wondering if anybody else could comment.
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GIBSON: Are you talking about transverse shear deformations?

COMMENT: Transverse shear deformations in the plate element.

Unless you include that I don't think you can get compatability.

GIBSON: If you simply look at the expressions for u, v and w

in our element and evaluate them along those edges you will find that you

do get the same expressions for the two displacement fields provided the

degrees of freedom in the corners are matched up.

QUESTION: You mentioned that you use Melosh' s front solution

technique. Do you have any experience in comparing it to other techniques?

Can you quantify your statements comparing solution times, storage

requirements and so forth?

GIBSON: All I can say is it's a lot better than just the standard

full matrix procedure and it's better than any constant bandwidth method

in problems where there's quite a bit of scattering of the sparseness in

the stiffness matrix.

QUESTION: I have a brief question concerning extensions of these

minimization procedures to dynamics problems. Have you given any con-

sideration to such extensions or any problems where you don't have a

positive definite operator?

GIBSON: Yes, as a thesis topic at Case, direct minimization

of the Rayleigh quotient has been used as a means of obtaining eigenvectors

and eigenvalues.

QU ESTION: Well, I think in principle the procedure could be
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applied to virtually any type of operator and I was wondering if you knew

of any work that had attempted to do this.

GIBSON: I don't know of anything beyond that one example of

the Rayleigh quotient.

COMMENT: I have one negative example, but it did not involve

a positive definite system. A number of years ago we did some work on

mixed formulation using a Reissner energy formulation of the problem in

which we used stresses and displacements as the variables along the same

lines as Professor Herrmann's work. We tried to use a minimization on

this and found that since the Reissner energy is not positive definite, you

can't do it by minimization. We then had recourse to formulating the prob-

lem using residual, that is, taking basically the equations governing the

system, using the sum of the squares forming this and then attempting to

minimize it. This didn't prove to be, as you might well imagine, a very

efficient scheme.. We did it without scaling the variables at that time and

I think it would work somewhat better if you scaled the variables as is done

routinely today in connection with mixed formulations. I still have my

doubts about whether or not this scheme woulc. be competitive, in terms

of competitive efficiency. It certainly would be a viable scheme if you

used scaling and a resikual formulation. But a direct attack on the energy

for a non-positive definite formulation is clearly not possible using mini-

mization algorithms.

COMMENT: But you could use it as an extra problem rather than a

minimization problem. I mean certainly the basic philsocophy of the con-

jugate gradient has been extended to arbitrary operators, at least theoreti-
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cally. So, in principle, it still may work even for non-positive definite

operators.

COMMENT: I want to continue with the discussion of intersection

of shells. The assumptions that you make in your shell theory probably

already tell you that you cannot have any rotation that's normal to the

shell; so when you join two cylinders you should be taking this condition

into account. Due to some other experience I've had I would never advise

anybody to analyze intersecting shells using shell theory. Especially if

you are worried about the stresses at the intersection.

GIBSON: Well, we don't have a very wide variety of elements

at present in this program, so there are not too many intersecting shell

type problems that we could do. About the only one would be where a

cylinder connects up with a flat plate. In that case as far as I can see there

would be no problem.

COMMENT: I'm implying there are certain implied conditions

in the shell theory that say you've got to take into account the fact that

you have no normal rotation throughout the shell.
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Abstract

The nonlinear anualysis of shell structures is studied by Loth the

Eulerian and the Lagrangian approach. Current methods are discussed on the

basis of both formulations. It is found that the widely used updated

procedure is a combination of both approaches. From the current standpoint

it makes use of a mixture of incremental stiffnesses derived by both approaches.

The 'bowing' effect was found to he the main source of error in this updated

procedure, and this effect was shown to be negli•ibJe wen a large number of

elements wer? used. Case studies investigate various aspects of the non-

linear behavior of arches, axisyninetric shells of ro--vo1ution, flat plates,

and arbitrary shells.
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Introduction and .eview of Lite,-ature

The develc-oment of nonlinear finite element analysis of shells has been

a part of "he genral progress in the development of the finite element method

for both linear a-7 nonlinear problems. It has both benefited from and stim-

ulat d further developments in finitL element theory and analysis. Recent

progr'ess in this area has been mainly in the displacement method of finite

elemen, analysis. Vie shall therefore concentrate our attention in this area.

In order to follow the progress in this area we first trace the separate dev-

elopment of nonlinear analysis for material behavior. This has taken a clearly

define~d path since the early papers on the tangent modulus method by Pope [1),

Swedlow and Yang £2), Ilarcal and King [3), and the initial strain method by

Gallagher et. al. [4), Argyris et. at. [5), Jensen et. al. [s). A linear incre-

mental stress strain relation can be developeB, and both the tangent modulus and

initial strain mcthod can be seen to be close together as shown by papers by

Marcal (7) and Z-inkiewicz et. al. (8]. There is general agreement that both

methods produce ecually good results as evidenced by the recent works using

either method. (U-mce" at. al. (9), Kamel et. al. (10]) The differences can

be summed up as d"fferenceL in development of techniques for solving the same

nonlinear probler.s in a number of piecewise linear stcpr.

Much p1'ograss has been riade in the nonlinear geometr-ic problem. Here the

earlier papers wa.-. based on a physical and intuitive approach to the problem,

gradually transferring to a fir:,..r b'ase by drawing on the energy theorems. This

is in accord with C'evelopments in other areas of finite clement analysis. Thus,

from the earli- ra.er of turner et. al. £111 and Argyris £12) we see

a gradual trans f. :.nce to energy approachez; in papers by Gallagher et. al. [13),

}Iartz and Kapur [.!:, and Martin (15). eore recently., the dependence of non-

linear geometric analysis on the methods of continuum mechanics have been

brought out by Wiss..anr £16), Besseling [17), Oden [18), Popov and Yaghmai £19),

and flibbitt et. al. D2O). In this area there is less overall agreement on gen-

eral procedures aVi methods. A{ike ion) inear material analysis, preferences

have developed on placi ig the nonlinearity either on the left hand or the right

hand side of the cquation. We do not refer to the choice of solution method

but we do refer to the choice of retaining one or more stiffness matriccs in

the analysis. Th-i problem is somewhat clouded by ihe adoption either of an

updating or nonu.-*nting procedure in time, ic. by either an Eulerian (current

coordinates) or a O"an'ian (initial coordinates) point of view.
Reproduced from
best available copy. 486



In this paper we shall follow both approaches in order to understand

more fully the relevance of each'of the incremental stiffness terms. We

restrict our attention to static analysis of large displacement small strain

problems, since it is this area which has been well studied in the literature.

Bef.cre we leave the area of shell analysis we should note the progress in

the deve:o'nent of compatible shell and plate elements. The understanding and

analysis of these shell elements has stimulated the viewing of the finite element

method as part of continuum mechanics and energy theorems since it was in shell

problems that the importance of compatibility of displacements and rigid body

motion was brought out. In the class of compatible elements we have the

piecewise function method of De Veubeke [21), the isoparametric methods of

Ergatoudi- (221, the Hlermitian polynomials of Bognor, et. a]. (23), and also the

rational polynomial functions of Goal and Dupuis (243. Superimposed on all this

we have the isoparimetric procedures which allow the distortion of shell elements

to any arb-trary shell surface. More recently Ahmad et. al. (25] have

approached the shcll analysis problem by degenerating a full three-dimensional

element in one of its coordinate directions. Finally we mention the development

of general purpose programs which as allowed the pyramiding of previous

development in finite element analysis (see Ilelosh et. al. (26), and Marcal [27)).

This has led to an casy combination of both the nonlinear material and geometric

methods torether with the developed compatible shell elements which provide a

valuable tool for shell analysis. Because of the broader use of these general

purpose programs it is easy to justify the development of special procedures for

tying nodal points and degrees of freedom together and this has allowed the com-

bined analysis with shell and solid elements. This is particularly important

at intersection areas such as those studied by llibbitt and Marcal. (28)

Theoretical Considerations

In his section we summarize the essential components of a finite element

analysis by the matrix displacement method. We develop our formulation simul-

taneously on both an Eulerian (current coordinate x) and a Lagrangian (initial

coordinate X) basis. We shall first develop our equations in global coordinates

and then show the simplifications that can be achieved by working in local

coordinates.
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We first select a conforming displacement function for an increment of

displacement (du)

(du} = Cf(x or X)J {da) (1)

where a are tI'l undertermined coefficients.

if] is a function of position in the clement and is shown as a function

of x or X depending on the formulation axis.

d is a prefix denoting an increment of the quantity.

The undetermined coefficients are related to the nodal displaccments

(d;l by

(da) = CaCx or X)] (d;) (2)

The increment of strair is given by

(de) = [B(x)] (da) (3a)

for an increment of deformation in the Eulerian coordinate and by

(dE:} = 0(X3u) (da) (3b)

for an increment of Green's or Lagrangian strain.

For an increment of stress we use the linearized and generalized incre-

mental srress-strain relation for an elastic-plastic material as summarized by

Marcal [29].

(do) = (D] (do) (4a)

This relation is formed for shells by integrating the Eulerian stress-

strain relations (do) = [p (de) through the thickness for the direct force

N and bending moment M and by separating the strains into mid-wall strains

Sand rotations k

where N is the Otrect force per unit length

M is the bending moment per unit length

and the integration is performed over the thickness of the plate or shell.

For small strains and following Hibbitt et. al. (20) we may use an

orthogonal transformation matrix to write the stress-strain relations of (4a) -.n

Lagranglan terms. Since this discussion is best carried out in tensor notatio
48



we .hall let D mnk replace the matrix EDJ of (Ila) so that the Kircooff stress

increment dSij is given by

dSij = T Trk T sDmnk1 dErs (11b)

and Tim is an orthogonal rotation that carries the reference axis from a dir•c-
tion parallel to an initial material line element to a new direction parallel to

the current position of the same material line element.

In equation (Ob) we have used the assumption of small strain and the
"timiliar double transformation to convert the increment of Eulerian stress to

a \Irchoff stress increment. A similar double transformation converts the

Eule,.'in strain increment to a Lagrangian strain increment. In a continuum the

double Iotations do not affect the incremental stress-strain matrix ED]. How-

ever, th~s is nut so for shells, because of its directional properties along the

shell plane. We can trace many of the difficulties in geoitetric nonlinear anal-

ysis to this fact, since most writers have intuitively attempted to achieve a
realigih:.cnt of stresses and strains by updating of geometry. In subsequent

discussion we shal.l replace (fib) by its matrix form
(dSj = ED)(dF (6)

We now use the principle of virtual work to define equivalent forces (P} at

the nodes. For a virtual and non-zcro displacement L6u-J we have

= f LaeJ(osdV (7a)
V

f L61jSdV0  (7b)

V
0

We thus arrive at nmnlinear equations which define cquilibrium. 3n an integral

sense

(P) = jCca(x)ET1B(x)]TJ (dA (8a)

A

MP = [ClX) T[B(X,u)J T{S)dA (8b)

A
0

Some writers have chosen to solve (8) by a Nlmeton-R.aphson approach (Bogner et.at.

[30) aid Oden and I'ubitza [31]). Ilowever, it seems more feasible to solve large-
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scale iproblems in this area by a linearized and incremental approach. Such a

method of solution is a necessity when the material law includes some form of

deformation history dependence. An interesting linearized and iterative

procedure to sclving thls nonlinear equation has been described by Murray and

Wilson (32). Similar approaches have also been ddopted by Purdy and

Przemieniecki (33] and Stricklin at. al. [34].

We now cast the nonlinear equations in incremental form in order to solve

the equations as a series of piecewise linear equations.

dP = i Ca(x)]T[B(x)]T[D)]B(x)][a(x)]dA(dci}

A

+ d[a(x)]JT [B(x)]TWdA

A

+ J Cc(x)]1d(B(x)]T o(dA (9a)

A

Because of the small strain assumption and the observatio., that the differential

operator [B) is not dependent on rigid body motion

Td[P(x)] ( 0] (10)

and we may neglect the third term in (9a).

To understand the physics embodied in the second term we expand the (a]

matrix so that we work in local coordinates

[a(x)]T = T])T•u(x)]T (11)

where [T]) is a global to local transformation matriy. Thus we see that

d[a(x)] T d[T~x)JTCa(x)) T + (T(x)d T T

d[T(x)]T is the increment of rotation while d[a(x)]T measures the change inL~ an
shape of a shell element, i.e., its "bowing." We note that d[a(x)]T = 0 when

the element is sufficiently small and small strain is assumed.

The Eulerian approach therefore gives rise to an incremental stiffness

relation

(dP)= [k(0)3{d•} + [k (1)]{du- (13a)

where [k (0)] Is the small displacement stiffness matrix and Ek•I)] is the

initial stress matrix accounting for both the effects described by (12).
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This fornulation was used by Argyris et. al. [12] for beam columns and
decsrl!)ed for a triangular con.•tant stress element by Zienki-ewicz [35). The first
writers [12] have used an approximation which neglected tht, change in Cal and

Martin [15) has shaotn the imporcancn of terms derived from it. However•, the
important point thac was missed in this and subsequent discussions on [12] ona

[351 was that the equations being used were part of a proper Eulerian formula-

tion. Similarly we obtain the inzremcntal equations for a Lagrangian approach.

(dP}) f [a(X)]T[B(Xu)]T[D1[1(X,u)J[a(X,]dA{du}

A0

+ J [a(X)]TA[B(X,u)]T( S)dA (9b)
A
0

The first term on the right nay be sep,. ated into twc. stiffness terms, one of

which is the small dospiacement stiffrtess [k(0) and the other is the initial

displacement stiffness matrix [k(2)3. Thus (9b) may be rewritten

(dP') =k(0)](du) + Lk (2) ]{[-) + [k(1)](d.T) (13b)

It can be seen that since (13b) is written for initial global coordinates

[k()]I it includes the effect of changes of geometry due to both rotation and
"bhowing."

In the Lagrangian approach it is also advantageous to use a lczal

coordinate system. Then (to terms of order strain and hence sn.all) increments

of Kirchoff stress and ILagrange strain, oriented in the initial directions of

this local coordinate system, corrcspcnd to increment of 'true' stress and

increments of deformation aligned with the current dircctions of the same local

coordinate system. Thus by considering the usual increnental stress-strain

relation (0a) as a relationship between increments of Kirchoff stress and

Lagrange strain, we have a properly aligied plane stress condition. This result

was obtained from a full finite strain formulation of the equations in a

Lagranglan f-rame of reference by Ilibbitt et. at. [20) with certain approximations

on the form• of thie LD) matrix in Zhe elastic-plastic care.

Now that brtth the Eulerian and Lagranr ian approachcs have been completed,

we return to equation (13) nd cowpare the resulting clement stiffnesses. We

expect that for the sare level of appr.oximrition adolitcd tic shill. obtaiin the same
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quantd*ics by either approach so that in global coordinates

function of the current geometry and thus a function of the developing curvature

in a plate or shell element, i.e., its "bowing." This latter effect can be

neglected, however, if the elements are made sufficiently small so that arcs of

circles can be compared to straight lines. Many writers have used [k(0)(x)3

in combination with [k( 1)(S)) with an updated nodal system and also assuming a

linear connection between nodes, e.g., Martin [25), Murray and Wilson [32) and

Armen et. al. (37J. The explanation for the success of this combination ia of

course the smL.ll elements used. It may be noted that the same results could have

been expected by using the true Eulerian initial stress matrix [k ()(,x)] with

a smaller number of elements. This matter will be discussed further when results

comparing analysis with the different combinations of the element stiffnesses

have been presented.

Case Studies

In this section we shall present examples of beam, plate and shell

analysis to illustrate various aspects of the theory discussed earlier ana to

demonstrate analysis that may be applied to practice. The first example is

concerned with the use of an arbitrary doubly curved triangular shell element.

Hartung [38O'has discussed the need for such an element. The second example is

one concerned with stresses at shell junctions and brings out the need for a

change to solid elements at shell discontinuities.

The remaining examples illustrate the different large displacement

formulations in several sensitive cases. In these examples we compar_ two

formulations; the full Lagragian formulation and the usually adopted approach of

updating withuut the stiffness resulting from the increment of the [al matrix.

Three problems are considered; a shallow arch under concentrated load, a spherical

cap under a concentrated load and a flat plate, simply supported under a aniform

pressure load.

492



Cylindrical Shell Roof

In this exanple we examino the small displacement elastie-plastic

behavior of a cylindrical shell roof subjected to uniform vertical load. This is

the shell that has been much siudied e.g. in [50,51). This shell was modeled

with the arbitrary doubly curved triangular shell element of Dupuis [40).

Though no experimental work is available for comparison of this elastic-plastic

study, it is hoped that the results will provide a comparLson for other non-

linear analysis.

The shell geometry is defined as triangles in the region of the Gaussian

coordinates (01, 82) aitd Is then mapped onto curved triangular elements which

fit the cylindrical shell at the nodal points. The actual shell surface Is thus

approximated .y a snooth surface which has the same Cartesian coordinates and

the same tangent plane as the cylinder at each nodal point. NHiLn degrees of

freedom are associated with each nodal point viz. the three Cartesian components

of displacements and their first derivatives with respect to the curvilinear

coc.-dindtes 01 and o' The displacement functions are polynomials of the third

order in 81 and c2, corrected by rational functions to insure compatibility

betveen adjacent elements. The strain displacement relations used are those of

the Koiter-Sanders shell theory. Because the coordinates of the uisdeformed

middle surface are defined as linear combinations of the displacement functions,

the differential opcrator (B] vanishes exactly for all rigid-body motions. The

properties of this element, i.e. compatibility and rigid-body motion 'care found

to be important with respect to the rate of convergence for the elastic analysis

of this shell by Dupuis [40].

The analysis of the cylindrical shell shown in Fig. 1 was performed with

an elastic-perfectly plastic rascs naterial with the following properties:

Young's Modulus E = 3 x 106 lb./in.2

Equivalent Yie.d Stress c 6 x 102 lb./in.2

Poisson's ratio v = 0

The analysis was carried out for one quadrant of the shell together with

the following load schedule. A load was first applied which caused first yielding

in ihe most severely strained element in the sb,'.l viz. the eeri•ar element.

Then eleven increments of a tenth of that value were applied successively. As

shown in rig. 2, the shell is very close to Its limit loan. Figure 3 gives the
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load maximum strain curve for the shell. Curiously the maximum strain developed

in a transverse direction which suggests substantial ovalization of the shell at

the center. This is borne out by the plot of the progressive yielding at the

surface of the shell shown on Figs. 4 and 5. The numbers in each zone indicate

the load increment after first yield in which plasticity develoned at the

surface..

In concluding this case study we note that other features in the program

such as strain hardening and large displacement effects ý4l) though available

have not been exercised. Together these form a powerful tool for the study of

realistic shell problems. On the other hand this study is but a first step and

many points of interest have still to be investigated, for instance, the com-

parison of incremental elastic-plastic analysis and the limit analysis of shells;

in particular the inflitence of the large displacement effects. While it is well

known that those terms have a tremendous influence on the elastic-plastic behavior

of plates [29), there is less overall knowledge of the behavior of shells. In

addition to this it is also of interest to study the behavior of the shell due to

strain herdening according to an isotropic hardening )aw with that due to a

Kinematic strain hardening law. This is of particular interest in an example with

cyclic loading. It is hoped to report further on these points in a furture report.

Analysis of Shell-Nozzle Junction with Combined Shell and Trian-ular. Ring Elements

This earmple is included to show a combination of shell and solid elements

by the method of linear constraints [28). A mild steel shell nozzle Junction

under pressure was studied experimentally by Dinno and Gill [42). This same

problem was analyzed using the mesh in Fig. 6. Triangular ring elements are used

in ani arouna the weld section, and shell elements are used throughout the main

body of the shell and nozzle. Comparison of the finite clenent results with

experimental data is shown in rig. 7. The actual differences between the pre-

dicted yield loads can be seen in Table 1. The hybrid finite element results show

considerable improvement over a previous modified shell theory approach using a

band of pressure for the Junction [113). That theory was itself e large improve-

ment over the simple shell %neory.
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Shallow Arch Under Concentratea Load

In this example we investigate the convergence of both the updated (par-

tial Eulerian) and the Lagrangian approach using curved beam elements. In the

updated approach shown luize and in subsequent examples, we merely update the

nodal points but do not account for the 'bowing' effect. Figure 8 shows the

load central deflection relation for the arch. Twelve equal load increments

were used to obtain the results. The solutions can be seen to approach each

other with increase in the number of elements until the results are indistin-

guishable at 32 .tlements. The predicted buckling loads are still too high when

comparcd with the results of Mallet et. al. [44) for a four equilibrium element

solution and also with the experimental result of Gjelsvik and Bodner [45).

In the writers opinion a better curved beam element than the element used here

should be developed. The element used here is based on a specialization of the

axisymmetri6 shell of [116].

Shell Can Under Concentrated Load

In this example we study the behavior of a spherical cap subjected to a

point load. This is the example studied by Stricklin et. al. (,'7) using an

iterative nonlinear finite element approach. This example wi's also studied

experimentally by Evan-Iwanowski at. al. (118].

The shell analysis was made with a Young's Mlodulus of 10.0 x 106 lbs./in.

and a Poisson's Ratio of 0.30. The shell parameter is defined by

X 4-- a4 12(l-v 2 ) /(Rt)2 which results in X = 6. The actual experimental model

of (1183 had a shell parameter of X = 6.23. The analysis was carried out with

twenty equal'elements subjected to twenty increments of Load. Figure 9 shows the

load central displacement behavior of the spherical cap. The updated solution

though showing the same trends still do not quite agree with the Lagrangian

solution. This example is highly nonlinear [147) so that it is possible that

there is still a considerable bowing effect in the updated solution which has not

been accounted for. The Lagrangian solution is in reasonable agreement with the

results of Stricklin et. al. [(7) and in better P,-reenmnt with the experimental

results of [(481.
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Stmp._SPypo2ed Square Plate With Uniform Pressure

In this example we investigate the large displacement behavior of a flat

plate with both the updated and Lagrangian approach. The triangular element

used is of the DeVeubeke type and is described in [36). 7he analysis is carried

out for the simrply supported plate of Murray and Wilson [32) and of Levy [49).

The plate is 16 x 16 x 0.1 ins. with a Young's Modulus of 30 x 106 lhs./in. 2

and a Poisson's ratio of 0.316. Analyses were carried out with two, four and

eight elements respectively. The resulting pressure central deflection curves

for the nonlinear elctic analysis are .hown In Fig. 10. The two eight element

solutions show a tendency for the updated and Lagryngian solutions to come

together. Since these eight element runs took 30 mins. of IBM 360/67 time each,

the writers did not ctntinue with a sixteen element analysis. The results are

only in moderate agree.nent with the results in the literature [32,49). It is

noted that in [36], an analysis with an update and a partial initial displace-

ment matrix which accounted for the bowing effect produced better agreement with

the results of [32,46]. We see in the present update of analysis results, the

persistence of the bowing effect even at eight elements. Indeed Murray and

Wilson [32], employing sixteen elements, resorted to a special iterative and

residual correction procedure to include this effect. This effect is of course

simply accounted for by the initial displacement matrix Ek (2) in the

Lagrangian approach.

Discussion And Conclusions

In this paper we have summarized the nonlinear analysis of beams, plates

and shells, tracing the separate developments of nonlinear material and geometric

analysis. As shown elsewhere [36), both nonlinear effects are easily combined

in an incremental analysis. More s-'ess was placed on nonlinear geometric

analysis in this paper in an effort to clarify the basis for the many methods in

use. Our results suggest that though the full Eulerian approach is equivalent

to the Lagrangian anproach, the current use of the updated procedure may leave

much to be desired. The 'bowing' effect in the displacing shell structure is

not fully accounted for, unless many elements ere used. In addition the use of

flat plate eler.ents in a nonlinear situation results in a discontinuous surface

which may have an unpredictable effect. The amount of time taken to solve the

simple supported plate problem is of some tonccrn since many more elements will
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have to be used in a realistic struture.

We conclude our discussion with a brief summary of the state-of-the-art

in static nonlinoar finite element analysis. it appears that good theories

have been developed to account for both nonlinear material and geometric

behavior. Compatible elements have been developud for most plate and shell luJe

structures. Techniques have been developed to join the different types of

elements together. Sufficient studies have been performed to indicate the more

promising numerical methods. Much of the above has also been implemented in a

few general purpose programs. (As far as is known to the authors the full

range of the above feti,"e-s is available in ASKA and MARC 2). Therefore, the

state-of-the-art is such that significant practical designs can be effected in

the nonlinear regimes using the finite element method.
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TABLE 1. First Yield of Shell-Nozzle Junction
with Internal Pressure

LIMIT -OF PROPORTIOIALITY
1lb/in2 )

Experimental (42) 800

Simple shell theory [43] 340

Band theory [43) 630

Hybrid analysis 793
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QUESTIONS AND COMMENTS FOLLOWING MARCAL'S PAPER

QUESTION: I'd like to ask Prof. Marcal if in the updated version

or the Eulerian system, he additionally updated the geometry between nodal

points. In other words, do you take into account the change of the curvature

between the elements and reintegrate the element stiffness matrix again to

get these new properties into account?

MARCAL: No, I do not.

QUESTION: Well, can I suggest that this may be one way of taking

into account this bowing effect you mentioned. You can calculate the de-

flections by knowing the assumed displacement function between the nodes,

find a new shell geometry surface from these results, and then form your

new stiffness matrices in terms of this Eulerian approach.

I also have another question. You say you have solved problems both by

modifying the geometric nonlineariL in the stiffness matrix and also by

taking into account the geometric nonlinear effects as essentially an effec-

tive load. Would you comment on these two approaches as to their effect

on computation time? This might be considerable since in one case apparently

you don't have to recalculate the stiffness matrix.

MARCAL: We've shown that if you iterate you can show and prove

convergence providing you're below the first buckling load. If you're below

the buckling load, X is bigger than 1, and your rate of convergence is pro-

portional to the power of X at each iteration. So, when you're below this

buckling load, one would advise you to iterate, but as soon as you go up to
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a load that's close to your buckling load, that's the time to switch to the

tangent modulus method. So I place my bet on both sides.

QUESTION: The question arises here as whether to treat the plasti-

city as an effective load vector or via this tangent modulus method. I think

you should be consistent in the way you handle plasticity and geometric non-

linearity to avoid any penalties of mixing two methods. For instance, if

I ou treat the plastic effects as an effective load vector, then, in that case,

you should try to treat the geometric nonlinear effects as an effective load

vector to avoid recomputing the stiffness matrix as much as possible. How-

ever, if you're going to take into account the plasticity through the tangent

stiffness matrix, then I believe you might as well update the geometry just

as well, since you're going to have to reformulate stiffness matrices and

integrate through the thickness and over the area again. Do you have any

comment on this?

MARCAL: In some recent work with Dick Gallagher we've shown

convergence of this plasticity thing and I think there I would use the same

approach I outlined before. That is, when it' s useful to rr. ý I will iterate

on the right-hand side and when the iteration gets long I will switch. How-

ever, in doing this work we were stumped when we wanted to combine both

the plastic nonlinear behavior and the geometric behavior together in the

right-hand side iteration. We found it very difficult to form the constituent

stiffnesses. Maybe you have found the way around this. We just looked at

the equations and the cori ections we had to make and just threw up our

hands in horror. So, when you get the combined nonlinear geometry and

material behavior, just use the tangent modulus method all the way through
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because you've got it there anyway. Do you have some experience on this?

QUESTION: Up until now we have beer. using the plasticity as an

effective load vector and accounting for the geometric nonlinearity by

modifying the stiffness matrix. We don't know whether this is the best way

of doing it. This is what I'd like to evoke some more comments on if any-

body else has experience.

COMMENT: I'm doing a lot of work involving thermoplastic

analysis in solid bodies and I've used the tangent stiffness approach basi-

cally because the temperature load is present and stiffness matrix changes

anyway. But I found that the time that you spend to solve the equations is

so much greater than generating the stiffness matrix itself that Im looking

for improvements in solving the equations and not so much in say this other

iterative approach. Currently, the ratio is about 3 to 1; one second to gelier-

ate the equations, three seconds to solve them. So I find we use the updated

geometry and have no problems at all.

COMMENT: With regard to taking the loads to the right-hand side,

I will say this. We have used the method with some success and some

failures. In particular, if the nonlinear solution is about three times the

linear solution, it will not converge, even though you use something like

underrelaxation to help it. I might point out in the same regard that the

present method which we are using is the incremental approacL with a one

step Newton Raphson corrector. The one step Newton Raphson corrector

is quite significant in that it keeps the solution from drifting away from the

true solution.
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QUESTION: Could you comment on constitutive relations and

which ones you should us,-?

MARCAL: I think here I'm just covering all bets. I have a

student programming the Lee type constitutive relations for dynamic work,

and we're just starting to do some work on kinematic hardening. This is

just to put it into the equations. I guess my philosophy towaras this general

purpose program is that we shouldn't make decisions in advance as to what

type of relationships we will have. Just allow flexibility to evolve some

reasonable rules for certain problems as time goes on. For instance, if

you're worried about thermal fatigue and low cycle fatigue, it. appears you

have to worry about kinematic hardening. But if you're not worried about

that, you can get away with isotropic hardening.
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THE ANALYSIS OF- THIN SHELLS WITH A DOUBLY CURVED

ARBITRARY QUADRILATERAL FINITE ELEMENT

by

Samuel W. Key

Member of the Technical Scaff

Sandia Laboratories

1. INTRODUCTION

The finite element method which is a numerical solution technique has

been applied to the analysis of thin shells with considerable success.

A recent review article by Gallagher [50] provides an excellent perspec-

tive of current efforts in the analysis of shells by the finite element

method. Much of the current effort in shells has centered on the devel-

opment of doubly curved quadrilateral and triangular elements for use in

the analysis of arbitrary shell structures.

Comnpared to finite elements based on shallow shell equations and facet

idealizations using flat plate elements, the elements based on non-

shallow shell equations are rather limited in their extent of appli-

cation to shell problems.

*This work was supported by the United States Atomic Energy Commission.
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For the most part, only finite length txis,•.rietric cylinderr, have bee•n

tre&ted and only with elcments aligned with the surface coordinatec.

Only three papers have looked at anythIng beyond the cylinder eppli-

cations. A couple of papers only propose displacements to be used.

In a Ph.D. thesis, C. Visser[l] discusses a doubly curved trisngular

element based on linear membrane displacanents and the constant bending

strain but nonconforming nor'al deflection function of Bazeley, Cheung,

Irons, and Zienkiewicz[2]. No conputations based on this element are

presented.

Gallaoger[3] and GO.lagher and Yang[4] examine a doubly curwvd quadri-

lateral element defined by lines in a principle coordinate system. The

element has constant but dis4inct principle crvatures, and is based on

shell problems are worked in Reference [3). The first is a finite length

circular cylinder with a line load around the midsection making it an

axlsymmetric problem. The second is a spherical dome of square planform

with a concentrated load at the center.

Bogner, Fox and Schmit[5] develop a cylindrical shell element again aligned

with the principal coordinates of the cylinder and based on bicubic dis-

placement assumptions for both the membrane and normal displacements. The"

consider a finite length circular cylinder loaded on a tiameter by concen-

trated forces.

Oden and Wempner[6] introduce the notion of a disc te Kirchoff hypothesis

and consider a shell element rectangu]ar in the coordinates of the reference
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surface. While they discuss rather general shells, only a cylindrical

shell is used "n the applications. The element derivation starts vith a

transverse shear shell theory where the reference surface displace;ments

and fiber rotations are independent vaxiableso At discrete points the

Kirchhoff hypothesis Is applied resulting in the fiber rotations being

defined in terms of the reference surface behavior. The residual trans-

verse shear energy is dropped frao the elements. The calculatiots pre-

sented are for a finite cireular cylindrical shell loaded at the midsection

by a circumferentially uniform radical force.

In a note Od-en[] discusses a quadrilateral element defined by coordinate

lines in a shell theory retaining general surface coordinates rather

than orthugonal principle coordinates. He suggests bilinear polynamials

for the membrane displacement and a bucubic polynomial for the normal dis-

placement. No calculations are presented.

Cantin and Clough[8] provide a rectangular cyli:..-3 - ,! eleuent by

usir, exact rigid body trigonometric terms in conJunction with polyric-ial

terms for the displacement fields. When the eletent curvature vanishes or

the size diminishes to zero, the membrane displacen,;ntG rduce to bilinear

polynomiels while the normal displacement approaches a bicubic polynomial.

Two applications are presented. One is a cylindrical panel supported at the

ends by diaphrams and gravity loaded. The other Is a finite lengt-.h circular

cylinder loaded across a diametez by concentrated forcea. For this last prob-

lem they give the deflection undci the load for various meshes for three dif-

ferent elements* One set of calculations are for the all bicubic polynomials

of Bogner, Fox and ScbuitC5J a set of t~lulations for their trigonometric/

polynotial combination element, and a set of calculations for the bilinear/
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blcubic displacements which are the same displacement assumptions as

mentioned by Oden[T). The results clearly show what the lack of explicit

rigid body freedoms can do to the bilinear/bicubic polynomial element in

this problem. However, the all bicubic polynemial element still maintains

an edge in either a mcsh size comparison or degree of freedcm comparison

for this problem.

ltey and Beislnger•9] put forth an arbitrary doubly curved qxadrilateral

element.4  A transverse shear deformation shell theory is utilized to re-

duce the continuity requirements on the displaccment assumptions at the

expense of an increased number of urknowns. Extensive applications of this

ela.!ent to various shell problems show that the rigid body freedons are not

well represented in this approach and that the stiffness of the shear defor-

nations alows couve•'taice to au vuzac!upLablu de&r"ee

Olsen and Tdndberg(1O) introduce a curved rectangular eJ =ent for cylindrical

shells. It i bazed on membrane displacement asr-tvptions which are linear

in the 9-xial. coordinate and cubic in the circumferential coordinate. The

normal displacement is a 12 term cubic elpansion used before for plate bend-

ing(fl]. An extensive vibration analysis is performed on a cantilevered

cylindrical panel.

GOeaue, Jones and Strcme •2) treat a quadrilsterial shell element defined

by principle coordinate lines, again making it rectangular in *.he surface

of the shell. Bicubic polynuials are ntilized for all of the displace-

ments, They consider edge bending of a hemisphere, the presslrization of

an ellipt~,c dome, both axisymetric problems, and the vibration mides of a

finite Length circular cylinder and a spherical cap.
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!trgyris, Buck, Fried, Hilber, Mareezek, and Scharpf[13) discuss at great

length without application a triangular shell element.

In a somewhat different approach to generating a stiffness matrix, Tsui,

Massard and Loden[14] put forth a rectangular shell element again defined

by coordinate lines. To generate the stiffness matrix, they start by using

an llxUl point finite difference mesh over the elements. In the interior

the field equations for a transverse shear deformation shell theory are

differenced and then solved subject to specified boundary deflections along

the edges which are defined by displacement and rotation variables at the

corner nodes. Thus, entry by entry, a stiffness matrix is generated. The

major difficulty encountered is the generation of nonsymmetric stiffness

matrices. As an application they examine a cylindrical panel idealization

of a gravity loaded arch dam, but have no other solution to compare against.

In a recent paper, Herrmann[15] examines a cylindrical shell element based

on a mixed formulation originall]v used in plate bending[16). Considerable

care has been exercised in including the rigid body freedoms for this element.

Again, a finite length cylindrical problem is examined.

In a forthcnming paper, W. Visser[17) examines a doubly curved triangular

element based on a mixed formulation due originally to Herrmann[16). The

element uses quadratic displacement assumptions along with linear bending

moment assumiptions.

In what follows, a doubly curved arbitrary quadrilateral element is developed

based on the discrete Kirchhoff hypothesis notion put forth by Oden and

Wempner[6). The 12 term cubic polynemial used in plate bending, [113, forms

the basis for the membrane and normal displacements. Biquadratic polynomials

521



are used for the fiber rotation descriptions. Extensive applications of
the results showr some of the features of this element.

2. SHELL THEORY

Shell-Theor

The treatment is one presented by K. Washizu In a series of lectures at
the University of Washington in 1962. A later treatment of this problem
appears in his monograph [18.1. Figure 1 shows the geometry of the ref-

erence surface.

'II

R a t+ ( a, P )

Figure 1.
Shell Geometry
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The principal coordinates in the reference surface are a and •. Normal to

the reference surface is the coordinate C. The principal curvatures of the

reference surface, 1/R and I/H are positive as shown. The upper surfece

of the shell is given by t÷(C + ) and the lower surface by ( An ele-

ment of length in the shell coordinate system is given by

2 A2(lc de 2+ (+) d 2 dC)"ds + d

where A and B are the Lame/ coefficients in the m, A-plane.

In terms of Cartesian components of the displacement vector, the deformations

allowed in the shell are of the form

u M((Y1,0,C) - u(cto) + Cf(co)

u (a, = v(a, ) + Cg(q,) (2)

u•(a, ,(•) = w(aF)

where the rotations f and g are given by

f w v)

9- B +

In a transverse shear deformation shell theory the fiber rotations f and a

are independent deformation variables and equations (3) represent kinematic

constraints reducing the theory to a Kirchhoff shell theory. It is this

transition from a transverse shear deformation shell theory to a Kirchhoff

theory that will be utilized below in the element derivation.
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The resulting Cartesian components of the strain tensor are given by

£+

e c 00+ CK 0

y + 2Cic
2e M1oo noaiT+ 7+

e e e

where

li + + w

cp Ao AB BO RDL

-o B43pAB a

K i x - (5)
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The equations of equilibrium in terms of the physical components of the

stress resultants are

A .01, + + AB I0

Q(BNm.LA(B )A ..(A)+M N'- 0 .r-+AB

t here

(,;,"CI 00+ d

N 01.Sa + !

Ra
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The reference surface tractions are denoted by Yi, CL and Y i, .Lnd the stre~s

resultants N =,•N , p S CEO mo andM UO are defined by

f 11+ f !1% + dC

t+

S -

N'i• (S''P + d C

t,-

son J yad

t+

t+

m + I- dC
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On the curve C bounding the reference surface S, the boundary conditions

are

M
orN + =N +A

S- V or -+ -B -

where the bar denotes a sr, -- °'.ied quantity., and.. referring to Figure 2,.

the force resultnnts are fe4 by

0 U(0 Cos a + 0 sin 
0

M =M - H aCos 0 + M. sin a 10

M .-H so -+M Cosa-

N M O cos @+M sin 0
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"j In Figure 2, n andZ are coordinates

tangent to the reference surface which

are perpendicular and tangent to the

edge of the shell, respectively. As-

suming the shell material to be aniso-

tropic, the stress-strain-temperature

relation is given by

e feli =Bi irsrs+GIJ •" (11)

Figure 2. Boundary Condition
Geometry

Here, Bijrs are the Cartesian components of the elastic flexibility tensor,

are the Cartesian components of the thermal expansion tensor, and AT is

the temperature change. The elastic flexibility tensor has the symmetries

B -B B mB
iJrs jirs = iJsr a rsij.

Assuming the shell to be in a state of plane stress, a c 0, results in

"B B 2B3 2B3 2B e111 =- 12 3 13.13 1112

B 112 B•22 2B223 2B2213 22212 e (12)

COC( 2B 1123 2B 2223 4B 2323 4Bt2313 4B 2312 2e Oc - 2a ~AT

a 23 2B 4B 43 4B 2e 2 at
1123 -2223 2323 2313 2312 McC

2B ~22~ 4B 2 3  4B1 3  143B.31 2 etCj 2Lo

'i112 '2212 I~2312 11l312 B1212  LeJ ~ z
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and carrying out the inversion gives

e 1

e

=[c4 1 2e oc [] AxT. (13)

2e

The stress resultant-strain-temperature relation for the shell is obtained

by using the definition (8). It is

N OACL

M K0

M j

wsym. a

2 K

The equations of equilibriuu (6), the stress resultant-strain-temperature

equations (14)., and the strain-displacement equations (5) combined result

in a set of three fourth order partial differential equationa in the three

unknowns u, v and w to be satisfied in the region S subject to the boundary

conditions (9). These equations form a self-adjoint system and are equivalent
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to the following minim=n potential energy principle. The functional

TT(uvw), given by

T -T

C e
! £ Co C%

f1-T

uI,2K~ tD 4J] K - K (MiJ v y-~ ABdadftd a
rKK ~ V Yi C_

2K 2 K 0 2 K a
gL

?M

F, u + + Z

v • + Mp

~ds

C2  V A

is to be minimized on those functions u, v, and w which satisfy

the d~splacement boundary conditions on C1 - C - C2 and which result in the

displacements u,v, and w together with the rotations - + 1 and

S+ !L- being continuous with piecewise continuous derivatives. Here,

the strains are interpreted as functions of u,v, and w.
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It should be noted that these are the same continuity requirements as in a

transverse shear shell theory. That is, the displacements and rotations are

required to be continuous with piecewise continuous derivatives. In view of

the Kirchhoff hypothesis (3) defining the rotations in terms of the displace-

ments, it becomes apparent that an equivalent continuity statement would be

". the in-plane displacements u and v continuous with piecewise continuours

derivatives together with the out of plane displacement w continuous with

continuous derivatives and piecewise continuous second decivatives".

AxisyGetri€ Geometry

In what follows, the specialization is made for shells whose reference sur-

faces are portions of an axisymmttric surface. In Figure 3 the reference

surface coordinates -re 9 a 9 circumferentially and • = s, a length coordi-

nate, meridionally.

Z

Figure 3 • Axisymmetric

Shell Geometry

r
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I The Lame coefficients in this case beccme

A B r(s) 1 . (16)

""h• the r and z coordinates of a meridional line in terms of s, the cur-

vatures are given by the expressions

:1 dz/ds
r

1 dz dr d2r dz
7 -2- ds - e ds

R ds ds
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3. PREVVVS (.U ATEL SHLL EWMS (XBO-IB5)

In the finite element method it is the displacement assumptions within

an element which are the chief concern. There are rules and guidelines

to follow in making element displacement assumptions [l, 19, 20, 21, 22,

[1 23, 2k, 25, 26). These, of course, are dependent on the problem being

treated but beyond that the choice of displacement behavior Is arbitrary.

The displacement aenumptions that provide the best answers together with

a reasonable amount of required computin& are judged the best. In what

follows, a brief account of the previous elements considered is given.

This history is based on the element displacement assumptions tried and

the results of these assumptions. The element geometry Is an arbitrary

qu-tdilAteral on the surface of the Whell and within the element an oblique

coordinate system is used based on the element geemetry 1:27,28]; see

Figurs 14.

b

Figure 14
Oblique Element Coordinate System
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A transverse shear strain shell theory was used and the displacements

allowed in the shell were

UeOe-sC) U( uOs) + ~(re s)

u( ,s, = v(es) + Cg( Os) (18)

u (O,s,C) = w(es)

The displacement assumptions used were:

j KBO (uv,wv,f,g bilinear in a and b.) (20 x 20)

This resulted in e shell element too stiff in bending behavior and

requiring a very large nunber of elements. It waa judged unsatisfactory.

KB1 (u,v,f,g bilinear and w bicubic in a and b.) (28 x 28)

This was satisfactory and was used for sometime in a working program,

[29]. It is not cormpletely practical. requiring a large number of

elements.

KB2 (u,v,w bilinear and f,g bicubic in a and b.) (36 x 36)

This was less satisfactory than KBI and was dropped.

__3 A change in the shell theory was made so that u,v,w,yJ, and Y., were

the independent displacement variables;

u(e(,s,.C) =u(,s) + C a(y v

u C(OsC) = w(es).
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uV, YsC and y,, were taken bilinear and w bicubic.

This theory requires that the assembled normal displaccinent field

w be of class C"1 Since this was impossible to achieve and still

keep the elcuent ge••netry arbitrary, it was abandoned.

-. (u,v,w,f, and g bicubic in a and b.) (60 x 60)

The results of these assumptions wrere excellent, hov:ever, excessive

canputer time made their use impractical.

S(u & v bilinear, f t& g biquadratic, and w bicubic in aP and b.)(20 x 20)

In this element, the shear strain energy was dropped and a discrete

version of the Kirchhoff hypothesis imposed, (zero transverc.e

shear strain). On the basis of the nonnal deformation w the functionc

f and g are required to produce zero shear strain at selected pointc.;

l6" u

This was an excellent element in bending and computationally very effi-

cient. However, in the presence of curvature the rigid body behavior

was restrained to the point of requiring an excessively large number

of elements for a satisfactory solution in problems involving gross

motion over part of the structure.

The characteristic feature running through all these elements is an increase

in their complexity at each step of the way. The element KB6 developed below

is again even more complex. All of this is brought on by the requirements of

bending and rigid bode motion. Experience indicates even in a transverse

shear theory, solutions for thin shells can have a very complicated bending

behavior and must be representable by the element displacement assumptions

for satisfactory numerical behavior.
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4. PnSEa QADXkTAL SHELL w (W6)

The quadrilateral shell element KB6 (36x36) Is based on a "discrete"

Kirchhoff hypothesis. The Kirchhoff hýpothesis is applied,, mesh point

by mesh point, to independent reference surface displacement and fiber

rotation assumption&,. in Pssence., a shear deformation shell element is

reduced to a Kirchhoff shell element by restraining the shear deformations

to be zero at the mesh points and deleting the residual transverse shear

energy between the mesh points.

k

0 a

AxisyNetric reference surface

Figure 5. Element Gecuetry
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Element Geometry

Referring to Figure 5, the element is a quadrilateral in the reference

surface of the shell. Following Irons[27] and Ergatouais, Irons and

Zienkiewiez[2 8 1an oblique coordinate system a, b is introduced in the

quadrilateral element defined by the element :ecmetry. The resulLing

coordinate transformation is

A 4

4 4
(20)

U I ( )l+(1 -o(1+b)

The axisymmetric reference surface for the elemeit is given by

r- r(a,b) 0 - a ,b) z - z(a,b) (21)

The function A(a,b) is treated exactly and is given by Eq. (20). The

functions r(a,b) and z(a,b) are treated approximately and replaced with

bicubic polynomials in a and b. The result is
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q(a+,b) hl(a) h3(b) q,+ h(a) h (b) o

+ h2 (a) h2 (b) qb k+ hI(a) h2 (b) qj

Sh3 (a) h(b)(Al)+ h 4 (a) h (

+h(a) a-b(.+h2 a 3 b~

h (a) h 4(b)

+ h(a) ) + h(a) h3 (b)+ h2(a) h4(b)( h)(all h4(b )

where hl, h2,h 3 and h4 are second order Hermite interpolation functions given

for both a and b by

h (n3 - 3-, + 2)
(23)

h4 (r) - (1 +n - n - 2)
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The functions h1 , h2 ,h 3 , and h4 are shown in Figure 6.

+i

h h2

h 3

Figure 6. Interpolation functions hlh,, h3 ,h4

The derivatives in a and b are obtained from

(/)s , inm()m i, J, k,

k *)me) ( ,) mm=i,j,k,j (24)

The function q represents either r or z. Fo tho r cc••&i-'ate t11 e deriva-

tives in s are obtained from
- sin N , m i,J,k, i (25)
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and for the z coordinate the derivatives in s are obtained fran

as co yp m = iyj~kyj (26)

For the second derivatives in a, a value basied on the change in cD frcn

mesh point to mesh point is used. The derivatives needed to calculate

the curvatures are obtained from the bicubic expression (22). This treat-

ment of the reference surface is sultable for arbitrary surfaces; however,

the expressions (24) will then contain additional terms.

These steps provide (he needed flexibility in element gecmetry and result

in -n approximate reference surface from whicn satisfactory curvatures

are calculated.

136 ""laarit Displaeera,;nt Assuu-Otions

In the ab coordinate system a 12 term polynomial is used to define the

behavior of the displacements u, v and w [30,31):

el +Oe+ 3 +C1 &2 +ab+ b2 + A3

+ 0 ab+ 09 b2 + CE,0b + rf lRb + CL32&b
3.

In terms of interpolation functions, this d.f~lection shape can be written

as U in(14(&)h 6 (b) + h6(a)A,(b)) u, + (e2(a)h6(b) + h 7( a)j1(b)) u 1 (27)

+(t2 (a)lCb) + h7(a)1 2(b)) uk + (1l(a)h7(b) + h6 (a)e 2 (b)) u (

.6 h. 3 )(01(b)(u) + h 4(a) 1(b)( + h4(a)4(b) + 3(a
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The displacement v is treated the same.- For the displacement w normal to

the reference surface, the same polynomial is used plus additional higher

order shapes to control the midside normal derivatives:

w -Qk(a)h 6 (b) + h6(a&)l(b) wi + +• +1 (a)h 4(b (28)

+ h (a)h 3 (b)y 1 + h (a)h (b)y 2 + h (a)h 4 (b)y 3 + h3 (a)h (b)y 4

The variables y,, 2 , y3 and y4 contribute only to the normal derivatives

along the sides ij, jk, ki and ji, respectively. The values of yi, Y2,Y3

and y4 are chosen to make the normal derivative at the midside an average

of the normal derivatives at the corners. This is an element by element

process since it is geametry dependent. This step provides continuous

derivatives of w at each midside node. Without such a correction, the

normal derivative to any side would suffer a Juup across the element inter-

face for irregular geometries.

The functions h3 and h 4 are given by eqs. (25). The functions fl,2,h5,

h6 and h are defined for both a and b by

1 1/2 (1 - T)

12 () = 1/2 (1+ +)

4(n) (0- 2n+ 2 ) (29)

h6 (n) -1/4 (rT3 - 2-n + 1)
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The functions h.,h 6 and h are shown in Figure 7.

A- h

h6.

Interpolation Functions h5 h6P h7
Figure 7

The rotations f and g are taken to vary biquadrvtically, defiaed by their

values at the viesh points i,j,k,f,m,n,o,p and q,

2 2- 2 2
f ,qf (a-a)(bW- b)f + ka + ...•)( b) + f ( a)(b)+

2 2 2 2 2 244

N 2 2_ 2,+- %bb +(2 f) a, a )b I

A~ I2 I2 2 .
2 .10 am.•+b)+ ( 2 + q(- -b) + g, (a 2 + a)(b- 2 ) + O

+ ao .-- 2-" ali+ q2,+ 2 2• 2)•.•

a_,_, a)_ _ + b))(i(1- a ,(b - b) + + - b
Sa 2 22

2~ 2+,(I o "( +(,+ b)+ +, a + 9, (:, 2 (b- .
gi' 2 2p qa1(b
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Mesh point values of u, v, f and g are continuous and have piecev.1se contin-

uous derivatives.

Discrete Hirchhoff Hypothesis

Rather than using the above displacement asstinptions directly In a trans-

veree sheox defomation shell theory, a discrete verrion of the Kirchhoff

hypothesis is used to define the nodal values of the rotations, f and g

after which the Kirchhoff functional (15) is used. Strictly spech-ing. the

strain energy due to the transverse shear defoniations between mesh. points

should be retained when only a discrete version of the Kirchhoff hypothesis

is being employed. Uowever, the convergent solution is a Kirchhof f solution

with zero transverse shear defon'astion energy•', so the energy is dropped fre,•

the start. This procedure has seen applic.tion in the past for various

choices of element geo.aetries and displacement shapes [6, 32,33, 34)]. Finite

elemerts vhiich have retained the transverse shear deformations and the

associated energy l-ve also been derived299,35,36,37]. They have been, in

many cases, excessively stiff in their behavior and have proven to be only

partially suitable for general shell problems.

Here, the pointwise usage of the Kirchhoff hypothesis consists of using

Egsq (3) at the nodal points, i, J, k,J, m, n, o, p and q to define the

nodal values of f and g in te-ms of the ass•x•ed behavior of u, v and w.

In other words, the rotations f and g are forced to produce zero transverse

shear strains at the discrete points i through q. In view of the continuity

of the derivatives of w, the required continuity of the rotations is preserved.

The element KB6 is completely compatible for all convex quadrilat-ral geometries.

If (u] represents the 18 nodal values of the rotations f and g, and if

Cv) represents the 36 nodal values of u, v, w, and their first derivatives
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and the pointwise application of the Kirchhoff hypothesis (3)
r 0 b

can be written in matrix notation as

18x36
[u] = CBK] I(v (31)

Element Stiffness Matrix and TxAd Vector

In evaluating the Kirchhoff functional (15) for 9 cingle element, it is

necessary to express the element displhcements bnd strains in terms of

the nodal deformations. The d'splacanents are given by

5xl
u

5x54 54xlvv
L AO JAXI [X-] (32)

f

9

Here the displacement assitnptions (27), (28) and (30) are being written in

matrix form. The strain-displacement relations are given by

£ 1~1 Rr r -i 0 0 u

•o 0 L -1• 0 0 v

r0 as R

Yl 0 s r bs r 86 0 i 0 0 W

K% 0 0 1f r s

(33)

K 0 o o 0 .

1 b 1 ar a 8•a l• 8
a "'• F -r r b "r • r-
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or in matrix notation

V

6xl 6x5 (
[ ~[d] w (4

; f

g

Equa.tions (32) and (34) are canbinedl to give the strain in terms of the nodal

deforrntions as

6x1 6x5 5x54 54xl. 6x36 36xl 6x18 18x1
[d ][AOI A ) y ] (B + BX (u(35)

Using the dlscrete Kirchhoff hypothesis (31), the nodal values of the rotntions

[u] mey be expressed In terms of the displacements [v] ;thus,

FY6x1 [65x36 6x18 18x36 1 36xi 6x36 36x1
[30o+ [AX) 3K) J [V )= [A) [v 3

'V [5x36 5X18 18X361 36xi 5X36 36xi

: j
Thus., for a given quadIrilateral element, the functional (15) can be written

as

lt(v)) )[Cv fff tB f CDj CB)] rdeds (vf Cv)TJ[B -'0 4 ) rdedS

SOS

- f [vTfA) [Y] rd~ls - rv] j (A] [F]d*. (37)

so Co
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The quadxatic form in the nodal deformations is identified as the element

stiffness netrlx Lk) ;

[k ff [B]'[1 [Brdcds 38

So

The linenr form in the nodal deformations is identified as the element load

vector [f]

If I "ff CB] 0-1 + [](] ds+J[]CATLLd) 39
Su Cc

It is understood that the line integral in Eq. (39) is performed only on

those elients whoso boindsries are subjected to stress boundary conditions.

With this not!±tion, the functionhl (37) can be irritten as

" ,.'J --" P" L" J L J J ".',I L "

By su~wIng over the elements, the potential energy functional for the entirc

problem for this family of fiunctions is obtained;

T,([v]) I- [v)T[%, (Ti)

I IF (41)I]

where (V3 IV]

elements

CK] =E Ck3]
elements

IF] -E.• If 3 (42•)

elenents
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The bent npproxi-intion it; found. by mi:~n~irr~ii the potentlvl3 eiýrj'rgy

functionrirl (hIi ) witit rirpect to th1ose gonferhlized nodlTh2. dc-foin'it~ohr,

E)tha.t tire z~ot~ involvc.d In clip dicplacc'rwiA boundary coo,'1itionp.;

rJ I IV)I - ~IF I 0. (43)
b[V)

After the displaccm~ent field ihsa been i'ounid, the clemrent ctrvai~ii, vtres~es

and stress resultants are calJicul~ted. Froni Eq. (36), the rc-lererwc(.-,uirfrncc

strains wid curvature ere t*!nlculb~tr.d basca on tice niok3. adefornnirjtjc;:-. wit~h

these the Ca~rtesian cox~p~nitent of the ctrii,10 tenror (h.) vrceve.~~' Fraom

the strain:;, the Cfirter~ian comtponents of tile stress tcný,or i.rc v1c':.uizAt.00

iith Eq. (12). Using the reference surface strain and thie strrcsn restiltnint

strnin reliztian (14), the eleinent stress rersuitntsc Are ctileJtinie~d.

Rifgid B~ody F-reedomrs.

The miost dli4T'icult riffid body frcr~do-mis to obtnin are the infinm.tismol

rotations. This difficulty cfjn be illixtrrted by exasnd.ining rasur

z

F.~gure8
ScizAre CYlindricaJ. Element
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cylindrical panel such as the one pictured in Figure 8. A rotation about

a generator is one of the infinitisinal rotation freedoms that should produce

zero strain energy,. The circumferential niemrbrane strain in Eq. (44) is

I ail + a_ (44)

composc-d of both i contribution from the circumferential displacement u ant

the no.-.ial dirsplactn.ent w. The rotation about the generator requires at least

a linear behavior in w for srnall angular sarns in the circumference to approx-

irnate this rotation. If the mei1nbr.ne strain is to rarriain zero, then the cir-

cirnferential derivative in u must also be linear wnd of opposite sign. To

achicv, this, the displacement u must then be at least quadratic in the cir-

cumferential. variable e. It is these rotations of doubly curved elements

that preclude the us: of the bilinear polynomials, the simplest admissable

polynomials for the memnbrunc dipl•ceicint~s, found in element 1215. To avoid

the pr.ictical difficulties of nxznberin6, boundary condition specification and

incrcscd equ.tion bandwidths associated vith midride nodes and quadratic dis-

placement assumptions,, a cubic displacement assumption is used hern for the

membrane displacements u and v. This approach is coparable with that of

Bogner, Fox and Schmit[5] and Creene, Jones and Stromce[12] and contrasts to

that of Cantin and Clough[8] and Herrmcann[15] where explicit trigonometric

terms are used for rigid body freedoms. The higher order polynomial is much

more usable for arbitrary geunetries.
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5. N1•C114ICAL APPROX'I),ATIONS

In addition to thc approximations inherent in the fini.te clemetnt method,

additionil canpututional npprox×mdtions must be m,,dc. These arce done in

order to make the needed cm~iputations possible.

Inteprntion

The Integrationa required Vor the elcmient ntiffness matrix (38) and the

element 1od vector (39) are carried out numeriW1lliy with a 5-point Gnussian

quadratturo in the a, b clement coordinate s.ystcm. Referring to Fig. 9, a

function is intogritted as follows
b

Figure 9. Integration Mesh

ff(OPC)dA&3 uffrcn,b),s(a~b))Idet J(rtpb)jdadt-

Here the coordinates am and b , and the weighting coefficients Hm and Hn ire

specified by the Gaussian quadrature. The values used are shown in Teble I.
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TABLE I

Gaussian Quadrature Coordinates nd Weights, opal E38)

a b H, H

1 ,- 0.9-91798459 0.2369268850

2 - 0.5384693101 0.4786286705

3 0.0 0.5688888889

4 + 0.5384693101 0.4786286705

5 + 0.9061798459 0.2369268850

Thickness r-nd Tem-nerrsture

Info:.nation about the thickness of the shell and the tmnperature at the

inside and outside is supplied as data at the nodal points. In order to

find the thicknisses and temperature at the interior points, a bilinear

interpolttior, is used

t+(a,b) ti + t..
4 4~

aI8t(a~b,) t- A(I) i-.(I -b) + ... + At2 ( (l -a)(l + .b)(46

ATa~.,) AT±(C) + 6T + )

When the elast~c constants are temperature dependent, a value at the center

of the cleieat laver is -seda for that layer in the integrals in Eqs. (i4).

Meridional Coordinates

For each quadrilateral element the meridional e ,ordinate s is calculated

from the nodal point r, z coordinates and the angle between the uutward
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normal and the positive r-axis at each node. Referring to Fig. 10, the

arc length betv:een two nodal points of the same element is uppro,.,natedd

by a circular arc between th=a.

nn

Fir•ure 10. Reference Surface Arc Length

Thus, the meridional distance butveen m and rn is given by

where

S[(r r) 2 + (zn- m)21

- -6 -

S )

For axisymmetric shells, numerous approaches have been taLen in approximnting
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the mc~ildiotir1 nrc lungth, th'ý curvritmer, and theo i-oftcnence r-i-.urfcc

[:39) 40, 42.). They oil Ienxr v.aI~nrItics to one: rinoU'clr a~nd to the

trc:;t';cnt given lhere, sinLce it J.r. the tmoquantLitioc,; which ~r~e being

Sought, bt.sed on r. minirnnmi, of frivcn i nformL;ti.on nbout the shell.1

Elartrtie Ccnrat'i nt 3 )ntc-(,mrn .r,

The iritc-ri-ms it)r: (14) nrc riot e~ic~ly evalue~tc'd. The foll.cvinr,

-+ )-dr

t

D 12  "22 dC

t++

0 0 R

D 1 5  f C12 CdC

D 1 6 ?ci( - + !)dC

16~. RR5
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Dt+ + f- 2

-2 3 f 2

D214 = D

D~,D15

t+ 2 2 3 3 4

2 5 J 2 2  R It 6  2 R dlr 2

t- S

22 +2 32

D3 1- -~ + 4._...+ +L

DP. 6 6 2 C2

33f55(l W R

2 6R R~ is r 8R2

D34 1 D16

D.D35- D26

,t+ 2 2 3 3 3

R er - )e R - P d
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D45 /tCl 2 •2•

t+

D (C" 2 -(456

t+ 3 4D66 ~ ~C2" "s-+d

The thermal loaids 1 are irntegr'~ted :in the formn they are obtained for

Eq. (14).

6. EXAMPLE SO3 4IONS

The computer procfess based on the leltment KB36 iD called SLADE. It is de-

signed specifically for a shell whose reference surface is a portion of an

axisymmetric surface; it allows up to five separate layers and up to five

separate elastic anisotropic materials with ternp'rature dependent properties.

The program handles shells of variab].• thie1•nes• and allo•'s thiekmeBs din-

continuities along element boundaries; furthermore, it provides for both

normal and tangential surf'ace loads and for temperature changes through the
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thickness as well as teinperature voarintions over the refVriec tni'rlic.

The problems thnt foll.ow hove been used to evalutme the prorr:,,m and the

antlysis.

Curvature Study

The curvatures resultini from the approximn ted r ýfercnce rur'thcu hre n:ionl

the important p:trts of the anulysis thnt must be eyrmnined. Thai can bc do nr'

by consideringrt a spherical shell. Figure 31 sho;!s the max~imui merfdloC'i:2

curvature error occurring tir n function of the nu,:nber of finite e!(::e,-ntr

used along thc meridian of the sphere. It can be- seen thnt, vith cic;ht

elements spread over a 90-degree se~rnent of a Mcridian, the curvnture c"il-

culations begin to depend more on the accuracy of the iinput dri'a thrin oi

the approximations to the reference surfPce. The input info',m.ation for

this study is accurate to five digits. The cirCLrife'rentinl curveture errors

arc an order of ;a.gnitude sa.4ller. A more difficult situation is encoun-

tered vith an arbitrary element on a p.rabolic shell. Figure 12 shown such

an element. For this element the outward normal turns through an (angle of

9 degrees in the meridional direction and through on anglt: of 40 degre,:s

in the circumferential direction. The maximun error in the meridionnl cur-

vature is 3.95 percent, and the maximum error in the circumferential curw,.-

ture is 0.070 percent.

Membrane Study

A relatively simple membrane problem requiring a curved elemen', and involving i_

very riearly degenerate gemnetry in a, sphere under internal pressure. Uc:ing IIh(

smmo geometry and mesh an in the curvw~ture study, the errors in the radial diL.

placement and the in-plane stress resultant are shown in Figures 13 and 14. Tl..

element at the pole is very nearly degenerate. The two nodal points at the pol,:

have radial positions of r a 10 inches* This situation does not present any
difficulties for this problem.
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Nodal Point Coordinatur & Curvnttircs

r z 1

i 4.0 25.0* 3.6 17-30 .239 .02.1
J 3.5 40.00 5.1 19.6° .269 .030
k 2.5 15.00 7.5 26.6' .358 .072
S3.0 0.0- 6.A 22.6' .30 .046

z

10.0 Maxljnum error in is 0.070%

SMaxaurn error in is 3.95%

ks

Figure 12 Curvature Study
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Bending Study

Contained in this analysis as a special case is an arbitrary quadrilateral flat
plate element. As a conmporison with existing flat plate elements, a portion of
the thorough study of Clough and Tocher [Ei] was repeated. Using the symmetry of
the problem, a quadrant of a simply supported uniformly loaded square plate was ana-
lyzed. Shown in Fig. 15 is the convergence behavior of the XB6 element compared with
the elements examined by Clough an4 Tocher. The ACM element, Adini-Clough-Melosh, is
a rectangular element based on a 12-term polynomial. The M element, Melosh, is a
rectangu3ar element based on physical reasoning. The P element, Papenfuss, is a rec-
tangxlar element based on an incomplete bicubic polynomial. The HCT element, Hsieh-
Clough-Tocher, is a triangular element based on three subtriangles with preferred

polynomial expansions leading to a continuous displacement w with continuous deriv-

atives aw/ax and aw/Vy. The complete study and references to these elements are

contained in Reference i)].

4.2 Exact 4. 06 ••

4.o

n6

RICT

OH 3.6

a ____

X

S3.0

v• 2.8

2.6

2.2 2 8
' 1 .... 4 6 a

Nosh Size (n=z)

Figs. 5 Deflection ('QeffIclent 3OaIylo with Decroeaing Elament e 1ere a v

560



Also contained on Figure 15 is a quadrilateral elenent Q-19, based on four

triangles which in turn arc composed of three subtriangles each. Midside

nodes are i':,pl~oyed on the interior sides and constraints on the four exterior

s2.der; to provide compatibility. The element is by Clough and Felippa [42).

The pinched cylinder is a relatively simple bending prob]aem requiring a curved

element. The simply supported cylinder, pictured in Figure 16, is loaded by

point loads on a dimneter midway along its lcnjth. Aloisg the simply sapported

boundary the radial deflection w, the circumferential deflection u, the axial

load N and the bending moment M are all zero. By using the symmetry of thes n

problem only one eighth of the cylinder requires a mesh. The dimensions were

selected to provide a square nxn mesh over the region. Figure 17 shows the

deflection behavior both under a load and at 900 to a load when the mesh is

refined. For the case of a 1il mesh and a 2x2' Pesh the enswers were very low

reflecting the poor representation of rigid body: modes for elements spanning

90 and 45 degree sectors. The closed form solution comps from Valsov[43],

page 394, based on his exact theory of cylindrica3 ibells, page 298. Although

the deflection is plotted non-dimensionally, the problem cannot be nondimen-

sionalized and depends on Poisson's ratio and the radius to thickness ratio.

Concentration Study

Lekkerkerker[k44 and Van Dyke[45] have both analyzed an infinite cylinder

under axial load with a circular cutout. The problem has two planes of

symmetry which are utilized in the analysis (see Figure 18). The meshes

used, shown in Figures 19 and 20, are irregular meshes on the surface

of the cylinder with several nearly degenerate elements. They are located

in relatively ;uiet regions of the problem and are not recammended for use
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where the answers are of interest. The results of these analyses are shown

in Table II along vith the results of VanDyke[46). In Table IX, C6 is the

membrane stress, 0b is the bending part and C is the membrane stress at

infinity. It shoald be noted that the plot progrnms connect the nodal points

with straight lines and do not reflect the fact that the mesh is on the ref-

erence surface of the cylinder.

Table II

Stresses for a Cylinder Under Axial
Tension vith a Circular Cutout

Finite Finite
VanDyke [46] Element Solution Element Solution

Coarse Fine

C, 3.60 3.44 3.59
(4.6%) (.3%)

(C/. ±.59 ±.55 ±.
A (7.4%) (7.4%)

am/a -1.25 -1.08 -1.18@ B (15.7%) (5.4%)

%/brTe ±.8o9 ±.806 ±.8l
SB (.4%) (.)

A is at the side of the hole at r9 = 1.0 , z = 0.0

B is at the top of the hole at rO - 0.0 , z a 1.0
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Cz
C]Siin - supprted-9 Meshed Portion

I!

10

Radius, aL 10 in.

S-Thickness, t 0.1 in.

Hal. length,,= 15.71 in.

Modulus, E = I07 psi
Poisson's Ratio, v 0.28

D Et3

12 (1 "v2

Figure 16.

Simply Supported Cylind" ahed by Point Loads
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Radius 9.1"

Th1kckness 0.091" .--- Meshed Portion

Halt Lcngth 45.0"
Role Radius 1.0"

Loaded in Uniform
Tension

Poisson's ratio 0.28

Figure 18.

Cylinder with a Circular Cutout Loaded in Tension
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176 floda.1 Pol nt~s
14f8 U1cento

15314 Degrees m-0 Fr~ecom

Figure 19. Coaxse Mesh l.~,out
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589 Hodal Points

533 Efleents

5301 Degrees of Preed,=

Fig. 20. Fine Mesh Layout
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A relatively simple stress concentration bending problem requiring a doubly

curved element and involving a very nearly degenerate geaietry is the point

loaded spiere. Using the same geometry and mesh as in the curvature and
membrane studies, the membrane stress recultants for sixteen uniformly spaced

elements are shlwn in Figure 23. The element at The pole is very nearly de-

.4
generate. The two nodal points at the pole have radial positions of r = 10

inches and the point load is applied as a distribul-d shear load on this circle.

The closed form solution was obtained from Flugge [47], page 350.

Chernyshev [48 has proviaed an approximate value for the deflection under the
-- 4

point load. His expression gives -4.13 x 10 inches as an upper bound for

this problem and the numerical value froa SLADE for sixteen elements is

-3.91 x 104 inches.

Reference Surface Location Study

Of considerable interest is the effect the location of the reference surface

has on the answers for small radius to thickness ratios. The plane strain

ring in Figure 24 has been analyzed for a half cosine temperature load.

Three cases are considered; one with the reference surface on the inwde: one

with the reference surface in the middle and one with the reference surface on

the outside. The results are presented in Table VII along with a closed form

solution. The results indicate a very slight sensitivity to reference surface

location. The displacements vary by scmething less than 1%, while the stresses

vary by about a nalf a percent.
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10.- Circuferential
+-2-

f\ 0

0 0 0 0 0

0

I" k••'•lcl.Wonal.

'. 4

-108
i E a 10T psi

-1 v - 0.3
r 10 in.
t a 0.1 in.

4P - 10 lbs.

-16 - - Exact, F.ugge[47]

0 0 N~uerical, K36

-20

II I I.

0 10 20 30 40 50 60 7O 80 90
Polar Angle, • - Degrees

?igure 21. Sphere Stressed by Point Loads
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TO Cosa

Modulus, E 107 psi

Poisson's Ratio,v = 0.3
Coef. of Thenmal Expansion, rl 10-6

Peak Outside Tem, perature, To - 100F
In 'ie Temperature a 0

(temperature 1inear in r)

Figure 22

Circular Ring Loaded by a Half Cosine Temperature

Distribution on the Outside
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Table III

The Effect of Reference Surface Locction
on

Deflection and Stress Predictions in a Thick Ring

Reference Surface on thc Inside

Diameter Change Urdcr Outside Stress UndIcir In:•icu Stre.;r UJ':-.!cr
Peqlt Temrergture Peal: TemperAtitre Pe•.. '.- r•-i -

16 Elements .00795 in. -584 psi 5W) p1i '
@ 11.250

Exact .00798 in. -587. psi 589. psi
Solution I I

Reference Surface in the Middle

Diameter Chonge Under J Outside Stress lJ•rder IIn,;.(,(, 'c, n'eer
Peak Tempernture Peeak Tecirp-1,turve t*"',.

16 Elements .00791 in. -585. psi 587 pzi
@ 11.250

Exact .00794 in. -587. psi 589. pzi
Solution.

Referen~cc Surface on the Outside

Diameter Change Under Outride Stress Utnder Inside Szrebs Under
Peak Temperature Penl: Temperaiture Peik Tesneraturc.

16 Elements .00794 ir. -584. psi 586. psi
@ 11.250

Exact .00796 in. -587. psi 589. psi
Solution
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Rigid Body Mode Study

The deformation assumptions used to derive an element stiffness matrix may

not contain exact rigid body deformations. Rigid bc!y deforations are trig-

oncmetric in character and are only approximated by polynomials. As a result,

a stiffness matrix can predict restoring forces for rigid body displacements.

The strain-displacement relations used in KB6 give zero strainr for rigid

body translations and infinitesimal rotations for any geometry. An .eigen-

value examination of a stiffness matrix will reveal the energy associated

with given deformations as well as with rigid body motions. Three 1(6 elements

in each of three thicknesses were examined. In all cases six zero eigenvalues

were prese:nt, one for each of the six rigid body motions. This stuay is sum-

marized in Table IV.
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7. O0NCWMS'O1S AND OBSERVATIOIIS

The element KB6 represents a workable shell element. Its geonetry is an

arbitrary quadrilateral allowing irregular boundaries. It is a compatible

elemcnt corrcsponding to physical reality. It accounts for the coupling be-

havior induced by the reference surface curvature by using shell theory strain

displaccment relations in the etrain energý computations. It is an efficient

element requiring only the formation of a single element per quadrilateral,

since it has no subelement breakdown.

In retrospect, the advice offered by Greene, Jones and Strcme[12] in the se-

lection of shell element displacement assumptions is excellent. "The rigid

body motion of an element must be represented, at least approximately, in the

dsplacement functions. The membrane and normal displacements should all be

represented with equl accuracy. The displacement functions should be at

least of the competence of the bicubic. The continuity of displacement and

slope must be enforced, at least approximately, at the inter-element boundaries."

Probably one of the most striking comparisons that can be made is with the

Fourier series/finite elenent analysis of asymmetrically loaded axisymmetric

shells. In this approach the equatinns are first decomposed into circum-

ferential harmonics leaving only the meridional behavior to be determined.

A one-dimensional finite element solution along the meridian is then used

for each harmonic. The one dimensional finite element mesh provides the

smallest possible bandwidth which results in minimum storage requirements

and execution times. Even for a large number of circumferential harmonics

it is computational more efficient to use the Fourier series approach than

to employ a two dimensional gridwork over the reference surface of the shell.
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However, the advent.ages disappear vhenever symmetry is lost by cutouts, ciro,

cumferential chfiiges in moduljes or thlichn'ss, or circxtriferenti-.l changeb in

boundary cord4.tion,. These setric~; .erve to couple the hr.2%onicv rc•cuir-

ing the simultaneous solution of the mcrid- onal behavior in ench hanronic. In

this circumstance, the two diucnsonml miesh is co,,petitdve and in ;vany c 1r.cs

necessary in obtidzinG a solution.

With reaard to an extension to general shells, the problem appears to bc

on- of geometric specification rather thar a limita•ion in the elun;ent itself.

The shcll theory in Section 2 has already been simplified by azsuning tbab

the cocrdinater ,e and p, are principle surface coordinctes co•i.c-dinr, •ith

the directionr; of mninimum and maximum curvature. For" a free fori.. shell, it

is highly unlikely thac it will co:Ae with the prncJucle surface coordinates

aIready dcftacd. '-- An .e .uI.,A ... to 6Lart W111 4 Shlm U.t:v.Y
that does not assumne the use of principle coordinatcrFb..9j, then any convcnient

set of surface variables vould suffice. Next, it is necessary to locate the

shell reference surface in space and after selecting the mesh to specify the

outward normal or any other convenient pa'rameter at each mesh point. AU of

this will require the most sophisticated mesh generators yet devised to pre-

vent a return to hand inputting. It should be remarked that the essence of

shell theory is the geometry of the reference surface and only a faithful rep-

resentation of the true shell will provide meaningful results. Once these

difficulties have been overcome, the above treatment of the reference surface

and the displacement assumptions used will provide a suitable element.

In terms of alternate displacement derivations, there are currently three

other approaches that are being used. One is to use a transverse shear



deformation shell theory. Here, the primtary motivation is to obtain lower

I order continuity requirements on the finite ele.intet displacment absumptions

albeit at the expense of a greater niunber of unknown functions. This has pro-

tvided a great deal of freedcon in element shapes but two things have emerged

from this work; (1) the transverse shear deformations are very stiff in re-

lation to the bending behavior and distort the solution badly until they have

converged under element refinenent, and (2) for thin shells the solutions are

sufficiently complicated that higher order polynomials are required anyway to

resolve the detail in the solution[29,35,36,371.

Another approach is to start with a Kirchhoff shell theory with the three

displacement variables u, v and v and attempt to cope with the requirements

of having continuous derivatives in the normal deflection ., and yet retain

sufficient frecdom of gcometry and defor.ration that realistic problems can

be worked. With the exception of the flat geometry of the plate, this has

proven to be rather elusice with only elements along coordinate lines having

ocen developed[3,' ,5,7,12].

The third approach is based on a finite difference solution of the equations

in the interior of an element subjected to certain boundary displacements

along the edges[l).

The most diffic..ilt analysis for all of the el~ments investigated here has

been the infinite cylinder under axial tension with a circular cutout. The

solution to this problem is very complicated but is confined to within a

couple of hole radii of the cutout. Near the hole the fine mesh is required

to resolve the membrane portion of the solution but away from the hole it is

more than is required. The bending part of the solution appears to be
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adequately characterized by the coarse mesh. Parm of the difficulty in

examining this problem arises from the inadequate presentations of the

closed form solutions by Lekkerkerker[44] and Van Dy'e[4k5J. They are no

more accurate than plus or minus 5% making a 19; comparison impossible.

Their bending solutions are not nondimensional, since they depend on Poisson's

ratio.

Of the two element geometries that are widely used, the quadrilateral is

more efficient, both from a data preparation or generstion standpoint and

internally from a numerical standpoint. However, the triangle is much more

flexible in terms of matching the problem geaietry. It also has the advan-

tage of not requiring an auyillary coordinate system for its use. The "tri-

angular coordinates" frequently introduced are in reality interpolation poly-

nomials in the original coordinates.

A related problem area which may limit the current use of this element is in

the area of computer requirements. While the computer progrnm .written for

this element is virtually machine independent, it has been ý;ritten using, ran-

dam access input/output routines. More and more computers are having this

kind of input and output routine written for them, but they are frequently

awkward to use or unreliable. The present routines that are being used for

this element on the CDC 6600 are used with standard FORTRAN call statements,

and it is straightforward to write sequertial tape handling subroutines that

would affect the data transfer. A second difficulty will occur on machines

that do not have the core capacity, speed or 60 bit word length of a CDC 6600

computer. Problem sizes will become Limited, running times will lengthen to

577



half hours, and double precision calculations will have to be undertaken

to compensate for 24 bit business oriented work lengths.

Just as the formulation and solution of shell equations is an order of

magnitude more difficult than elasticity equations, it appears the numerical

Folution of shell equations is going to remain an order of magnitude more

difficult than elasticity equations.
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QUESTIONS AND COMMENTS FOLLOWING KEY'S PAPER

COMMENT: I think you should expand your list of other types of

curved elements to include the Ahman/Irons element which was recorded

at the 1968 Wright Patterson Air Force Conference. This is a degenerate

version of their three-dimensionalized iso-parametric elements and it

has a number of similarities to the type of element that you're describing.

The most recent paper they've presented describing that type of element

is in the July issue of the International Journal for Numerical Methods in

Engineering. In that paper, they describe both the quadratically curved

and also a cubically curved degenerate 3D element, which I think has

many of the capabilities of the type of element that you're describing here.

I think both your element and theirs have tremendous potential in future

developm ents of sophisticated shell analysis programs and I think both of

them should be considered simultaneously.

QUESTION: I'm trying to fathom these fast times. Do you know

anything about the difference between the lowest frequency and the highest

frequency of this idealized shell? This is lower bending mode behavior

weire seeing in movies of the Lockheed cone problem. These waves we

see are, I would say, comparable to the period of the lower bendiag modes,

is that correct? (Yes). Normally we would see high frequency response

from the very high modes of the shell superimposed on the low frequency

response and normally our integration time intervals have to be small

compared to the periods of even these high frequency responses for sta-

bility. I don't see any high frequency wiggles on your major mode responses.

How short is this two microsecon,' time interval compared to the high fre-
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quency modes of this system?

KEY: The highest frequency modes in this system are the

membrane modes. If you watch that movie closely on a smaller screen,

you'll see the meshes moving in a membrane manner with very high frequency.

The two microsecond time step is smaller than the period of the highest

natural frequency of the idealized system.

QUESTION: Well, how high is that highest natural frequency com-

pared with the first moce bending frequency? What I'm driving at is the

period of that very highest frequency sets the size of the time interval we

have to use while the period of the low frequencies generally sets the length

of time we wish to investigate. An in many dynamics problems, the ratio

between that high frequency and the low frequency is so big that with direct

integration methods it would take a long computer time to run. These times

seem very short; that's why I was trying to get at some of that information.

KEY: The highest natural frequency present is governed by

the mesh size and for this problem is 1. 6 x 10 5c/s. The first mode bending

is approximately Z x 10 3 c/s. The stability of the central difference time

integration scheme v~sed here is governed by the highest frequency in the

system with At less than one over ii times the maximum frequency. The

reault is 750 time steps required to calculate -che 1500 psec of response

shown. The time I quoted for the calculation war. that required ýor those

750 steps.

QUESTION: You have a 36 de-gree ^-f fracdom element and you use

NZ 18 nodal points around the semi-circle in that cone problem. That leads to
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a bandwidth in excess of 400. And there were a total of many, many

equations. So, you had to use auxiliary storage, didn't you?

KEY: That' s correct.

COMMENT: And even with that you had such a very fast solution

for 750 steps; just 17 minutes CP time for the entire problem. It's amazing!

KEY: It took 17 minutes to integrate the equations. There's

also a setup time which I didn't include in that 17 minutes. The storage

scheme we use requires only the nonzero terms in each row and an index

telling you the column ii comnes from; all we're doing is carrying out a matrix

product for aach time step.

COMMENT: The question has been brought up about the integration

step time in terms of the shortest periou of the system. It's been our

experience and I think the experience of most everybody working in stress

wave calc ulation in solids that what you want to do is to make the integra-

ticon step time less than some fraction, like 7/10, of the transit time of the

fastest wave in the system. That could be the longitudinal wave, that is, it

could be V. e bulk wave; it could possibly be a thickness shear wave in some

systems if you don't have the longitudinal wave represented. What puzzles

me about these calculations is the fact that such a wave did not show up as

higher frequency oscillation on these graphs. The only explanation I can

think of is that the frequency shown on the graph is the highest freqnency

of the system. Newmark has shown that with that central difference scheme

you've got to have a semi-steable respoDnzc of the highest frenuenrcy in the

system. It has to oscillate. There's no other way.
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KEY: If you look at the complete set of computations for

this problem, there is also a graph showing the axial membrane displace-

ment at the same nodal point and it clearly indicates the presence of mem-

brane modes and it has a very high frequency. And, if you look at the meshes

pinching on that closeup movie, you'll see the membrane in there as a very

high frequency. Everything that has been said about the highest natural

frequency in the numerical system is correct. People have unnecessarily

been panicked by "conditional stability. " Conditional stable integration

schemes have a critical time step below which the scheme is stable and

abo-e which the scheme is unstable and diverges exponentially. 1, or the

linear elastic problem presented, only frequencies present in the initial

conditions will be evident in the solution.

t
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A PROGRAM FOR THE NONLINEAR STATIC AND DYNAMIC

ANALYSIS OF ARBITRARILY LOADED SHELLS OF REVOLUTION

R. E. Ball, Associate Professor
Naval Postgraduate School

Monterey, California

INTRODUCTION

The design of many shell structures is influenced by the geor'etrically
nonlinear response of the shell when subjected to static and/or duiamic loads.
As a consequence, a number of investigations have been devoted to.the study
of the buckling phenomenon exhibited by shell. Most of the early works
examine the behavior of the shallow spherical cap, the truncated cone, and
the cylinder under axisynmetric loads. As a consequence of the lack of
information on the axisymmetric response of shells with other meridional
geometries and on the response of Ehells subjected to asymmetric loads, a
computer program for the geometrically nonlinear static and dynamic response
of arbitrarily load-A shells of revolution has been developed. The dynamic
analysis capability is a recent extension of the program developed by the
author for the nonlinear static analysis of arbitrarily loaded shells of
revolution1 . The program can be used to analyze any shell ,f revolution
for which the following conditions hold:

1) The geometric and material properties of the shell are axisymmetric,
but may vary along the shell meridian.

2) The applied pressure and temperature distributions are symmetric
about, but may vary along, a meridian.

3) The shell material is isotropic, but the modulus of elasticity may
vary through the thickness. Poisson's ratio is constant.

4) The boundaries of the shell may be closed, free, fixed, or elastically
restrained.

The guverning partial differential equations are based upon Sanders'
nonlinear thin ýhell theory for the condition of small strains and moderately
small rotations . The inplane and normal inertial forces are accounted for,
but the rotary inertial terms are neglected. The set of governing nonlinear
partial differential equations is reduced to an infinite number of sets of
four second-order differential equations in the meridional and time coordinates
by expanding all dependent variables in a sine or cosine series in terms of
the circumferential coordinate. The sets are uncoupled by utilizing appropriate
trigonometric identities and by treating the nonlinear coupling terms as
pseudo loads. The meridional derivatives are replaced by tle conventional
central finite difference approximations, and the displacement acceleyrations
are approximated by the implicit Houbolt backward differencing scheme
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This leads to sets of algebraic equations in terms of the dependent variables
and the Fourier index. At each'load or time step, an estimate of the solution
in obtained by extrapolation from the solutions at the previous load or time
steps. The sets of algebraic equations are repeatedly solved using Potters'4
form of Gaussian elimination, and the pseudo loads are recomputed, until the
solution converges.

Basically, there are four fundamental features of the method of solution;
(i) circumferential series, (2) meridional finite differences, (3) pseudo load
concept, and (4) the Houbolt timewise differencing scheme. Obviously there
are many other ways to solve the problem considered here, and there are physical
features eommon to many shell structures that have not been considered. Thus,
it is not surprising that there are several other computer programs currently
available, or under development. that have approximately the same, or more
advanced, capabilities for a nonlinear static and/or dynamic analysis*. The
purpose of this paper is to. compare results with previously published solutions
from some of these programs in order to illustrate the ability, or inability,
of the program to treat specific problem areas. In this manner, the advantages,
and disadvantages, of the method of solution will hopefully become evident.

*Refer to reference 5 for an assessment of these programs.
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THEORY

Shell Geometry

Consider the general shell of revolution shown in figure 1. Located within
this shell is a reference surface. All material points of the shell can be located
using the orthogonal coordinate system s, e, C, where a is the meridional distance
along the reference surface measured from one boundary, 6 is the circumferential
angle measured from a datum meridian plane, and C iE the normal distance from the
reference surface. The positive direction of each coordinate is indicated in
figure 1. For convenience, let the reference surface be positioned so that

f C EdC = 0 (1)

where E is the elastic modulus and the integration is carried ,It through the
thickness of the shell. Thus, when E is independent of . the reference surface
coincides with the middle surface of the shell. Further, let the location of
the reference surface be described 1, the dependent variable r, the normal distance
from the axis of the shell. Accordingly, the principal radii of curvature of
the reference surface are

Re =r/ [1 - (r') 2J

(2)
R = - r1-(rt)]'I/r"I

where a prime denotes differentiation with respect to s. Further, note the
"Codazzi identity

I

(.Re 'Kr I 1
- )/r (3)

Re

and the relation

r = -r/Rs Re (4)

*. Strain-displacement Relations

For a shell of revolution, the strain-displacement relations derived by
Sanders take the form

C, = U, + wl/R + (ý + ý 2)/2

- 6 = V'/r + r' U/r + W/R + (•2 + 2)/2 (5)

€se = (V' + U" /r - r'V/r + 0 9 )/2
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S S

and

x /rIx + r' 0/r (6)

K, = + f;/r- r' ,/r + - R ] /2

where c a C., and cso are the reference surface strains, xs' 8X' and x., are the

bending strains, U and V are the displacr-ients in the directions tangent to the
meridian and to the parallel circle respectively, W is the displacement normal
to the reference surface, and s .e, and 0 are rotations defined by

as=" W' + U/Ra

o W /r .i V/Ro (7)

$= (V' + r'V/r - U /r)/2

In these equations, and henceforth, a superscript dot denotes differentiation
with respect to 0.

Equations of Motion

Converting Sanders equilibrium equations to the equations of motion for a
shell of revolution leads to

(rS )1 + N;9 - r'Ne + rs/Rs + (I - Ic) M*e /2 = r(jmdC)62Ul•T2

"-rqs + r($s Na + to Nse)/Rs + [1(Ns + Ne) ]- /2

N; + (re)'+ r'N., + rQ/R, + r [(RA1
- Rl)Ms] /2 = r(fmd,)a 2 V/aT2  (8)

" rqe + r(§eN8 + in Nse)/R e - r [ý(N 8 + NO) ] /2

(K) + - rNs/R - rNR, -= r( md) 2wlT

- rq + (r$s Ns + r§%Nse), + (0 N5s + N)
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and

(rM,)I + M* - r' Mo .Q a, 0.(

"M + (rMSe)' + r'Me - rQe 0 0 (10)

when the effects of rotary inertia are neglected. In equations (8) - (10), m is
the density of the shell material, T is time, q5, q8, and q are the meridional,
circumferential, and normal components of the applied pressure load, Q and Q.
are the transverse forces per unit length, N , N and N are the membfane forces
per unit length, and M, M9, and Mse are theoenaing an& twisting moments per
unit length.

Constituitive Relations

The constituitive relations used in Sanders'nonlinear theory are the same

as those proposed by Love in his first approximation to the linear, small strain
theory of thin elastic shells. Noting equation (1), these can be given in the form

No = B ('a + "e)- "T (lla)

Ne = B (ce + Ves) " CT (l1b)

Noe = B(1 - u"e e (ll1c)

Me = D (no + Dxg) - KT (lld)

S= D (xt + Du 8) - XT (lle)

Mae = D (1 - D) 5se (11f)

where u is Poisson's ratio, assumed constant through the thickness, and

E -f E d C / (1 - D) (12a)

D - feE dC (1- P2 ) (12b)

ST = J'C E d (1 - D) (12c)

XT= J'~aT E d (ICl- v) (12d)

In equations (12c) and (12d) T is the local temperature change and a is the
coefficient of thermal expansion.
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Boundary Conditions

In Sanders' nonlinear theory, the conditions to prescribe on the aý-es of
a shell of revolution are

N Ns or U •so or V

Ss (13)

where and are the effective -hear and transverse forces per wnit length
definedSqy

%se = Ns9 + (3 R R1 )Mse /2 + (N s + N0) /2 (14)

•s=QS + M., /r - sNs - ýe Nse (15a)

Using the equilibrium equation (9) to eliminate Q from equation (15a) leads to

4S: [(rMs ) + 2Ms8 - r'M 6 /r - sNs - ý9Nso (15b)

Elastic restraints at the edge of a shell can be provided for by linearly relating
the forces or moment to the appropriate displacements or rotation. Consequently,
the boundary ccnditions may be given in the matrix form

N U

•s

f S S 8

where n and 7 are 4A• matrices and I is a column matrix. The values of the
elements of these matrices are determined by the conditions prescribed at the
shell boundary.
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METHOD OF SOLUTION

Fourier Expansions

The crux of the method used here to solve the nonlinear field equations is
the elimination of the independent variable 6 by expanding all dependent variables
into sine or cosine series in the circumferential direction. Only loading
conditions that are symnetric about a datum meridian plane will be considered.
Thus, the variable ' can be expressed in the form*

S

S= z O = (n)s cos n (17)
o n=o

where a is a reference stress level, Eo(ii a reference elastic modulus, and
the non~imensional series coefficient ,ljn is a function of the independent
variables s and T. Similar series expansions can be made for the remaining
dependent variables.

Modal Uncoupling

In order to eliminate the independent variable 0 from the problem, and
convert the partial differential equations to sets of uncoupled partial differential
equations, the nonlinear terms are treated as known quantities or pseudo loads.
Since every nonlinear term is the product of two Fourier series, each product can
be reduced to a single trigonometric series wherein the coefficient is itself a
series. For example, using equation (17) ý2 can be expressed as2 co Co

2 (o) X I TS(v) ,(n) cos mn cos nG (18)

0 m=O n=O

Since

coB m8 coo ne = - [cos (m-n) e + cos (m+n) e] (19)

equation (18) can be given in the form

a = 8 (n) cos nO (20a)
0 n=O

*Theoretically, the complete Fourier series including both the sine and cosine
expansions should be used because of the possibility of "odd" displacements occurring
under "even" loads, i.e. a bifurcation phenomenon. This aspect is not considered
here.
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where

(n) 0o Y p(i) (i+n) + 1 c bnj] (2ib)
2E(= •o i=O a

with

fofor n =0 (1 for i
'T = for n > 0 2 for i= n

Similar series expressions can be derived for the other nonlinear terms in equations

(5), (8), (14) and (15b).

As a result of the trigonometric series expansions, there is one set of
governing equations for each value of n considered; when only the linear "erms
are considered the sets are uncoupled. The presence of the nonlinear terms
couples the sets through terms like $e(n) as given by equation (20•,. However,

¶ by treating the nonlinear terms as known quantities and grouping them with the
load terms, the sets of equations become uncoupled.

Final Equations

Budiansky and Radkowski' have shown that for tht, linear shell problem each
set of Sanders' uncoupled field equations can be reduced to four secona order
differential equations provided M9 is replaced by the equality obtained from
the constituive relations (lid) and (lie)

!2

M = as + D (i-i, )', - (1-v*.,( (21)

to prevent derivatives of W higher than two from appearing. The same procedure
is used here. The four unknown dependent variables are the nondimensional series

coefficients u(n), v(n), w(n) and m(n) corresponding to U, V, W, and M respectively.
Three of the final four equations ar• derived from the equations of motign (8)
by applying the rotational equilibrium equations (9) and (10), the constituitive
relations (11) and (21), and the strain-displacement relations (5), (6), .and (7).
The fourth equation is derived from the meridional bending moment-curvature
relationship given by (lld) with K and K expressed in terms of the displacements.

s e

A convenient representation of these four equations is the nondimensional
matrix form

(n) (n)'' + F(n) z(n)' + G(n) (n) = (n') + 2 z(n)/,t2 (22)

where (n)
U( n)

Z(n) {w(n)
(n) ~( n)

and primes denote differentiation with respect to the nondimensional meridional

coordinate = s/a, a is a reference length,
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t is the nondimensional time T/TQ, T0 is a reference time, and . is the mass
matrix given by

-_ I 100

The scalar mass t is defined by
2 ,,d

p. a 2Jmd C
hE T

000

where ho is a reference thickness. Henceforth, the superscript n will be dropped
for convenience.

The E, F, G, and e in equation (22) ,'re matrices defined in reference 1.
The elements of E, F, and G are identical with those given in reference 6 for
the linear shell analysis, but the e matrix contains both the load and thermal
terms and the nonlinear terms.

The boundary conditions on z are obtained by applying the constituitive
relations (11) and (21), and the strain-displacement relations (5), (6), and
(7) to equation (16). This leads to the matrix equation

Ofz +(A+ .fJ) z= L-Of (23)

where fs and A are the nondimensional form of 0 and A. Matrices H and J are identical
with those given in reference 6 for the linear shell problem, and matrix f, as
define( in reference 1, contains the thermal and nonlinear terms. In this
formulation, C, and A are not functions of n, and hence, the same set of boundary
conditions applies for each value of n considered.

1patial Finite Difference Formulation

Let the shell meridian be divided into K - 1 equal increments, and denote
the end of each increment or station by the index i. Thus, i = 1 corresponds
to the initial edge of the shell and i = K corresponds to the final edge. A
fictitious station is added off each end of the shell at i = 0 and i = K + 1.

Tet the first and second derivatives of z at station i be approximated
by

"Zj= (/i+l21 zi-)/2 (24a)

.= (zi+l- 2z + zi-) 162 (24+b)
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where A is the nondimensional distance betweei stations. Substituting equations
(2 4 a) and (24b) into equation (22) leads to

Ai zi+l + B i i C+ (2z/at2)1 (25)

where

B i=- Ei / A + 2 AG
Ci = 2Ei / A - Fi

gi 2 A e i

and i= , 2 . . . K to insure equilibrium over the total length of the shell.

At the boundaries equation (23) must be satisfied. Thus, substituting
equation (2 4 a) into equation (23) leads to

1 0 H 01+ A )z, - 1 CiHz= I- 0f 1  (26a)
E+ 1o 1- 1 1

at the initial edge, and

1-Yn zK+l + ((aKK 'Y')K"• ~ 26~ -- ' K f•(b

at the final edge.

Timewise Differencing Scheme

The inertial terms that appear in equations (25) can be approximated by

Houbolt's backward differencing scheme. Accordingly,

= (2zl,• - 5zi,j.1 + 4 zi,j. 2 - z , W_0)/(6 t) 2  (27)

at i~i " 'jljJ2 ,-

where j denotes the time step and 6t is the nondimensional time interval. Thus,
substituting equation (27) into equation (25) yields

Ai zi+l,j + Biz i, + Ci Zi-lj= g, (28)

where
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* 2Ai

ýij 9j (602 i + - 2i,J-2 i-Zj..3)

and i = 1, 2, . . . K.

Solutior.: by Elimination

Equations (26a), (26b), and (281 constitute a set of simultaneous algebraic
equations in the unknowns zij provided gijý zi,j-ll zi,J-2' and zi,J_3 are

known. There is one such set for each value of n considered. The equations
can be arranged in the form shown in figure 2. Since these equations are
tridiagonal in the matrix sense, Potters' form of Gaussian elimination can
be used to solve for the z In this method, recursion relationships of
the form i~j

x xi-1,

(29)
P z + X

i, = i i+l,j i,•

are developed. A forward pass from the intial edge to the final edge computes
the xi,j, and a back substitution determines the zi,j* The matrices Pi, -i, and

1iare independent of the load and solution. Hence, they are computed only once.

Poles

The equations (2 6 a) and (26b) are applicable when the shell has edges. If
the shell has a pole, r=O, and special "boundary" conditions are required to
assure finite stresses and strains at the pole. These conditions are derived
in reference 1.
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SOLUTION PROCEDURE

As a consequence of the selection of the Houbolt timewise differencing
scheme, both static and dynami2 analyses can be carried out using essentially
the same set of equations and solution procedure.

Static Analysis

For a static analysis, 1.i=O, and the applied load is increased monotonically.
Thus. the index J denotes the load step.

The procedure used to determine z for the monotonically increasing load

is illustrated in figure 3 and described below:

1) The matrices Pi *Pi, and P3 are computed.

2) A solution is obtained for a specified increment of each Fourier
coefficient of the design load. All pseudo loads are taken as
zero.

3) The new solution is us-3d to calculate the nonlinear terms, and a
new value of the load vector g is obtained for each n. Additional
values of n may be introduced by the nonlinear terms.

4) A solution is obtained for the new value of g, for each n, and
is compared with the -"evious solution.

5) If the difference u en two consecutive solutions, at any
station and for any n, is greater than a specified percentage
of the maximum solution in that mode then step#3 is repeated.
However, if the number of iterations has exceeded a specified
maximum, *the total load is reduced by one load increment, the
increment is reduced by a factor of 5, and this new increment
is added to the load. If a specified number of load reductions
have been made, the program ends.

6) If the two consecutive solutions have converged, another load
5. crement is added, provided the number of load steps is less
than a specified maximum. An estimate of the solution for this
new load is made by linear extrapolation using the two preceeding
converged solutions, and step #3 is repeated.

Since the method of solution is based on a nonlinear pseudo load approach,
the shell reacts equally, in a linear fashion, to any change in eitber the
applied load or the pseudo load. Thus, failure of the solution to converge in
any mode can be attributed to two types of nonlinear behavior. Both types are
illustrated in figure 3. The existance of a maximum or an inflection point on
the softening load-deflection curve A represents a type of behavior for which a
iolution can be obtained only below the point of zero or nearly zero slope.

601



-~ - ~ .~~r'- A •

g1  g~+ ( z + 4 Zjz jj3

and i = 1, 2,... K.

Solution by Elimination

Equations (22a, (26b), and (28) constitute a set of simultaneous algebraic
equatione in the unknowns zij provided gi, z, - ziJ2' and z are

known. There is one such uet for each value of n considered. The equations
can be arrr ,ged in the form shown in figure 2. since these equations are
tridiagoval in the matrix sense, Potters' form of Gaussian elimination can
be used to solve for the z . in this metbod, recursion relationships of
the form

Xi, = j P i i " - i _i-l

(29)

i i+l,J i,j

are developed. A forward pass from the intial edge to the final edge computes
the xi,j, and a back substitution determines the z ,j. The matrices Pi,FPi and

alare independent of the load and solution. Hence, they are ccmputed only once.

Poles

The equations (26&) and (26b) are applicab2.e when the shell has edges. If
the shell has a pole, r=O, and special "boundary" conditions are required to
assure finite stresses and strains at the pole. These conditions are derived
in reference 1.
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On the other hand, the existance of a stiffening nonlinearity, as illustrated
by curve B of figure 3, can also cause a convergence failure whenever the slope
becomes too steep. Thus, in general, it ts necessary to examine the load-
displacement behavior of the shell in order to determine the cause of the
convergence failure.

Dynamic Analysis

The dynamic analysis proceeds in essentially the same manner as the static
analysis. The only differences are due to the fact that; (1) the applied load
is not monotonically increased, but instead is a function of the time step J;
and (2) initial conditions on z and az/'ýt are required to start the procedure.
A brief description of the procedure used to obtain the response of the shell
for a specified period of time and time inciement is given belo-W:

1) The matrices Pi, 1i) and are computed.

2) The solutions at j = 0, -1 and -2 are computed for each n from the
specified initial conditions using the expressions

2i,0 = initial condition on z supplied by user,

(Oz/at)i 0 = initial condition on 2z/bt supplied by user

Z i - 6t (Bz/at) i = O: , ... K+l

iis-

An estimate of the solution at J=l is obtained for each n from

" il zi,o + 6t (az/at)ip

for i =0,1,2, . . . K+l.

3) This new solution is used to calculate the nonlinear terms, and a new
value of g is obtained for each n using the estimated nonlinear terms
and applied loads at j and the solutions at J-1, J-2, and J-3.

4) A aolution is obtained for the new value of g for each n and is
compared with the previous solution at J.

5) If the difference between two consecutive solutions, at any station

and for ary n, is greater than a specified percentage of the maximum
solution in that mode then step #3 is repeated. However, if the
number of iterations has exceeded a specified maximum the program
ends.

6) If the two consecutive solutions are sufficiently close, an estimate
of the solution at J+l is obtained byquadratic extrapolation from the
solution at j, J-l, and J-2. The preceeding solutions are updated,
and stbep#3 is repeated for the new time step j=J+l, provided the number
of tirin steps is less than a specified maximum.
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Two c nts are in order here. First, the approximations used to obtain
the solutions at J=-l and -2 are not the ones suggested by Houbolt. Houbolt's
approximations require a change in the b matrix at the first time step. This
in time consuming since it necessitates the recomputation of the P , P" andP i
matrices, and doec not appear to be worth the extra effort. Second, the time
interval is usually so small no iteration is required since the difference
between the estimated solution and computed solution is generally negligible.
However, when the shell becomes dynamically unstable, the solution may not
converge, even with itera'Aon. Thus, the maximum number of iterations allowed
should be small.
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BRIEF DESCRIPTION OF THE COMPUTER PROGRAM

The program desc.-ibed in this paper is a modified version of the program
described in reference 1. The revisions were made by personnel at the NASA
Langley Research Center and by the original author. The main difference
between the two versions is the addition of the capability for dynamic analysis.
AMother difference is in the manner in which core storage is allocated for the
solution vector z. The solution vector is now handled as a two dimensional
array instead of a three dimensional array, allowing the user the freedom of
prescribing almost any combination of meridional and circumferential unknowns
within the dimensions of the array. In the modified program up to 200 unknowns
may be specified so that the product of the total number of meridional stations
and the total number of Fourier harmonics must be less than 201. However, the
maximum number of Fourier harmonics that can be considered is still 10. Any
ccabination of harmonics may be used. For example, n = 5, 0, 22 and 91 is
allowed; there is no restriction on the order nor on the number.

A change was also made in the test for convergence. The original program
required two consecutive solutions to differ by less than a specified percentage
of the latest solution. This test was madg at every station, for every mode,
except when the solution was less than 10- . Experience with this routine showed
it to be too restrictive. Consequently, it was replaced with the requirement
that for each harmonic the difference between two consecutive solutions at each
station must be less than a specified percentage of the maximum solution in that 6
harmonic, considering all the stations, except when the solution is less than 10-
This new test for convergence appears to provide converged, accurate solutions
in fewer iterations than the original scheme. The significance of the convergence
test is discussed in the Applications section.

The output subroutine was also modified in order to present the data in
more compact form; the C4M0N and DIMENSION statements were changed to allow the
compilation of the program in any order; and several bugs were detected and
eliminated. The operational parameters of the program and the boundary conditions
are still. read in on cards, but the geometry and mass of the shell, the inplane
and bending stiffnesses, and the pressure and thermal loads are introduced
through user-prepared subroutines. The input and output data may be in either
dimensional form or nondimensional form, and no special tapes, discs, or
routines are required for execution. All of these changes have enlarged the
program to the extent that it now requires a core space of approximately 150,000
bytes on an IBM 360/67 digital computer and can no longer be executed on a
32,000 word computer.
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APPLICATIONS

The computer program has been used to solve a number of static and dynamic
problems for both axisy~metric and asymmetric loads. Several of these solutions
are presented here to illustrate either the capability or the inability of the
program to treat a specific problem area. All of the solutions are for shallow
spherical caps since that's the shell for which several published solutions are
available. The geometry of the spherical cap can be specified by the single
nondimensional parameter %. The value of X is increased when either the rise
of the shell H is increased or the thickness of the shell h is decreased. The
classical buckling pressure of a complete sphere is denoted by qo. The reference
time is taken as T_ = Rs /--7. Unless specified otherwise, forty finite difference
stations were used.

Static, Axisymmetric Examples

The first example is the clamped cap subjected to a uniform pressure q. A
typical load-displacement curve is shown in figure 4 for % = 8. The displacement
is the maximum displacement of the shell and occurs at a station approximately
half-way between the pole and the outer edge. Note that the nonlinearity is
the softening type and that axisymmetric snap buckling appears to be imminent.
The maximum load at which a converged solution can be obtained is referred to
as the final load, and in this case the final load appears to be the axisymmetrlc
snap buckling load. The final loads obtained for several values of X are
presented in figure 5 along with the criticaý pressures for axisymmetric snap
buckling presented by Huang 7 and Weinitschke . Forty, eighty, and one hundred
stations were used for X < 10, 10 : X ! 16, and X > 16 respectively. A
stringent convergence criterion of .002 was used for all runs. There is very
good agreement with the published results except for x = 4, 9, and 10, where
the present results are about ten percent high.

The second axisymmetric example is the clamped cap subjected to a
centrally distributed uniform pressure approximating a point load at the
pole. The final nondimensional loads P* are shown in figure 6 for several
values of X. Experimental results for axisymmetric snap buckling due to a
small finite area load given by Penning and Thurston9 and Penning1 0 are also
presented in figure 6. The experimental load-displacement curves for X > 15
show a well-defined, abrupt discontinuity in the displacement at the pole when
2 ' P* ' 3 . The region of buckling for this range of P* is in the neighborhood
of the pole. Below a value of X = 15, the experimental results show no axi-
symmetri snap, but a large majority of the load-displacement curves show
significant decreases in slope in the vicinity of P* = 2.0. Figure 7 shows
the theoretical load-displacement curve for X = 12, and a reasonably accurate
reproduction of the experimental results given in reference 10 for X = 12.56
and a small finite area load. Note that although the solution failed to
converge for P* > 2.27, snap buckling apparently is not imninent since the
experimental results indicate that no snap occurs at this value of load, and
the theoretical load-displacement curve does not show the significant decrease
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in slope that appears in figure 4 for the pressure loaded cap. Thus, the
final load is not a snap buckling load for X < 15. The cause of the convergencefailure is probably associated with a rapid decrease in slope.

Static, Asymmetric Examples

Liepinsll has published static and dynamic nonlinear solutions for the
simply supported cap subjected to the load q (1 --4. cos 6). His analysis

uses finite differences for all derviatives and themioubolt implicit
differencing scheme. The nonlinear algebraic equations are solved by the
Newton - Raphson technique in conjunction with an extension of Potters' method.
Plots of /qo versus 7, an average axisynmetric "deflection parameter, are
given in figure 8 for a static analysis for X = 4 and 8. In the present
analysis, fifteen stations and seven and nine modes were used for the two
values of X respectively. This descretization is approximately the same as that of
Liepins. Note that for X = 4, the present solution compares favorably with
Liepins' results, and the final load appears to be a buckling load. However,
for X = 8, the present solution failed to converge at a load approximately
ten percent below Liepins' final load, and buckling does not appear to be
imminent since there is very little softening. On the other hand, plots
of W/h at r = . 7 1 rmax and 0 = n/2 and ii versus q/qo, figure 9, reveal that
the portion of the shell under the maximum value of the load is definitely
softening. Since this appears to be a local effect, the average axisymmetric
displacement parameter Vis not significantly influenced by this large non-
linearity. The convergence criterion used obviously has some influence on
the final load*. The present program failed to converge because of the
softening nonlinearity in one of the high mode numbers. Perhaps Liepins'
convergence criterion, which is based on the square root of the sum of the
squares of the solution at each mesh point, is more desirable since it might
diminish the significance of local effects. On the other hand, knowledge
of local buckling is certainly desirable.

The program has also been used to estimate the bifurcat.ion buckling
loads of the clamped cap subjected to an axisymmetric u.,;iform pressure.
This was accomplished by applying a nearly axisymmetric load** to the shell
and introducing one or more asymmetric modes to the total response. As the
load approached the minimum bifurcation load of the modes considered, the
response in the critical mode grew very large. Eventually, the solution
failed to converge due to softening in the asymmetric mode. The final
loads obtained in this manner are shown in figure 10 for several values of
X. Also shown in figure 10 are the unsymmetrical bifurcation buckling loads
obtained by Huang 7 using an eigenvalue formulation. The agreement is very
good for all values of X considered. By varying the amount of asymmetry of
the load it was possible to estimate the sensitivity of the presbure loaded

* The final load obtained by the Irogram of reference 1 using the original
convergence criterion was .336 and .304 for X = 4 and 8 respectively. Figure

* 8 shows final loads of .342 and .384 for the new convergence criterion.
**Very little asymmetric load was required. A typical value used was .0002

* of the axisymmetric load.
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shell to imperfections. Figure 11 shows a plot of the normal displacement
in the axisymetric mode at r = 159rmax versus q/qo for several values of e,
the measure of the amount of asymmetry in the load. Note that as the asymmetry
grows, the final load is reduced. Thus, the pressure loaded cap appears to
be imperfection sensitive. Also shown in figure 11 is the initial slope ofthe bifurcation branch of the equilibrium path predicted by Fitch and Budiansky1

in their study of the initial post buckling behavior of spherical caps based
on Koiter's initial post buckling theory*. Apparently, as the asymmetry in
the load grows, the solution fails to converge when it reaches the bifurcation
branch.

Dynamic, Axisymnetric Example

The program has been used to obtain the dynamic buckling loads of clamped
spherical caps subjected to a step uniform pressure loading. A plot of the
peak of the deflection parameter V versus q/qo is given in figure 12 for
S= 5, 8• and 11. Also shown in figure 12 are the results for X = 5 presented
by Huanr13 and by Stephens and Fulton1 . The present solution was carried out
to t = 50 for X = 5, and t = 120 for = 8 and 11, with 6t = .05. The maximum
load for which a converged solution was ob ained is given in figure,.3 with
the critical preqpures presented by Huang.., by Stephens and Fulton ', and by
Stricklin, et al-'. Stricklin's computer program is quite similar to this
one; the main difference is that Stricklin uses a finite element formulation
for the meridional coordinate. Huang and Stephens and Fulton analyseL 're
for axisymmetric loads only, and they use finite differences and the I colt
scheme. Stephens and Fulton use the Newton-Raphson procedure. The present
results are in very good agreement with Stricklin's results.

Dynamic, Asymmetric Example

The final example is a comparison of the present results with Liepins',
solution for the nonlinear dynamic response of the simply supported cap with

4= 4 subjected to the finite duration step loading q(l -4- cos 0). The
results for the peak V versus q/qo are presented in figure TCfor the case
where the load is on the shell from 0 S t : 5. Fifteen finite difference
stations and 5 harmonics were used. This was the same discretization as
that used by Liepins. Both solutions were carried out to t = 15. Liepens'
time increment was .1; the ones used here were .1 and .025. Both programs
used a convergence criterion of .01. The predicted buckling loads are in fair
agreement, Note that the present solution did not experience a convergence
failure when the smaller time increment was used. This raises some questions
concerning the effect of the time increment and the value of the convergence
criterion upon the ability of the solution to converge. The numerical stability
of the scheme needs to be examined in the context ofo the nonlinear problem.
Further study is needed in this area.

*The load-displacement relationship used in reference 12 is based on an average

deflection parameter.
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PROGRAM EVALUATION

The examples presented in this paper demonstrate that the program can
accurately predict axisynmetric snap buckling loads and asymmetric buckling
loads for both static and dynamic loading conditions. It can also be used
to predict bifurcation buckling loads and to estimate imperfection sensitivity.
However, the program cannot enter the static post-buckling region*, and in some
instances, the point load for example, the final load is not a buckling load.
Thus, it may be necessary to examine the solution in some detail to ascertain
whether or not buckling is imminent.

The cause of these convergence difficulties is the pseudo load method
of solution. On the other hand, this method of solution is efficient. For
example, consider the dynamic, axisymmetric example. Each data point in
figure 12 required approximately 2 minutes of execution time** to march out
1000 time steps at 6t = .05. A static asymmetric solution to Liepins' problem,
figure 8, required approximately 1.5 minutes for U load steps for X = 4 and 3.0
minutes for 20 load steps for X = 8. The dynamic, asymmetric solution to Liepins'
problem, figure 14, required approximately 2.5 minutes to march out 600 time steps
at 6t = .025. A'Ui of these times are based on the F6RTRAN H Complier with APT = 2.
Thus, if this program is applicable to the problem under consideration, it can
compute the buckling load in a relatively short time.

One interesting feature of the program is its ability to predict bifurca-
tion loads. Because it uses circumferential series e;-ansions, it can find the
buckling load of each harmonic by considering only two modes at a time, n = 0
and n = n. Or, it can find the minimum buckling load when several modes are
considered simultaneously. On the other ha ', when finite elements or finite
differences are used for the circumferentir.ý discretization, there must be many
meridians in the network when the critical mode number is high. No computationi
times are available for comparison with the trtditional eigenvalue approach to the
problem, so it is not apparent whether or not this procedure is a desirable one.

There are other aspects besides accuracy and efficiency to take into consi-
deration when selecting a program. Ease of usage is very important. Does it
take one hour or many to prepare the input data ? Is the program easy to modify,
with confidence ? These questions cannot be answered by the author, since he is
biased and is too familiar with the program to make a valid judgeinent. Other
users must provide the answers to these questions. The author welcomes any
comments regarding improvements that should be made.

* The Newton-Raphson procedure is supposed to allow the solution to progress
into the post-buckling region. Studies of the nonlinear axisymmetric behavior
of the point loaded cap show this to be the case. However, Liepens' notes
that he was not always able to obtain a solution in the post-buckling region.
For example, note in figure 8 the absence of a post buckling solution for
X = 8. Similar difficulties were encountered in some of the dynamic problems.
Thus, it appears that the use of the Newton-Raphson procedure does not guarantee
post-buckling solutions.
** Execution time does not include compilation and linkage time.

608



There are several features of the program that need additional study.
For example, is it more effinient in a static analysis to use very small
load increments and few iterations or larger load increments and more

iterations ? What kind of load extrapolation is best for estimating the
new solution at each load or time step ? Should over or under relaxation
be used ? What is the significance of the value of the time increment on
the convergence failure ? What is the best convergence criterion to use ?

Future plans for the program include extending it to treat:

1) segmented shells,

2) complete Fourier series in solution,

3) orthotropic material behavior,

4) boundary conditions as a function of mode number and time,

5) discrete rings,

6) use of disc storage,

7) post-buckling behavior,

8) initial imperfections in shell geometry.

All of the above extensions are straight forward and should be incorporated
with little difficulty, except item #7; post-buckling behavior. That
extension is going to take some ingenuity. The use of the Newton-Raphson
procedure does not appear promising since the governing matrix would not
be banded. Perhaps t e modified Newton-Raphson technique developed by
Greenbaum and Conroy1 for a conical shell of revolution will work for the
general problem considered here. Greenbaum and Conroy also use circumferential
series expansions, but they place the nonlinear terms that do not couple the
sets of equations, i.e. the terms involving the axisymmetric mod n = 0, on the
left hand side and use the Newton incremental procedure.
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QUESTIONS AND COMMENTS FOLLOWING BALL'S PAPER

QUESTION: What does your simplification Z or assumption Z

mean? I don't understand what you mean when you say the applied pressure

and temperature distributions are symmetric about but may vary along

the meridian.

BALL: What I'm saying there is that we have not an axis

of symmetry but a plane of symmetry. I have ruled out the opportunity of

a bifurcation about that particular plane.

"QUESTION: Do I understand you correctly to say that essentially

your application of additional small load in any mode harmonic is equivalent

to the imperfection in that particular mode.

BALL: No, I said that I can use an asymmetric load to

estimate the sensitivity of the shell to imperfections.

COMMENT: Well, I think that you really do the same thing. I

think it's the same thing because you get the deformation corresponding

to that load and it really should mean the same thing.

BALL: It's a triggering mechanism in the nonlinear portion.

I've actually gone through an analytical study showing that in the limit

my program does indeed give a bifurcation load.

COMMENT: A comment on this last point on the asymmetric

buckling. It does appear you've put in this imperfection f geometry, but

I believe you've also put in an imperfection of stress which may or may not
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be important. Now, sometimes you find that stresses are not important,

but you have put this stress imperfection in there.

BALL: You're absolutely right. The stresses are not insigni-

ficant in part of the shell. So, in that sense, I do tend to deviate from a

stress-free state of a shell which has a very large imperfection. But as

the asymmetry of the load gets smaller and smaller, that stress gets very

small and looking at the results and the analytical work I've done, it can

be shown that the stress is insignificant when compared to the axi.syrrmmetric

stress.

COMMENT: I think Archer solved this problem of a spherical

cap with a point load some years ago and his solution failed to converge at

the same point your's did. He concluded that the shell fails there. It's

since been discovered that the reason it fails to converge is that the

method you use to solve the nonlinear equation is not a quadratically con-

vergent process. When you throw all the nonlinear terms on the right-

hand side, the rate of conver ence is too weak to achieve convergence

beyond the knee of that load deflection curve. I tried to solve the problem

by throwing the nonlinear terms on the right-hand side and found it didn't

converge and that's what rnade me go to the Newton Raphson method.

BALL: I said that when two solutions are sufficiently close,

I've converged. But what's sufficiently close? I can put in a very relaxed

convergence criterion and I can fool you all. Or I could put in a very strin-

gent one and I could hurt myself, since it won't converge simply because of

the fact that the machine operates only on a finitt number of digits. So, the

question of what is the best or most realistic convergence criterion is some-
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thing that none of us to my knowledge has really looked into. All of my

results are in single precision. The question has been raised by Prof.

Stricklin that maybe we ought to go to double precisi.on and he may be

right. I'm not sure. I use single precision on the linear dynamic Lockheed

sample problem and I got what I considar to be excellent results. But on

the nonlinear problem maybe I'll have to go to double precision. I don't

know.

COMTI•N.' I tried both single and double precision with the

method of throwing the terms on the right-hand side and the order of the

precision has nothing to do with it. It just doesn't converge. You can't

get around that bend even in double precision. But even in single precision

the Newton Raphson method does converge.

COMMENT: A further comment on this question of converg-ince and

non-convergence, If you look at the succeeding substitution of the nonlinear

terms on the right-hand side, you see that you are essentially doing a power

sweep method and the convergence is one over lambda. When you go beyond

the buckling load, the lambda is less than one and, in fact, you will diverge.

The interesting thing is that the equations tell you not only that you diverge

but also that you oscillate in a plus and minus fashion. One interesting

observation here is that if you realize that you're essentially doing the

power sweep method, then you can pull out from your successive iteration

at any load while you're climbing up this nonlinear curve. You can pull

out this lambda and tell you where you're going to buckle at the very

beginning.
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COMMENT: I'd like to point out that the method Ball uses to solve

this equation is not far fetched. In fact, it is one of the methods that

Bushnell and Almroth use whenever they are solving problems and it is a

modified Newton Raphson approach. If you take the second derivatives

and evaluate them in the undeformed state of the body, then this particular

solution technique reduces this exactly to the Newton Raphson approach.

BALL: I'll let Bushnell and Almroth comment on that.

BUSHNELL: Well, from what I understand in your method, you

don't refactor the stiffness matrix and in the modified Newton Raphson

method you have to refactor the stiffness matrix every once in. awhile.

You don't do it every time but if you applied it to the particular problem of a

sphere with a point load, you certainly wo'nld have to refactor the stiffness

matrix maybe about 3 or 4 times while you were going around the knee in the

load deflection curve.

ALMROTH: I think the essential difference is that when you use

a modified Newton Raphson method, you probably use the same scheme,

but when you refactor what you do is to take a new reference point instead

of the zero point and then put the nonlinear terms into the left-hand side

and continue the calculation and you get convergence at higher loads.

BALL: Yes, you're using a local slope. That's essentially

how I view the Newton Raphson procedure--as a local slope-local stiffness

method.

QUESTION: Evidently your program is user-oriented. Is there a

us'p.rs manual with this that other people can obtain?
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BALL: There is for the static version. It's been available

for about six months and can be obtained from NASA Langley Research

Center. The dynamic program user's manual will be ready within the

next six months.

QUESTION: And would this program handle such things as con-

centrate loads on cylinders or other shells of revolution?

BALL: Yes, it will, but of course it suffers from the fact that

the evaluation of the concentrated load with the Fourier series would

require the full ten modes that I can accommodate which then limits me,

with my present dimension statements, to 20 meridional stations. However,

this can be increased for use on the CDC 6600 or any larger machine that

has, say, 64, 000 words.
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FINITE DIFFEREI!CE TECHlNIQUES
FOR VARIABLE GRIDS

Paul S. Jensen
Research Scientist

Lockheed Palo Alto Research Laboratory

Finite difference analysis of shells has conmonly been carried out using
discretization grids having rectangular mesh elements (rectangular grids).
Such grids are quite ccnvenient to implement in a computer program because
the coefficients in the finite difference expressions are relatively easy to
calculate and the truncation error of the expressions is quite small. The
situation is particularly convenient when Iohe dimensions of the mesh elements
are fixed. In that case the difference coefficients are constants, and the
truncation error is particularly small.

The major difficulty one encounters when using grids with fixed rec-
tangular mesh elements is that of covering a non-rectangular problem domain
with his grid. Finite difference expressions corresponding to grid nodes
on or near a curved boundary require special treatment. Good general dis-
cussions of this are presented in Chapter 6 of Reference 1 and Sections
20.9 and 20.10 of Reference 2. As indicated in both of these discussions,
it is advantngeous to have nodes of t'e grid lying on the curved boundary.
But this cannot be accomplished in general with grids having fixed mesh
elements. Consequently, it is necessary in practical analysis programs
usirg grids with rectangular mesh elements to permit variability in the
sizes of the mesh elements.

The first difficulty one encounters when using a rectangular Zrid with
variably sized mesh elements is the calculation of coefficients for each
differential expression at each node. These coefficients depend in a non-
trivial way upon the distances to neighboring nodes in the grid and thus,
because of the variability in the grid, vary from node to nole. Because
the calculation of these coefficients can require a significant amount cf
computer time, it is prudent to calculate them only once for a given grid

and save them for subsequent application in the solution of the finite
difference equations.

A second difficulty arising from the use of a general rectangular grid
is the need for substantially more nodes in the grid than is actually
necessary to achieve a particular accuracy in the solution. The reason for

this inefficiency is illustrated in the two dimensional example of FiMure

1.1. The nature of the boundary between points (x2, Y.+l) and (x3 , yj )is

such that the difference yj+l - y• must be very sm51l. This results in

an unnecessarily close spaeing be ween nodes (xi, yj ) and (xi, yj÷)) for
each interior coordinate xi.
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yJ+1--

I' X2 X3 X4  Xi Xi÷1

Fig. 1.1 Illustration of Rectangular
Grid Inefficiency

Because of the size and complexity of most of the current structural
analysis problems being tzncountered, it is imperative that the inefficiency
described above be eliminated. The only apparent way to eliminate this in-
efficiency is to drop the requirement that the grid be rectangular.

Since the nodes of any two dimensional grid can be interconnected so
as to produce all triangular mesh elements, any general two dimensional
grid can be called a triangular grid. Note, however, that the inter-
connection of nodes to form triangles is not unique.

Triangular grids have been used for the finite difference so'uticra cf
second order partial differential equations for a number of years. Appar-
ently the earliest such application was ill 1953 by MacNeal 3 in connection
with a study of current flow through a thin sheet. Since then it appears
that the major application of triangular grids has been to the solution
of the neutron diffusion equation. Most of these results and references
to other studies in this area can be found in the vorks by Kellogg, Refs.
4,5,6 and 7. The methods of solution employed in these works were differ-
ence methods derived by the variational approach (see Sec. 20.5 of Ref. 2)
and the Ritz method. The latter is analogus in several ways to the finite
element methods used in mechanics.

There does not appear to have been appreciable application of triangular
grids to finite difference analysis of structures. Other than the diffi-
culties associated with calculating and handling the differonce coefficients,
there appears to be no reason for not using them in transient response pro-
grams utilizing explicit time integration.

For solution of structural prcblems by means of an energy formulation,
however, an apparent difficulty does give one pause. The classical solution
of second order problems using an energy fornulaticn entails the application
of Green's formula (see Ref. 8, page 280) to replace elemental area integra-
tion by line integration around an elemental boundary. This results in rather
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nice simplifications which, unfortumately, do not readily extend to the higher

order equations of' structural annlysis. The significance of this, however, is

just that the classical approach does not readily apply to structural analysis.

Fortunately, there are other methods for obtaining a minimum for the energy
functional, or more generally, extremals of functionals. The most obvious approach
is to cast the entire functional into discrete form (the discrete finite differ-
ence approximation of the f.unctional) and determine extremals of that functional.

The major question that has to be investigated then is whether or not the discrete
extremals converge to the extremals of the continuous problem. This basic approach
has been discussee in some length by D. Greenspan (Refs. 9, 10) and has been
applied by him to biharmonic problems (Ref. 11).

The triangular grids that have been used in finite difference computer pro-
grams appear to have been of a somewhat restricted nature. Hexagonal grids (each
interior node is common to 6 triangular mesh elements) appear to be popular for
second order problems and halves of rectangles for higher orders. The ideal is
to have a "node generator" which would sprinkle nodes on the problem domain with

a density varying according to some given "density function". This density func-
tion should then be an approximation to the truncation error in the finite differ-

ence expressions used, which of course depends upon the solution. If such a grid
construction scheme were realizable. then one could produce a grid possessing the

minimum number of nodes required for a given truncation error for any problem.
As bonuses, this minimality would both minimize the effects of round off error
and maximize the program efficiency (to the extent resulting from having fewer
discrete equations to solve).

Because of the dependence of the ideal density function upon the solution,
it is very likely that the ideal will never be achieved. Nevertheless in structural
problems one can go a long way toward the ideal by intuition. For examp)e, given

a cylinder under compression with a square cutout, it Is intuitively obvious

that the nodal density of the grid should be highest in the vicinity of the corn-
ers of the cutout, fairly high in the general vicinity of the cutout and relatively
low away from the cutout. Using a rough initial density description (function)
such as this, a well planned analysis program should be able to cheaply produce a
rough solution on the basis of which a more refined density function and solution
could be constructed.

In studies involving the propagation of a wave or disturbance through a

structure, one csn fairly readily determine a region R in the vicinity of
the disturbance origin within which motion is going to ie resiricted for some
time period TI. Thus for analysis during the period 0 5 t ! T1  a grid with
high nodal density in R 1  and very low density outside of R can effectively
be. used. Regions R2 , RY ... can of course be determined fAr subsequent time

periods T2 , T3 , ... as appropriate. For complex problems, the nodal distribu-

tion within each region could very well be determined iteratively as described

earlier.

DIFFERENCE COEFFICIENTS

Crucial to the success of general triangular grids is the ability to cal-

culate coefficients for difference expressions which have convergent truncation

error. rortunately this can be done, in fact, as one would expect difference

expressions of as high oider as desired can be formed under mild density and

distribution restricticis.
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Consider a domain D with a set of n nodes sprinkled on it.

denote neighbo g n . ." ( . 1. .I + ..- w

For any sufficiently differentiable funcation f(x,y) on D and a node(xl,yl) one can obtain values of the function at neighboring* nodes by f or-
mal Taylor expansion with respec÷ ÷' the node (xl,Yl). As will become
clearer later on in connection ;&ouncation error, it is convenient to
denote neighboring nodes by (x. i. yl+ •h) where we assume !ns n1t,
•i~Il c and 0O<h<l. Und. L absumption, there exists a consan

such that the value gi of fun,.:tion at the ith neighbor is given by

9i = f(Xl1 + *ih) Yl + Oih)=

f(xlyl) + h(&i -+ k f=x f• ) f(xl'Yl) +"'

m (2)

+ hm (i + i Y) f(xlyl)

_ m+l 6
-h1

In order to put equations (2) into matrix form it is convenient to introduce
the notation:

F (f 'AifIy

i = O, 1, ...,m and J = 1, ... , i

*The word neighbor is loosely used in this cont6xt to mean "near-by". The
nearest neighbor to any node is the node itself.
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where (Tdenotes the vector transponse,

H diag (h[ai
m d)i=1

r1 h 20
h h 2 (3b)

0 hm

where a = ( V8" - - 1)/2 , n = (m + 1)(n + 2)/2 and [a ] denotes
the largest integer not exceeding m ai

2 m
1 2 i e2 .. im

2 (2 m2

Tm .. .(3c)

1 F ...

L m m m m

and T

Gm= (gl g2  gn) (3d)
__m

Then there exists a constant vector

T
Cm = (61 62 " 6n) (3c)

A m

such that, as in (2),

Tm Hm Fm = G m + (4)

If the neighbor nodes are chosen so that the nodal matrix T is nun-
singular, then the finite difference expressions for the derTvatives of f
at the point (x ,yl) which appear in the derivative vector Fm can be ob-
tained from (l•y ,V
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Fm =H m Tm Gm + E (5)

where the error vector

E (h m+.e hm.e, hm.e 3  . he )T

S~m

with

e1

F . I geneal (5 show th= wTh thsfruaio hmeiatvso e

i can be calculated with an accuracy m(h ) by using nm = (m +1)I (m + 2)/2 neighboring values. Thus for exaofle the difference expressions

for all derivatives up to the fourth order require at least n4 = 15 neigh-

boring values and consequently the inversion of a 15 x 15 nodal matrix for

each point! In view of the computational effort required to invert a 15 x 15

matrix it is now appropriate to mention some ways of alleviating this problem.

In most problems encountered in practice, not all of the derivatives up
to tne given order appear and consequently finite differenc'e terms for all
of the derivative terms are not required. Fcr example in the solution of
Poisson's ecc.iation Af = -v , finite difference expressions for only f 2
and f 2 are required. In such cases the order of the nodal matrices canoften Ybe reduced.

For shell problems with derivative terms up to the fourth order which
satisfy a variational principle, the order of the nodal matrices can be re-
duced by minimizing the energy expression

I(f) =f H(f, f(1), f(2), da (6)

D

to obtain the solution since no derivatives of order higher than two appear
in the integrand H (the superscripts on the arguments of H indicate orders
of differentiation). Thus if the finite difference approximation to the in-
tegrand of equation (6) is
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H(f, f(1) f(2)) H(f, f(1) f(2)) + O(hJ)

then tlen(f) fD H(f, (i), (2)) do

D

I(f) + Ol(hJ)

Consequently convergence is assured for j > 1 which can be achieved using
n tn2 = 3-4/2 = 6 neighbors, even when all second order derivatives of f
appear in H.

BOUNDARY CONDITIONS

The nodal matrices for points on the boundary of the domain are con-
structed differently from those in the interior in order to setisfy the
imposed boundary conditions. For linear analysis the boundary conditions
at a boundary node p can be expressed in terms of the derivative vector
Fm_1  of equation (3a) by a set of rp linear equations

Bp • Fm1 K p

where matrix B is of order r x nm-1 and rank r < n M . If r = n -then B pis the nodal matrix at point p and the vector F_ is fully

determined there. When r < n the nodal matrix Tm-1 scformed by ad-
joining nm. 1 - rp rows of the form

(1 0ih eh . . . im 'l*h r )

to the matrix B corresponding to nm1 - r neighboring nodes and tne
right hand nodal vector G 1 is obtained by adjoining the unknown function
values gl to the vector• • Thus at a boundary point when the boundary
conditions do not fully detrmine the vector F 1 it is determined as in
(5) relative to its neighbors. Because of th oundary conditions, fewer
neighbors are required for the finite difference expressions at boundary
points which indeed is a happy situation since boundary points quite naturally
have fewer neighboring nodes inside the domain. Nonlinear boundary conditions
need to be linearized and solved iteratively using the linear technique diE-
cussed above with an appropriate iterative algorithm.

CURRENT STATUS CF INVESTIGATION

Besides the theoretical investigation presented above, several key pro-
grams for studying the feasibility of the finite differences for arbitrary
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grids (FIDAG) method heve been written. The following is a list of the routines
for analyzing a giver, grid that are operaticnal:

1. A routine for locating a user specified number of neighbors for
each node,

2. A routine for classifying nodes according to the neighbor pattern
(two nodes are of the same class if the normalized locations of
all of their neighbors are the same),

3. A routine for calculating and storing the inverse nodal matrix for
each class of node,

4. A routine for testing the condition (non-singularity) of e'3ch nodal
matr'x,

5. Input-output routines for reading in node point locations and dis-
playing the results.

Results for a sample grid are presented in the last section.

Occasionally one finds that the set of nearest neighbors in a given grid

is insufficient to determine all of the difference expressions needed. For
example, if the set of neighbors lie on a line with the given node it is im-
possible to determine a difference expression for a derivative normal to that
line. This situation is manifested in the analysis by a singular nodal matrix
T (see Equation 3c). Whenever the nodal matrix is singular or nearly singular
fmor a given node, the node must be reclassified, i.e., a new set of neighbor
nodes m'ist be selected. Nodal reclassification is accomplished by simply re-
placing nodes corresponding to rows of the nodal matrix which are linear ccm-
binations of previous rows. This algorithm has not yet been incorporated in
our program.

FUTURE POTENTIAL AND WORK.

Through the use of variable grids, there appears to be a potential for
substantial improvement in efficiency and capacity together with moderate
improvement in accuracy of finite difference methods for structural analysis.
There remains, however, more research effort to be done before variable grids
can be widely used.

The construction and handling of difference coefficients for a given grid
is reasonably well in hand. Although grids can presently be generated which
are superior to rectangular grids, more work is required in grid generation.
For analyses based on a variational approach (energy minimization), research
in grid tr.angularization is required. Numerical integration over a very skew
triangular mesh element tends to be somewhat less accurate than over one hav-
ing all acute angles. An algorithm is needed which: for a given triangulari-
zation of a grid, will modify the nodal connections so as to minimize elemental
skewness existing in the grid.
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SAMPLE PROBLEM

To illustrate the processes involved in analyzing an arbitrary grid in
order to produce finite difference coefficients, the FIDAG program in its
present form was applied to h'he grid shcwn in Fig. 1.

y

0.4. 12 43 ,7

0.3 9 010 611 *12 ,13

914 .15 16

0.2 17 418 019 #20 021

0.1 124 --5 26 _27 28 .2 .2

L30 31 - 132

0 f 1 1- 1 N

0 0.2 0.4 0.6 0.8

Fig. 1 Samp'e 32 Vode Grid

Comments pertaining to the coapuier output have been included right, on the
output where appropriate for reading convenience.
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FINITE DIFFEHENCLS FOR ARBITRARY GRDOS

N .32 Nal - S NBB u 5

LOC 32 5s 256 283 443 608

I X(I) M)I) CLASS

1 0.000 '4;000-01 -1
2 1.000-01 '000-O -1
3 2.000-01 q°000-01 -1
'..* 3.000-01 4.000-01 -1
S '4O00001 4.O000-01 -1
6 6,000-01 '.000-01 -1
7 6.,OU-01 4.000-01 -1
8 84000-01 4.000-01 -1
9 0.000 3*000-01 -1
10 1.000-01 3.000-01 1
11 2°000-01 3.000-01 1
12 3*000-01 3.000-01 1
13 4.000-01 3e000-01 1
14 5.000-01 2.500-01 1
1i 6.500-01 2.500-01 1
16 8.000-01 2.500-01 "1
17 0.000 2,000-01 -1
is 1.000-01 29000-Q1 1

19. 2.000-01 2.000-01 1
20 3,000-01 2.000-01 1
21 11O00-01 2.000-01 1
22 5.200-01 1.000-01 1
23 6.500-01 1.000-01 I
214 0O00O 1,000-01 -I
25 1.000-01 1.000-Cl -1
26 2.000-01 1.000-01 -1
27 3.000-01 1.0oo-01 -1
28 '4.000-01 1.000-01 -1
29 8.000-0 5.000-02 -1
30 40CO0-01 0.000 -1
31 6.000-01 0,(20• -;
32 Y7500-01 0.000 -1

N is the total number of nodes in the grid and NBI and NBB are the num-
bers of neighboring nodes to be used for interior and bounoary nodes of the grid.
This program utilizes a completely dynamic storage allocation scheme. The array
LOC is used to hold the memory allocation for the present Droblem.

As indicated in the grid definition table above, eacb n•!e is initially
classified -1 if it is a boundary node and +1 if it is an intcricr node.
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FINITE DIF•1E•ENCES FOR ARBITRARY GRIDS

pOINTEpS TO THE NEIGHBORING NODES FOR EACH NODE OF THE GRID

NODE pOINTERS
1 2 9 10 3 17 tl

2 1 3 10 9 11 q

3 2 9 11 10 12 1
4 3 5 12 11 13 2

.. S1 6 13 12 1If 3
6 S 13 7 13 4 Is
7 6 0 Is 1 1 16 S
' 7 16 is 6 10 23

S1 10 I8 z 12 27
10 2 9 3 Is 1 3

2t 3 10" 12 19 2
12 11 20 26 13 3 19
13 21 25 2 18 2 6S. . q - 13 21 6 15 22 S

27 7 20 2 16 23 22 6
28 1 2s 29 7 23 32

"27 93 23 21 10 2S I
30 28 17 19 25 3 11
ig 11 Is 20 26 10 12

. . .. . .2 0 1 2 1 9 ? 1 2 7 1 1 1 3

21 13 20 28 30 12 27
22 28 31 231 22 1 30
23 31 2k 32 15 29 14

214 17 25 is 9 26 to

2S 18 29 26 17 19 to

- "26 19 25 27 Is 20 11
27 20 26 28 19 21 3J

28 21 27 30 22 20 14

29 32 23 16 31 Is 22

30 28 27 22 21 31 20
31 23 22 32 30 29 28

S.. .32 ZT, 23 31 2Z 16 Is

The routine for locating neighboring nodes finds one more neighbor than

is requested by the user (variables NBI and 14BB). The extra neighbor is to

be used for nodal reclassification if it is required later on in the analysis.
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-. FINITE DIFFERENCES FOR ARBITRARY GRIDS

NODAL CLASSIFICATION

THE NUMIBER OF CLASSES IS 2

NO'DE 'NEIGHBOR ALPHA COoRiDINATES.............. 
-

CLASS NEIGHBOR BETA COORDINATES

-100 5.0-02 0.0 5.0-01 1.0400 0+00

2-1 o+0 100 0.0 -1.-)~O2 0.+0 1,0+00
-2 0.0 0.0 -10400 -100+00 -j.0o+O

3 -1*o0o0 1-0+00 Q.Q 1100 14*0-2 0#0 ago -10040 -1903 10+00 100

S 60-01. 5.:1 I.,0:iOo

W3 0.ago'0 0*0 .070 1.97010 .01000
4-6 20.0-0 50.-01 75.0o ago~0 .1.00+0

10 0.0 -1.0.0100 -7#5o 0.01
7 -100+00 -0.00 0.0 -100+00 1t0O+O
21 0oa 10400 -100400 "10.0 "1.0,00

"S 1.00 Oc6 .0-0 5V -0 .000 1.ou"Ol

I0 0.0 -1.00+00 10tj+0O 0.0 -1.0000
7 140+00 0.0 a*() -1.0+oo t;0400

810,00 -1:0+00 10. 0 00 - 1,0+00

9 -OO 3.0 -3.0 c0oo -0.000 ,+0

I2 0*0 -1.0.00 1.0.+00 o.O -1 0+00010 1.0.00 0.0 a.0 -1*0e00 1.0+00

13 0.0 -5010 0.+C 000 -7P-o0+05-O

14 -67.-01 :6.0 01 o*Q0 Jv5-O0 1.3-01
17 0.301 10, 9000 0. .0.o j.*0.o

-6 100+00 000 'I~o~o~n 1.0+00 -1.0+00
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FINITE DIFFERENCES FOR ARBITRARY GRIDS

18 0.0 -1,0400 |.0+00 0.0 -10+00

7 1.0+00 0.0 0.0 "I.0+00 1.0+00

i9 0.0 -1.0+00 1.0+00 0.0 "190+00
S7 1.0+00 0.0 C-0 "I•'300 1.0+00

20 0.0 -1.0+00 1|0+00 0.0 -1,0+00
7 I*o+00 0.0 0.0 "1.0+00 1.0+00

21 0.0 -1.0+00 0.0 1.0+00 -1.0+00
12 1.0+00 0.0 -00+00 5o.0-e1 1.000

22 -8.0-01 5.3-01 8.7-01 -1.3-01 -8#0-01
13 0.0 -6.7-01 0.0 1.0+00 6.7-01

23 -3.3-01 -8.7-01 6.7-01 0*0 1.0000
14 -6.7-01 0.0 "6.7-01 1.0+00 -3.3-01

24 0.0 500-01 6.0-01 000 140+00
"15 6.0-01 0.0 o SO-01 1.0+00 0.0

25 0.0 -1.0+00 1.0000 -100+00 100400
"-16 1.0+00 0.0 000 1.0+00 1.0+00

26 0.0 -1.0÷00 1.0+00 -I.0C00 1.0+00
"-16 1.0+00 0.0 00 1,0+00 1.0+00

27 0.0 -1.O00 |*0+00 -1.0+00 1.0+00
"-16 1*0+00 0.0 0.0 1.0+00 100+00

28 0.0 -8.3-01 0.0 1.0+00 -e.3-01
"17 8.3-01 0.0 8.3-01 0.0 o.3-01

29 -2.S-01 -7.5-01 0.0 -1.0+00 "7,6-01"-18 -295-01 2.6-01 1.0+00 -205-01 100400

30 0.0 -500-01 600-01 000 1#0+00
"-19 5.0-01 S.O-01 s.c-U! 1.0+00 0.0

31 2.5-01 -4sO"01 7.5-01 -1.0+00 1,0+00
"-20 500001 500-01 0.0 0.0 205-01

32 2.0-01 "q.0"01 -6.0-01 -9.2-01 2.0-01
"-2t 2*0-01 4oO-01Os 00 100"01 100+00
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After the neighboring nodes have been found, the local coordinates
(ot' k) of the neighbors for each node are calculated and normalized so
that the largest component max (a , Fl ... " I J, a ) = 1, where here
m represents either NBI or NBB. 'The neighbor ,oordina e set
Cl ' , ) 'ot , (•' )i for node 1 is now used

to define node class 1. Then for k = 2, 3, ... , n the neighbor coordinate
set C for node k is compared with the previously defined sets and if forsome "-• < k , C i = C k then node k is declared to be of the -,ame class as

node i - Otherwise a new class is defined by Ck *

Note that the output verifies the facts, obvious from Fig. 1, that nodes
2, 3, 4 and ( form one class, nodes 9 and 17 form another, nodes 10, 11, 12,
18, 19 and 20 form a third and nodes 25, 26 and 27 form a fourth class of nodes.

Having classified all of the nodes, one nodal matrix for ea0h class of
nodes is constructed and inverted. Since the nearest neighbor to Pny node
is the node itself, the local coordinates of this neighbor are k0, 0). Thus
in general the nodal matrix (see Equation 3c) will be of the form

where u = (1 1 . . . 1). Consequently the inverse will be of the form

1 0

T-1l
-B-lu B-

and so it is sufficient just to store the inverse B . The quality of the
calculated inverse is ascertained by comparing B 1 . B with I
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"FIPITE DIFFEREY'CES FOR ARRITr)APY GRIDS
_ E-NOL M _J,-J.X..Foý.? . .

5,00000010 0,00000 2,50000-01 0.00000 0,00000
- 0.00000 -5,00000.. -.. 0•000,0- .. 0.00000. _ 2,50000-01.

5,00000101 ?5,00000-01 2,50000-0" -5.00000-01 2,50000-01
1.00000+0 0,00000. 1.00000+00 0.On)00 0100000

S......0. 0 000 ........ L=00000 O . 0.0000. .....0.. ...100000+00-

ITs INVERSE

4,00000+00 i5,96046-0"l 5.96046"08D -1.00000+00 -0,000000
:l0,00000 -4,000000+0' "0.00000 "O.OOOOC 1,00000+00

__." 4 ,0 0 0 0 0 +0 0 ....5 ,.9 6 0-46 t• 0 . _• , • 0•. 6.- 0 8 __2 .0 .f 0 0 0 +ý0 0 .-: 0 ,0 0 0 0 0 -. ..

2,00000+01 2,00000+00 -2400000+00 -0.00000 -0,00000
0,00000 v4,00000+00 0,00000 0.00000 2,CO000+00

INVERSE I IS STORED STARTING AT 1

T.H•EIO•NPC TJ E IYVERSE AND HE ' ATR)X

1,0+00 -1,5T08 1,5-o0 0.0 0,0

1.5,0n 010 1,0+00 0.0 0,0
0.0 0,0 0.0 1.0+00 0.0

.. 0 0 0 ..0 . -0,0 .... 0,0 1. , 0 a

Thus for node 1 the finite difference expressions are

f 1 0 0 0 0 f

h f x -3 4 0 0 -1 0 f2

h f y 3 0 -4 0 0 1 f9

.5 h2f 2 -4  0 0 2 0 flo

.5h2 f -2 2 2 -2 0 0 f
"xy

.5 h2 "fy 2 0 - 0 0 2 f7
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F1P11T'. D1F!PF.:'Cr:S F0,1 AW'IITRA.RY GRIDS

THE NODAL M'T.Ix Fo' POINT CLASS 2

-1,00000+00 000000 1,ooo0,o+00 C.0ooo0o 0,o0ooo
. 1,00000+01 _.o1ooooo. 1,o00n0+00• 0.0o0o0 0,Oooo001000o •i, 00r)0O0OO0 0..,o0o0no 0.00000 1,00000+00
-1,O00000+0 -!100o0o+0e 1,o000,0+00o 2.000o0+30 1,,0•000+0030.0.0+0 1. il30.1 or IO~l po.Osoo0 i o+r

1. ~ OO0000O ~I. ,O~oO~ou 1 ~000l000 2. 0 0oo~l 1 r.flI)OO1.. ,0OO0J..+o'. .. ,.eQO0~g,0..~.. .,QP~qgo.±i.,n..-2.,OooO.O+O0 .t.000O0+

ATTEMIPTED TC E.CLASSIFY CLASS 2

Occasionally the neighbor set C for a particular class of nodes will
be insufficient to define all of the derivatives r:equired. Thits situation
is indicated by a singular nodal matrix. In such a case a different neigh-
bor set must be defined for each node in the class and new classes must be
formed as needed. The reclassification algorithm has not yet been incor-
porated in FIDAG.
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FVINITE DIFFPrERE'CF.S HR'I Ar~a!T:WAKY GRIDS

.TIHR_ NODAL tMiTl`VX.fR2QrQLNl..fLkSc; 3

-6,66647:,0Ot 0,00000 4,444-14-01 0.00030 0,00000O
-6.6666~7-Ml 0,0000-oo..4s.444.44!-0i. 0.001,1-0 0,00000

G.00000 -6,66667-Oi C0.00000( 0.003000 4,44444-01
"-6,66657-01 i6,66667"Oj. 4,44444-01 8,6687l33-01 4,44444-01

_j44 -1,..l333334-00 . 1,000004-00..

ITS INJVERSE--------------

7i,5n000-0t 7.50000-0! -0,00UPo -0.00o0ri -0.00000
-~3,00000+01" '!?#00000+0(3 -7.500004-00 3.00000+00 2,00000+00

Is,12500+01 1 j 2500..tloO_ rtlg00n) .- O .OCoo .. -0 ,000300.. ..
lli?500+0'l -!3,72529-09 -1.125flJ+Oo 1.125rC+oo 3e72529-09

-4,710000+00 !3,00000+00 -9,00000o+00 4.50000+00 3100000+00

INVE~RSE. 3IS STOJEDSTARTING AT 26.......

110+00 715!!09 0.0 0.0 000

'. 3.-0.0o 1.0+00 0.0 150
-195-on J,5!!nA 6*0-OR i.0oo0 1,5-0q
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-FV'JITE VIFFF.fiPICES FOR Aa~1TPARY GRIDOS

lý .NODAL.MATRIX -. O-P0 QtLNT CLASS 7 ~

0.00000 .t,30000+00 0.000n0 0.00000 1,00onp0oo

1.00000400 0,00000 1.OOOOnC+O0 0.0t0h00 0,00000
0,00000 `!1100000+00 0.00000 0.00300 11000"0+00

--I±O0 a 00 C00~00 00+00ý00-2.O0OOVQ00 ..11000-,0+00..

ITS INVE.RSE

-0. ,0000 n510O0000-01 5.000.1O-Oi. -0.00Q000 -0.000900
5,00030-01 T010O000O -0,000130 -5.00000-01 -0,00000

-.20.0000.. ... ,0O~L.00- .-l O . .0000 .. O,Qnonol
5,000TI500000-01 5roo-I 3.72:,-29'.09 -O.ooooo -5100000-01
5.00030101 0000000 0800000 5.00300-0i. 0,00000

INVRS 7 5 TOED TATIG- AT 76

1,0+00 0.0 090 0.0 010

010 ;3~o i.0~0O 0.0 090
-,65"'08 010 0;0 110+00 0.0
2,2-108 4 ,5j04.82#2y16 0.O&.0. . iO*Od ...

N Iode 10 (class 7) coupled expression f+0

*h 2f 1 (f1 ( -
2 xy 2 0+ +4 2 oo 0 -0 f0 +

0-
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FINIITE DIFFEPErCFS FOR ARBITtzARY GPIDS

THE NODAL MA4T'IX FOR POIN4T CLASS JO

O.oo00o 1,00000+00 0,00000 0.00000 1100000+00
_..i,00003 *-01.O 0000 ... -,.00.000+O0 .0.00000 ..OOOOAno

1,00000+01 0,00000 1,Q0ono+o0 0.00000 0,00000
0,00000 e1,0O0004O0 0,00000 0.00000 1,00000+00__ ."a, . '•7 " .$ ! , O.Ot0 g .+O.O _.Z ,.5.,I.. Lk . --1._,7! 3 .0 _ .,,.9 .00+ 0 _

ITS INVERSE

"-01-,000 . 5..- 000-0. 5o6ijCo-01 -0.o00o0 -o,onooo
5,00000,ot "O,00000 ,0,00000 -5.00000O-01 -0,00000

_0 1000" .. ,.00.00.0.-D.-5I.. O.IOP0-01_o.. 00000 oOO-0,00000 .4,66667-01 3.33333-02 -5.7-K923-01 5,76923-01
5,00000?e0 0,00000 O,000O 5.00000-01 0.00000

' - N V I•R S E " O 0 I S ST O R F {J S T A R T I N G kA . ..T• . . . . . . .. . . . . . .

THE_PRODUCT OF THE INVERSE AND THE MATRTX

1.0+00 0,0 0.0 -1.5-08 0,0
.0 . 0 +.00. + , 5 .. 0, .- 0. .......................
060 !2,2.!08 1,0+00 0.0 0,0
0.0 010 09 0 100+00 0,0
0.0 _. 7.,5_0.9_.,.909..7,"09.. 1,00+Q.................

Node 15 (class 10) coupled expression

• h2

Sfx = 00333 f + 0.4333 f - 0.4667 f) - 0.5769 (f f--)

fo+

f f f
-0 Oo 0+

-- 0-
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FI[I•ITF DIFFEfE'.CFS FOR AQ63ITr.APY GRIDS

_ _T.H E .N OD AL T 11 ... ..

0,00000 7,50000-01 OOo0n, 0.00.0O 5,62500-01._.-7,50000-0 !Oo,00000 .5.6?500-01 O.Ooooo Cn1000,00000 *.",00000+00 O,OOO(O .Onono 11,0000o+O0"-7l51,000-01 7,50000-01 5e62500-01 -".l?50o+no 5,62500-01
S.j..-,50o0.• -7, - .0... 5,67.•o 0 -0i 1,12500+00 5,6 2 500-.1

ITs INVERSE

-- 4,44 -10 663+08"-•3,- ý 7-5.03316+07 q,03316+07
7,61905-!01 =0,000no ",4,21457i-0 -O,.00o -O0000OO"_5,75219+0?7.-.!.,34.21kL+.08 "t ,.•.14 0 .7 3 9+07 .• .7 0 "+ .. "
5,07917".t "0o.o00000 -2,A571.4-u1 -4.44444-01 4144444,.01
7,61905"01 0,00000 5,71429-o1 0.00900 0c00000

INVFRSE IS STORED STARTIN G AT 176
THF PRODUCT QF THE JVF_ sER AND THE .........

1,0+00 0.0 -1,5-01 0,0 0,0
.0,0 - ... 0,0 .. 0,0 ...... 5,-01 5,0"Oi .. .... .... .
0,0 0,0 1,0+00 0.0 0,0
3.6-01 ogO 3,9-o0 1.0+00 1,5"0A

Ct.ASS 11 HAS AN ILL-CONDITIONJED NODAL MATRIX

Occasionally the neighbor set C for a class of nodes is insufficient toproduce an accurate set of finite difference expressions. The quality ofthe set is indicated by the variance of B-1. B from the identity IIn normal operation the user will provide the program with a para.meter in-dicating what degree of ill-condition in the nodal matrix will be accepted
without reclassification.
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FINITE DIFFERENCES FOR ARBITRARY GRIPS

THE NODAL MATRIX FOR POINT CLASS 21

2.00000-01 2.00000-01 q o00000-02 8.00000-02 e.000(0-02

-. 00000-O1 40000-Cl 1.60000-01 -3.20000-01 1.600(U-01

"'0.00000-01 0.00000 3960000-01 0.00000 0*00000
-9.20000-01 #G,0000-01 8#q6qO00O! -7.36000-01 1.60000-01

2 o00000-01 900000+00. q.OOOGCO02 ',00000"01 1@00000,00

ITS INVERSE

lt.. 7 1 e8+00 -1.68269+00 -I.SIO÷2400 9.01'12-01 7a81250-02
3.67188+00 2,74038*00 8.22917-01 -1*02163+00 -4@21875-01
1095313+00 -2,80qe9+o0 2#&0q17-01 1.50240+00 1.30208-01

1975781+00 -4Z20192-01 2.31771+00 -I.05168+00 Io7I|88-01

q*.68750÷00 -2*2'359+00 -1.'S833+00 1,20192+00 1035q17+0O

"Iti'V'ERSE 21 IS STORED STARTING AT '01

THE PRODUCT OF THE INVERSE AND THE MATRIX

1@0+00 -2.6-08 -1.6-08 I'1-08 98"09 hours

0,0 ..190÷00 -1.3-08 1.990? 0.0 O hours
0o0 0. . 10+00 7*S"09 -3..3-0
.... . -2.... . 3. + 1.9-09 seconds

-6#0-08 3.0-08 -3,0-08 1.5-08 IO+O0 0milliseconds

THE TOIAL ELAPSED TImE IS 00:OO:O .3

Notice that many of the nodal matrices have been omitted for

brevity.
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QUESTIONS AND COMMENTS FOLLOWING JENSEN'S PAPER

QUESTION: Surely you've been tempted to try and write small

programs and exercise some of these ideas. What, kind of experiences bave

you had in trying to write mesh generators and grid generators and meshing

routines?

JENSEN: I haven't done anything in the grid generation, but I've

used a few of the techniques which are around. You consider a domain

and asiume that it's made out of very thin rubber. You thun distort it into

a nice trac•.able domain and draw on it a nice rectangular grid. Then you

let go of it and it comes back to the shape of the original domain with a

very fancy grid. Sometimes you're really surprised with what you get

and may be tempted to call it a mess generator.

COMMENT: Compared to what you're talking about, those mesh

generators are extremely confining.

QUESTION: Since your alphas and betas have to be less than one,

will it not inherently produce lower accuracy near the boundarief, where

you just can't get as many points as you want?

JENSEN: No, it won't necessarily. Happily, at the boundaries

you don't need as many neighbors because you're applying boundary con-

ditions.

COMMENT: At AVCO we have a two-drnensional shell code that

uses grid techniques that are similar in philosophy to the ones that you
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talk about. At present it utilizes non-uniform quadrilaterals. I was

very interested to see the kinds of approaches that you took.

QUESTION: Have you attempted to rotate the grids at the boundaries?

In fluid flow problems, they use thij technique whenever they flow past an

object. Has there been any work on this idea?

JENSEN: I haven't done that. I tend to shun that because it

seemi a little restrictive since you have to find a mapping function. If

you're going to try and find an analytical mapping function, then you're going

to restrizt the kinds of curved boundaries you're going to allow. If you're

going to use a numerical mapping function, I intuitively suspect that you

would h;.ý:e some mighty tight clusters of nodes near sharp corners.

I might make one further comment. I have produced some results (or a

test grid just to see if this really does produce differinces that we know are

true and inkdeed it does. They came out very accurately. I was uoing aUl

single precision for inverting these matrices. A person can look at the

results for several hours if he's interested in really understanding how

different neighboring patterns affect the coefficients in these diffcrences

expressions. In fact, one can draw a lot of intuitive conclusions, one of

which might be that you wish to have a sort of circular nature in your

neighbor patterns. The reason for this is that basically the Taylor series

is a very local expanaion and the error grows very rapidly as you get

far from a node. So, if ,,ott can have as many nodes in close as possible,

you're naturally going to improve your accuracy. And it turns out that

when you follow a circular like pattern, you get coefficients that are all

of approximately the same size and this is very appealing because you are,
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in a sense, putting equal weights on the vtaIL at iiuighburijig tiod,.; rather

than giving heavy emphasis to some neighbors and very low emplhasis to

others.

QUESTION: I'm curious to know if you've programmed any plate

or shell equations on this basis and what the experience might be. Also,

would you comment on the. comparison of your ideas with those posed by

Budianski in his paper, "Nodes Without Elements, " of a couple of yeara

ago.

JENSEN: I have started a piograrn in this area but I haven't

really gotten it to the point where it can be used. With regard to your

second question, I haven't read Budianski's paper, but he wais visiting

here not long ago and I talked with him. He montioned the problem of

these coefficient matrices and said that he was bogged down in h1tndlif'g

all of the coefficients. One approach is to calculate the. 'oefficients e.ach

time you need them. But that clearly wipes you out bec.,iu-c. it t;akes so

much time. What you really want to do is calculate the coefficients for

the grid once and save them to use whenever you nced them. As a result

of that conversation, I got very interested in manipulation of coefficients

and, as I mentioned before, I discovered that it can actually be handled in

a very efficient fashion, cven on a dcdicated computer.

FORSBERG: I might give a little bit of background as to the moti-

vation for this work., We've done quite a bit of work with finitc differences.

We have used variable grids but they still use orthogonal meshes, or ill

the case of an elliptic cone, they may be non-orthogonal but they still

exhibit a regular pattern. As a result, when you vary the spacing, that
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variable spacing runs the entire length of the Ohell and this cauiss as great

deal of inefficiency since you have a large number of pointti where you

really don't want concentrations. That's what Stan alluded to here somle-

what earlier. The present work is really an attempt to broaden the cap;1-

bility of the finite difference method for shell analysii. V;ori;bl. methods

have been used extensively in other systems of lower order and this is

an essential step in broadening the scope of the finite difference method to

ipply to types of problems that are solved every day with the finite elemnent

technique. The next step is to take this work and tic it in with the existing

shell codes that we have already developecd.

QUESTION: I would like to ask Forsberg if he foresees any diffi-

culties at the juncture of two shells.

FORSBERG: No difficulty, we have been using variable meshes for

solving problems of fuel slosh in the low gravity vrivironment. These are

highly nonlinear motions and the nets are very distorted and much of that

work has provided background for the present work. The difference is, of

course, that the differential equations for the slosh problem are of lower

order.

QUESTION: I feel as though your lectu,',- this morning is one of

the most exciting I've hoard in a long time. I ýhink the ideas that you

present hold great potential, both for the finite difference and for the finite

element methods, especially in the area of rcmcshing during the problem.

How much work has been done in deciding how to remesh? You suggested

that perhaps a strc:'s gradient might be the way to remesh, i. e. , in areas of

high stress gradients. Is this at far as it's gone?
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J ENS EN: On the point of remcshing or regridding, oje c;mi

approximate the truncation error in his differential equations simriply by

calculating the derivatives of the next higher order. If you're using

fourth order derivatives, then if you calculate the fifth order derivatives,

you really are calculating approximately your truncation error. You C;tII

calculate these derivatives in exactly the same way you calculate the

others, namely, from rows out of your coefficient matrices. I

envision usiAng these calculated truncation errors of the rough solution ov.r

the domain as the density function for the next grid pass rather than exact

the stress gradients.

COMMENT: I looked at your cquation 2 and it reminds mc of somc

equations put up by Strang who is at MIT and Fitz at Harvard. Thcy'vc been

able to use this type of expression, together with the Ritz-Galerkin pro-

cedure to form bounds on the error.

JENSEN: I'm aot really assuming a function and in Ritz

methods or Galerkin methods yoo. do assume a function and it's in essence

a method of undetermined coefficients.

COMMENT: That's true, but your undetermined coeffici.nts are

already implied in your expansion of the Taylor's theories. You might say

you can attack differential equations directly but I think it's better to have

something--some minimum potential--some function you can get hold of

and exploit with the intuition that you have,

COMMENT: One of the reasons we wanted to switch to a variable

grid, I believe, is to perhaps save on the total number of grid points we
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have tu use and at the same time be able to have a very dense concentra-

tion of grid, points in the vicinity of a discontinuity. This would be parti-

cularly helpful in a dynamics code where romputer times that we're up

against row are very high. Wha. bothL!;,s me a little bit is, if the people

insist on using explicit schemes whore the time step is governed by the

grid siz,-, migh& we not be getting ourselves into a situation here where,

because we use a very fine grid over some portion of the shell, we are

then stuck with a very small time step for the entire analysis. Maybe

we have to attack this on two fronts and look for ways of varying the time

step as well as varying the spatial step. Does anybody have any comments

on that?

COMMLNT: My impression is that you will have to use implicit

methods. You will not be able to practically use explicit methods if you

have small grid spacing. But there are also problems with the implicit

method. As you go implicit, you have to solve a set of simultancous

equations to get from time 1 to time Z and those equations will become

more and more poorly conditioned as the nodal point density increases.



NUMERICAL METHODS FOR MIXED BOUNDARY
VALUE PROBLEMS OF SHELLS OF REVOLUTION

BY

ARTURS KALNINS

ABSTRACT

For the solution of a mixed boundary value problem of

an axisymmetric shell, for which different variables are

prescribed over portions of the circular boundaries, methods

are required which are applicable to boundary value problems

governed by two-dimensional partial differential equations.

Two suchmethods are discussed in this paper. One uses a

truncated series expansion in terms of separable solutions,

and the other employs finite difference expressions in the

circumferential direction. Using these two techniques, the

problem is brought to a one-dimensional form, and then solved

with the multisegment method of direct numerical integration.

An example of pure bending of a cylindrical shell with a

semicircular slit is solved by both methods, and numerical

results are given.

A part of this work has been supported by the National
Aeronautics and Space Administration Grant NGR-39-007-Ol7.

Professor of Mechanics, Lehigh University, Bethlehem,
Pennsylvania 18015.
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I. INTRODUCTION

Linear boundary value problems of thin, elastic shells Of

revo.otion can bQ readily solvd %;ith available methods when

the 5sa,;i set of boundary vdri2.s is prescribed at ever

point along each of the two circular edges of the shell. For

some problems, however, it is necessary to prescribe different

sets of boundary variables o,,-r different portions of the cir-

cular edges. Numerical methods for the solution of such mixed

boundary value problems are discussed ir, this paper.

Since a shell is represented by a two-dimensional reference

surface, "its behavior is governed by a system of two-dimension-

al partial diefferential eqations, For a shell of revolution

with axisyraimetric geometrical and physical properties, these

equations are separable by means of solutions which are ex-

pressible as products of functions of the meridional and cir-

cumferential coordinates. For an exact solution of ýhe mixed

boundary value problem, however, an infinite number of such

separable solutions must be combined. Therefore, the tech-

niques of solving such a mixed boundary value problem must be

those which are applicable for solving systems of partial dif-

ferential eqi4atjlon5.

Two different numerical methods of solving the mixed bound-

ary value problem are discussed in this paper. The methods

are based on two different reduction techniques of a boundary

value problem governed by partial differential equations to



one governed by ordinary differential equations, which for

both methods are then solved by the multisegment direct numer-

ical integration technique El)*.

The first method employs the technique applied to the

analysis of shells of revolution with a curved axis of symmetry

(curved tube) [21, for which circumferential derivatives are

eliminated by means of finite difference expressions. 'The

second method uses a truncated expansion of separable solutions,

and the satisfaction of the mixed boundary conditions is en-

forced by the standard point-matching technique. An example

problem of the bending of a cylindrical shell is solved by

both methods, and the results are compared.

N~umbers in brackets denote references listed at end of paper.

NumLiurs in parentheses refer to equations.
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II. REDUCTION TO ORDINARY DIFFERENTIAL EQUATIONS

1. Governing Equations

The mixed boundary value problems considered in this paper

are governed in a two-dimensional region, defined by a<x<b

and O<6<2w, by a system of linear differential equations in

the form

ay/ax F(x,e,y,ay/ao,3 2y/9e2 ) (1)

where y - y(x,e) denotes an (m,l) column matrix whose elements

are m unknown dependent variables; F denotes m linear func-

tions, arranged in a column matrix form; and x,e are the co-

ordinates.

For the two methods proposed in this paper, the boundary

conditions at the ends of the interval of x will be stated in

the form

Ta(ei)y(aoei) a Ua(6i) (2a)

T b(6i)y(b,eI) a Ub(ai) (2b)

where et are N selected points , called pivotal points, on

The selected points ee need not be the same on x a a as on
x - b, but the total number of such points on each edge must
equal N.
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each of the two edges of the region, defined by x = conscarnt

(Figure 1); Ta(00 and Tb(Oi) are given (m,m) ;:,,.trices whicii

identify the m/2 prescribed elements of y or their linear COM-

binations, and ua' ub are (m,l) column matrices which contain

the values of the m/2 prescribed elements. The feature of

mixed boundary conditions is revealed by the fact that on the

edges x - constant the boundary conditions, as representend 'J'

the T matrices, can change from poii., to point along the a-co-

ordinate curve. The o-coordinate curve is assumed a closed

circle, so that continuity of all variables at the n of

the interval on e is enforced for all values of x.

2. Expansion in Separable Solutions

For axisymmetric shells, whi:}• iave a straight axis of

symmetry in the geometric and pihysical properties, the solu-

tion of (1) can be expressed as a term of a Fourier series

y(xO) -Yn(x)Tn(a) (3)

with a wave number n, where

(cosne1
Tn(e) s Isnne a (4)

for any integral value of n. The meaning of Tn(e) is that,

depending on symmetry and the particular element of y, the

top or bottom trigonometric function in (4) is applicable.
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If the load terms, contained in (1), are chosen in a siiilarly

separable form, i.e.,

b(x,e) = b n(x)Tn(o) 5)

then the x-dependent Fourier coefficients of y are governed

by the system of m linear ordinary differential equations

given by

dyn(x)/dx - F n(x,yn) + b n(x)

for any integral value of n.

If the boundary conditions at t'1 ends o-6 the x-interval

were not mixed, i.e., the Ta &. Y. matrices in (2) were the

same over all values of 6, then the boundary value problem

would be uncoupled with respect to the Fourier coefficients

of the solution. Then the nth Fourier coefficient of the load

would produce only the nth Fourier coefficient of the solution.

The mixed boundary value problem, however, requires that an

infinite number of Fourier coefficients be included in the so-

lution for each nth Fourier coefficient of the load.

To solve such a mixed boundary value problem approkimately,

we shall assume that the solution is expressed by the truncat-

ed series
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N
y(x,6) I Yn(x)Tn(e) (7)

nUo

where the number of terms N must be identical to the number of

boundary points chosen in (2a) at wvhich" the bouncary conditions

are enforced. Although th"e solution (7) satisfies. exactly the

governing differential equations, it is only approximate be-

cause the boundary conditions away from the N pivotal points

are not exactly satisfied.

It should be also remarked that the indices n in (7) need

be neither consecutive nor start with n = 0. Owing to symmetry

or other considerations, a specially selected list of N wave

numbers can be chosen to participate in the solution. For the

purpose of illustrating the technique and for the example

worked out in the last section, the form of the solution given

by (7) is employed.

When the solution In the form of (7) is evaluated at 8 a i

and ther. substituted into (2a), the resulting form

Ta(ei)[yoTo(ej) + ... + YNT8i)) - Ua(ei) (8)

suggests that the problem be formulated In terms of an'extended

solution Tjatrix y* having mN elements. The first N elements

of this matrix are the N Fourier coefficients of the first un-

known variable of y, the second N elements are the N Fourier

coefficients of the second variable of y, and so on. Then the
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boundary conditions (2) can be restated in the form

* *( *

TY * a) - u
a a

'9)
by* *

T Wy(b) - ub b
** * *k

where Ta, Tb and ual ub are similarly exten&ed (m;,';", -r,:)

(mN,l) matrices, respectively.

With this formulation, the mixed boundary value , bas

been brought to the form in which it can be solved ',' , Cf

the multisegment jirect numerical inteb.'ation .ech',i ue. 3efc, re

discussing some de'.4ils of this method, ýL onsider an-

other technique of bringing the p,,,;rn to " same formulation.

3. Finite Diffe'.ence Technitjc

";he r-Artial derivatives with respect to a in (1) can also be

removed by replacing them with their finite difference expres-

siorns. Such a solution technique has been proposed for- tle

analysis of curved tubes [2], but it can be also applied to -l;,,

soluzion of the mixed boundary value problem of a shellof rev-

olution.,:.

In analogy to the separable solution expansion technique.

the finite difference method also rCquires the selection of,,

pivotal points on the*O-coordinate curve. Then t,,e f. rst afd

secon: partial derivatives with respect to 6, occurring in (1),
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are replaced at every value of X by their finite difference

expressions in terms of the pivotal values of the unknown vari-

ables contained in y, which themselves remain functions of x.

Since the 6-coordirate curve for a shell of revclution is a

closed circle, the partial derivatives can be expressed easily

by central differences based on five point formulas. According

to such formulas, the derivatives at a point 6o are given by

ay/le - [8(Yl-Y 1 ) - Y2 + Y-2]/12A (lOa)

3y 2 /3e 2 _ [16(yl-yl) - (y 2 +y_ 2 ) - 3 0 Yo]/24A2  (lOb)

where the plus indices denote points ahead of e0 and the minus

indices mean points behin eo0; a denotes the interval of 6 be-

tween the pivotal points, which here is assumed constant.

Once such replacement of the derivatives is achieved and N

pivotal points around the 0-coordinate curve are selected, then

it is convenient again to augment the (m,l) column matrix

y(x,e) to include as its ele-nents the N pivotal values of each

of the m unknown variables. Thus a new (mN,l) column matrix

y* is constructed which has as its first N elements the N

pivotal values of the first unknown variable of y, the second

N elements are the N pivotal values of the second unknown var-

iable of y, and so on. Similarly, the ooundary conditions (2)

can be stated in the form of (9) where now, obviously, at every

pivotal point a different set of boundary variables can be
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prescribed, which can lead to a mixed boundary value problem.

As before, tuch a solution to the mixed boundary value probler,;

is only approximate, because now the differe'ntu.l equation.

(1) are only satisfied approximnately.

Thus, it has been shown that the two techniques lead to an

identical formulation of the mixed boundary value problem, but

there are some differences in the obtaining of the fciL•.on.

If the number of Fourier components in (7) is the same &s z;e

number of pivotal points in tne finite difference techrn:...,

then the exteided solution matrix y is of the same size in

both methods. The boundary conditions are also stated by the

same type of equations (9), bu * for tM,. , ., .:ferenct -ech-

nique usually the pivotal values .c;,aselves .re prescribed,

while in the expansion methnd ;i;,ear combinations of the

Fourier coefficients are prescribed. Both ways can be handled

by the multisegment method of direct numerical integration,

but the latter is slightly more complicated than the form'er.

Moreover, the differential equations (6) for the expansion

method are uncoupled for each wave number n, while those for

the difference method, obtained from (1), are coupled in all

pivotal values of the unknown variables. This means that for

one set of initial value problems by classical shell theory

(when m - 8), 8N initial value problems with 8 differential

equatinns must be solved with the expansion method, while 8

initial value problems with 8N differential equations must be

solved with the finite difference technique.
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III. METHOD OF SOLUTION

The multisegment method of direct num.rical integration

will be applied to solve the tw.o-point boundary value problem

governed by the syste., of linear first-order ordinary differ-

ential equations

dy/dx - A(x)y + b(x) (11)

within a<x<b and subject to the boundary conditions

Tay - ua

(12)

T by 'u b

As before, the elements of y denote the unknowns, mN in number,

and Ta, Tb, ua, ub have the same meaning as in (9), except that

the asterisks have been omitted. The statement of the boundary

value problem by (11) and (12) is of the form which was used in

Ell and later also in [3]. However, in these earlier formula-

tions, the size of the matrices was meant to be (8,1) and

(8,8), but now they are enlarged to (8Nl) and (8N,8N). The

method, of course, is equally well applicable to systems of

equations of any size.

Acco,..,,g to the .multisegment method, initial value prob-

lems In the form
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dYi(x)/dx - A(x)Yi(x) (13a)

Yi(xi) - I (13b)

and

dzi(x)/dx - A(x)zi(x) + b(x)

(14)

zi(xi) - 0

are defined for xi!_xlxi+l over the segments Si of the shell, M
in number, whose endpoints have the coordinates x.. and xi.1

(see Figure 2). Yi(x) is an (8N,8N, anLn zi(x) an (8N,l)

matrix, which relate the solution at any x within Si to the

solution at the beginning tf the segment by

y(x) = Yi(x)y(xi) + zi(x) (15)

According to this method, only the elements of Yi(x) at the

end of the segment must be retained, and the intermediate

values can be forgotten. Thus, to obtain the solution, it is

required to perform the initial value integrations defined by

(13) and (14) from the beginning of each segment to its end.

We shall now examine how this integration is carried out over

one segment Si for the specific purpose of solving the mixed

boundary value problem formulated with the two techniques
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FIGURE 2. Division of shell into segments.
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given in the preceding section.

The initial value problems defined by (13) can be inter-

preted as follows: find the y's by (13a) at the end of the

segment (x -xi+,) when y at the beginning of the segment

(x - xi) has its first element equal 1 and the rest 0, then the

second element of y equal 1 and the rest 0, and so on, until

8N initial value problem~s have been solved and all columns of

Y (x+,)filled. Each of these initial value problems has a

physical meaning.

If the' first element of y(x,e) is the transverse deflection

w, iLhen, using the finite differer~ce technique in the a direc-

tion, the first initial value problem defi.nec by (13) meanls to

find all variables at all pivotal point's at the end of the

I sgivent whn atthe pre egingneciong ..- esgetalvralsa

the solution with w Ia1 at point No. 2 need not be repeated,

because it will be the same as with w = 1 at point No. 1, ex-

cept that all values of variables must be shifted by one

pivotal point. Consequently, for an axisymmetric shell, only

One should not be alarmed by such a statement of a "boundary"
value problem in structural mechanic;. It does amount to
asking for the solution of a beam for which the shear force,
bending moment, -slope, and normal deflection are all prescribed
at one end of the beam and nif n is prescribed at the other
end. It clearly violates ti deeply rooted belief that the
"snatural" boundary conditions must be specified to get a unique
solution. The fact that the natural boundary conditions atre
only sufficient but not necessary to ensure the uniqueness oa
a solution, if it does exist, was hiiscussed in [4).
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K 8 columns of Y i(xi+l) must be calculated, and the others are

filled in by shiftinj the pivotal points. However, the 8N ele-

ments of y for each initial value problem are coupled, so that

in total 8 initial value problems, of BN differential equations

each, must be solved over each of the segments.

With the separable solution expansion technique, the inter-

pretation of the initial value solutions is similar. The first

initial value problem defined by (13) now means to find all N

Fourier coefficients of the solution (7) at the end of the seg-

ment when at Lhe beginning of the segment all Fourier coeffi-

cients are prescribed zere except that w 1 when n = 0. Since

(6) are uncoupled with respect to the nth Fourier coefficients,

then only 8 differential equations must be solved for each ini-

tial value integration. The solution at the end of the segment

will be such that only those elements of y which represent the

nth coefficients of the variables will be nonzero when wn a 1

at the beginning of the segment. However, now all 8N initial

value problems defined by %13) must be solved over each of the

segments.

Once the matrices Yi(xi+i) are obtained for every segment

of the shell, the solutions at the ends of segments are then

obtained by following the same procedure as given in [12.

First, continuity conditions at ends of segments are written

It has been assumed here that the shell has a continuously
turning normal. If It does not, then transformed variables
must be made continuous, as shown in [3].
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from (15) as

y(xi+l) - Yi(xi+l)Y(xi) + zi(xi+l) (16)

and the unknown variables at the ends of the shell are changed

from y(x 1 ) and y(XM+l) to ua and ub, which requires that the

initial value solutions in the first segment must be repl•.•d

by the rule

Y xT-l --Yj7Yl(XZ)Ta Yl(x 2 ) (17)

and those of the last segment by

TbYM(xM+l) - YM(xM+l)

(18)

Tbz Y,(XM+l) ZM(XM+l)

After this replacement is carried out, the continuity

equations (16) are rewritten as a partitioned matrix product

in the form

y2 '(xi+1) 1 r (X) Y11 (xi~l Y2 (xi) Fl(xi+')j

L2Xi, L 3( i)y4(xl+l)J y1 x1 1 Z~(xi~
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If the boundary condition matrices in (12 are arranged so that

the upper 4N elements of u a and the lower 4N elements of ub are

the prescribed elements, then the partitioned equations (19)

car. be displayed in the form

IF ~1 1
Y -I o0 0 3 0 j 2 (x1) - Z. " YIY 1 (xl)

Y, 0 -1 0 0 0 y1(x2) -4 - Y 3 1 x1

2 2 22 Y 2 -I 0 0 Y2 (x 2 ) -

Y3  4Y2
2 2 0 -I 0 yI(x.j) - z

0 0 0 Y Y2(xM) - Mz

L0  0 0 y 3 o LYl(x 2zc

i (20)

where, for brevity, in place of Yý(xi+1 ) and zý(xi+1 ) the sym-
bols Yq and zq have been used. It should also be kept in mind

'II

that, because of (17) and (18), y(x1 ) is really ua and y(xM+I)

is really ub.

While in [1] each of the square matrices in (20) were of

the size (4,4), here they are (4N,4N). Similarly, the 'column

matrices are (4N,l). Equations (20) represent a system of 2M

matrix equations with 2M unknowns: Yl(x 2 ), YI(xM+ 1 ), asid yj(xi),

for j--l,2, i = 2,3,...,M. Regardless of the size of the ele-

ments, the system of. matrix equations (20) can b-.ý solved by

following the same procedure and formulas given in [l] and [3].
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IV. EQUATIONS FOR CYLINDRICAL SHELL

The governing equations for thin shells of revolution can

be obtained by various theories and stated in various forms.

A system of first-order differential equatiOes which fits the

form of (11) and describes the behavior of an arbitrary shell

of revolution is written out in detail in El. Since the

example given at the end of this paper will involve a cyi,;C,-

cal shell and since some of the equations will be needed tG

discuss the total resultants, therefore we shall present

here the governing differential equations needed for tha solu-

tion of a mixed boundary value problem of the cylindrical

shell. These equations can be stated as fo!':s.

ce = (u 8,e + w)/a (21a)

k6 a (uee - w,0 )/as (21b)

Cx = Nx/K "V- (21c)

kx = Mx/D -vk 0  (21d)

W,x= - (21e)

L C (21f)

U 2N N/(l-v)K u /a 2Dx /Ka 2  (21g)Uo,x x ~ .

B (21h)

XX X

No K(¢8 + Ve) (21i)

me D(ka + vkx) (21j)
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/a/ (21 k)Qx,x 0 No/a Me ,ea"p

Mx - (l-v)P(x + r U1 )/a (21k)

N M /a2 N /a (21m)xX xe a x 6, 6

Nxe,x Ne,o/a - Me,e/a 2  (21n)

M;x Q 2Mxe, /a (21o)

These equations are based on a classical theory of shells in

which the transverse shear strain is set equal to zero. The

meaning of'the symbols is as follows:

ux,uew = deflections

ax - rotation of normal

NxhNONxe = membrane stress resultants

MxMesMx = stress couples

Qx - transverse shear resultant

Q Q:+ Mxo 0/a

Nx- Nxo + M x/a

K Eh/(l-v 2 )

D - Kh2 /12

h - thickness

aE Young's modulus

665

4 ~ ~ ~ ~ - ----------. + -.- *-



-,7 'M . -i ý "A-4 "ý-;i7M ý- '7- "5M-

S= Poisson's ratio

a = mean radius

The subscripts have the usual meaning, with x designating

the axial and a the circumferential direction (Figure 3).

Equations (21) are arranged in the special form as required

by the multisegment method of direct numerical integration, so

that the derivative with respect to x of every fundamental var-

iable can be calculated at a required value of x when the funda-

mental variables themselves and the properties of the shell are

known at that value of x. The fundamental variables are the

elements of the y matrix in (1), and for a cylindrical shell

they are defined as

fw

(22)X

*

N
SQxe

Mx

Equations (21) correspond to the scalar representation of

(1) as governing equations of the system. After the 6-deriv-

atives are eliminated, either by means of (7) or (10), they
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are turned into the system of first-order, ordinary differ-

ential equations represented by (Ii).
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V. TOTAL RESULTANTS

The usual stress resultants in shell theory are defined as

forces and couples per unit length of the reference surface.

For shells of revolution, it is also useful tc calculate the

components of the force and couple vectors obtained by inte-

grating the usual stress resultants around a latitude circle,

defined by the intersection of the reference surface and the

plane x - constant. Such resultants will be called total re-

sultants. They produce an averaged effect on whole axisymmetric

sections of a shell of revolution, cut out by two planes x =

constant, and are similar to the shear force and bending mo-

ment employed in beam theory.

Taking as an example the cylindrical shell, it follows from

Figure 3 that the components of the total resultant force vec-

tor at some value of x are given by

R, f (Qxcose - Nxesine)ade (23a)
0

R2  f (Qxsine + Nxecose)ade (23b)
0

2nr
R3 .f Nx ado (23c)

0

and the components of the total couple vector by
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M f (aNx + Mx )sinoade (24a)

21r
M2 a I (aNx + M )coseade (24b)

2-r
M3 - f Nx*2ade (24c)

0

We shall now calculate the de.'ivatives of the total resulT.-

ants with respect to x with the use of the governing equation,,

(21) for a cylindrical shell. For example, taking a derivative

of (23a) with respect to x, we get

R ,x (Q ,xcose - Nx* sinG)ad6 (25)
o' ' xe,x

Replacing the derivatives in the integrand by (21k) and (21n),

we get

2 1r
R1 ,x J (Necose/a - M ,66cose/a 2 - pcose

0

+ N C.sine/a + M6,0sine/a 2 )adb (26)

Assuming constant pressure with respect to a and then Inte-

grating (26) by parts leads to

R a x 0 (27a)

67o



Similarly

R2 ,x 8 0 (27b)

R3 ,x 0 0 (27c)

and

2•

Ml0x a " R2 f Mxecosede (28a)
0

21r
, - R + ' Msinede (28b)

0

M3,x 0 (28c)

Equations (27) and 128c) are exactly the relations expected

from elementary equilibrium considerations. However, the two

integrals on the right-hand sides of (28a) and (28b) are not

expected, because they violate the fundamental moment equilib-

rium requirement of a section of a cylindrical shell. Such a

violation of moment equilibrium in bending problems of shells

of revolution is discussed in detail in [5], and it Is blamed

on the well-known fact that the classical shell theory, from

which equations (21) have been obtained, does not satisfy mo-

ment equilibrium of a shell element about its normal. The

integrals in (28a) and (28b) represent the projections of an

extraneous surface couple about the normal which, as shown in
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[5], must be included in moment equilibrium consideration,

whenever a classical shell theory is employed. However, it

has also been shown in [5] that if the shell is reasonably

thin and not very long, the effect of the extraneous surface

couple is indeed negligible.

Another source of error in the total resultant relations

is possible, and that is concerned with the approximations

admitted in solving the mixed boundary value problem. It will

now be examined whether or not the two proposed solution tech-

niques violate any of the equilibrium relations (27) or (28).

Considering first the separable solution expansion tech-

nique, it can be easily shown that when the variables in the

form of (7) are used in the derivation of (27) and (28), none

of the equations is violated. X:owever, since the ,vixed bound-

ary conditions are satisfied at certain pivotal points only

and may be violated between the points, the actual total re-

"sultants on an edge must be calculated from the Fourier com-

ponents of the solution on that edge and not by some numerical

integration of the values of the forces or couples at the

pivotal points. What this means is that a given component of

a total resultant cannot be exactly prescribed on an edge, and

that the shell will not maintain total equilibrium of total

resultants with respect to the forces specified at pivotal

points and integrated- numerically around the circumference.

It will maintain total equilibrium if the total resultants are
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calculated from the Fourier components given by the solution

on the edge.

More difficulties arise whcn the circumferential deriva-

tives are replaced by finilte dieference expressions with re-

spect to N pivotal points around the circumference. This can

be illustrated by considering the step when going from (25) to

(26) in the calculation of Rl,x* The expected result of (27a)

depends on identities of the type

2r 21T
f N6,sinade - N N0cosede (29)
0 0

which are verified through integration by parts. If the e-

derivative in (29) is replaced by a finite difference expres-

sion, such as (lOa), then the integrands of both sides of (29)

must be expressed in terms of the pivotal values of N and in-

tegrated numerically. If the expressions of the pivotal values

of N8 after integration are equal, then indeed we shall have

(27a) satisfied. This, hov'ever, does not happen. Whatever

finite differences and integratiun formulas were tried, the

author wis not successful in making both sides of (29) exactly

equal. From this experience, it was concluded that the sepa-

rable solution expansion technique is better than the finite

difference technique, because it does satisfy the differentia-l

equations exactly and violates on!y the prescribed boundary

conditions.
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VI. EXAMPLE: CYLINDRICAL SHELL WITH A SEMICIRCULAR SLIT

As an example, we consider the shell showol in Figure 4

subjected to a total moment M2 =-M at both ends. The problem

is symmetric with respect to the plane x = 0 passing through

the slit. It is also symmetric circumferentially with respec:

to the diameter connecting the points 1 and 9 (Figure 1).

Therefore, only the pivotal points from 1 to 9 and the region

O<x<60 must be considered.

Owing to the circum'erential symmetry, the trigor).e:ric

functions, according to (7), are assigned such that w, ux,

AV' Qx Nx, Mx are multiplied by cosne and u6, Nx6 Ly sinne.

The boundary value problem 1&s -. ixed boundary conditions

at x - 0 to simulate the open slit. The specific variables

which are prescribed at the nine chosen pivotal points at

x - 0 are given in Table 1. At the other end, x = 60, the

boundary conditions are not mixed, but consist of

Qx a Nxe • Mx = 0 (30a)

and

Nx U-coso (30b)

Such boundary condtions, according to (24b), produce a total

moment in the section x - 60 in the amount



:C7

' ,

FIGURE 4. Cylindrical shell with slit.
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Table 1. Boundary Conditions in Example

Poit _At x - 0 At x =60

1 W ux U a Ox 0 Iqx = 1.0

SUx U 6 0 x a Q x 0 Nx = 0.9239
3 UX = 6 x = Qx 0 Nx = 0.7071

Ux 
Nx = 0.3827

5 8U • ax Q x 0 Nx a 0.0

6 N N M aQ x 0 Nx 0.38277 Q*aN a N 0 = - 0.7071

Q.8 a Nx U N ae " Mx 0 Nx = - 0.9239
9 Q a Nx N* " = 0 Nx a - 1.0
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M (31)

which for our example is

M - 11,310

For the finite differen.u cechnique, we must prescribe the

boundary conditions point by point and then, while (30a) holds

for all points, Nx is prescribed the values at the 9 pivotal

points as given in Table 1.

The mixed boundary value problem was solved by the multi-

segment.direct numerical integration method, using the two

techniques described in the preceding sections. The half-

lengzn of the cylinder, L = 60, was divided into 10 segments,

and 9 pivotal points were chosen around the circumference,

which required 9 Fourier components (from n - 0 to n = 8) for

the separable solution expansion technique. The computer time

needed to solve this example with these two techniques was

about the same. The computer program was run on Lehigh Uni-

versity's CDC 6400; it required about lOOK (in octal) word

core and temporary auxiliary storage on disks. It took 3

minutes of computer time to run each case.

Some results obtained by both techniques are displayed in

Figures 5, 6, and 7. The full lines mean the solution given

by the expansion technique, while the points represent the

solution obtained by the finite difference technique, whenever

the resultz from the two methods differed substantially.
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Figure 5 shows the circumferential variation of Nx at

x=O and 60 of the cylinder. Since Nx produces the maximum

stress in the shell, it is significant that it is increased

from 1.0 at x = 60 to a maximum ab.olute value of 15.6 at

x 0 0. If the slit were absz.t, then the distribution of Nx

given at x - 60 would have remained the same at any value of

x. The reason why Nx must have larger values when approaching

the sli't is that the same total moment M2 must be present at

any x as applied at x = 60. Since Nx is prescribed zero at

points 6-9, larger values of Nx are expected at *points 1-5.

The error in the aialysis by means of the separable solu-

tion expansion technique is illustrated by the fact that Nx

at x = 0 goes through zero at the points 6-9, as prescribed,

but it is not zero between them. The actual boundary values

of N., which are present at x = O,are shown in Figure 5. No

s-uch interpretation can be made for the finite difference

technique, because the forces only at the pivotal points can

be calculated.

It might be argued that infinitesimal elasticity theo.,y

predicts infinite stress at point 5 and x 0 0, i.e., at the

tip of the slit, and that the results-of this paper in the

vicinity of point 5 ara not realistic. This of course Is true,

because in the vicinity of point 5, the s"'ress state is sig-

nificantly affected by the actual shape of the tip of the

slit in a real manufactured cylindrical shell. Even if the

681

.o\,



slit were a perfectly true semicircle, the prediction of in-

finite stress is caused by the, in this case faulty, mathe-

matical model of infinitesimal elasticity theory, in which

equilibrium is satisfied in the undeformed state. If the

same problem were solved with respect to the deformed state,

no infinite stress would be predicted. To be sure, the solu-

tion in the vicinity of the tip of the slit given in this

paper, as the solution obtained with any infinitesimal theory,

is not to be taken seriously.

Figure 6 shows the deformed profile of the cylindrical

shell, illustrating the opening of the crack, and Figure 7

shows the deformed latitude circle at x = 0 and x - 60, re-

spectively. With respect to Figure 6, it seems that the shell

does not deform very much throughout the sector of the shell

which does not have the slit; most of the deformation takes

place in the sector with the slit.
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VII. CONCLUSIONS

While the finding of the solution cf a boundary value

problem goveraled by a system of ordinary differential equa-

tions has by now become a routine procedure, the situation is

not at all that way for problems requiring a true two-dimen-

sional solution. While the mixed boundary value problem of a

shell of revolution is somewhat of a degenerate case, because

each term of the separable solution expansion (7) satisfies

the governing equations exactly, the procedures applied here

can be regarded as a step, however small, toward the solution

of the general boundary value problem govwrned by a system of

two-dimensional partial differential equations. This, then,

was the motivation of this paper, rather than the value of the

actual rcsults displayed here.

After all the results were studied and the curves plotted,

it had to be admitted that the separable solution expansion

seemed preferable to the finite differences. Two reasorns

stand out to support this statement. First, with the expan-

sion technique, the only approximation lies in the prescribed

boundary values. However, the actual bcundary values given

by the solution can be calculated, and then a judgement can

be made whether or not such boundary data are acceptable. No

such physical interpretation can be made with the results ob-

tained from thle t differer.no tecinrzes qand this may

be a very minor point, but the solution obtained from *the ex-
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pansion technique can be calculated as a continuous function

of e. If the actual boundary data are acceptable, then (7)

does give the actual solution at all values of e. There is

no danger of missing any peaks in some critical stress dis-

tribution. Again, no such interpretation of the solution

between the pivotal points is pc zible with the finite differ-

ence technique.

Finally, the results given in this paper have been only

checked with the common-sense expectations, simply because no

other sources of comparison were available to the author.
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QUESTIONS AND COMMENTS FOLLOWING KALNIN'S PAPER

QUESTION: It must be that all these nx8 equations are uncoupled

in groups of 8. So you really don't have to solve nx8 equations correspond-

ing to your Fourier coefficients; yu only have to solve n sets of 8. Correct?

KALNINS: Yes. It is explained in the paper.

QUESTION: Is this m.:thod of solution dependent upton the com-

puter that you're operating with?

KALNINS: Well, that's very hard to say. The only thing that

could affect it would be the number of significant digits kept. That has

not seemed to be a problem. I have not encountered any breakdown on

account of accuracy.

QUESTION: How many significant figures do you think you need

to carry to maintain this accuracy.

KALNINS: Well, I prefer the CDC machine with thirteen figures.

QUESTION: Have you any experimental verification of the accuracy

of your technique?

KALNINS: Yes, I have. I have had a paper at the Delft Congress

where a comparison was made between experimental data and data generated

by the code and the conclusion was that everything was all right.

COMMENT: I just wanted to make a comment. I've found that

another possible way of satisfying the boundary conditions which appears to
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be more reliable than point matching is to expand these boundary condi-

tions in some complete set and truncate this expansion at the number of

coefficients that you have available and then satisfy these truncated series

term by term. You could do this over each portion for the mixed boundary

value problem. It appears that it is more reliable and less numerically

sensitive than the point matching procedure.

KALNINS: I already have the expansion which is truncated.

COMMENT: You re-expand that in another series over each of

these intervals and then satisfy this truncated series.

KALNINS" What kind of series could it be that you could expand

in?

COMMENT: Just any complete set, it doesn't really matter.

Just whatever happens to be convenient. You have a series which you'd like

to satisfy displacements, for example, over part of a boundary and another

series expansion you'd like to satisfy for stresses on the second part of

the boundary. You take these equations and expand both sides in some other

complete set over the proper intervals. You then truncate these series

expansions to the number of terms that you have available. For example,

if you have ten terms and you wish to use five of these in each of the two

regions, you truncate each of the series after five terms and then satisiy

those truncated series term by term. It's sort of a way of applying a

weighted average to your point matching and you take every point into

consider-ition.

KALNINS: Wouldn't least squares do the same thing?
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COMI4ENT: If you integrated, yes.

COMMENT: We analyzed an oblique nozzle using this technique

and we found that by the series expansion method, one can develop fairly

good accuracy with a low order harmonic, simply by stating the conditions

at each of these points you've selected in the circumferential direction and

then by over specifying the boundary conditions at intermediate points. That

is, points along the boundary but between the circumferential stations, so

you add more stations. What you're doing, in a least squares sense, is

satisfying those boundary conditions. With this technique, we've agreed

with experimental data to within five percent for an oblique 45 degree nozzle.

KALNINS: Yes, I agree that would be a definite improvement.

COMMENT: In this problem you've selected, namely, the cylinder

with a slit, a fracture mechanic would be interested in the stress intensity

factor. Now I have a feeling that no matter how far you carry your solution

in terms of number of mesh points and so forth, you wouldn't be able to

come up with it.

KALNINS: That's correct. But the analysis is based on linear

theory which would predict infinite stress at the tip of the slit. I don't

really want to get into it what the stress is in the vicinity of the tip; it's

not going to be realistic anyway. You're absolutely correct, this is not

the way to do fracture problems.

LIESSA: I'd like to add a couple of comments of my own here.

Having worked with point matching and boundary point least squares methods

quite a bit, I can see some of the difficulties and why they happened in
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the results. One of them has already been mentioned by Prof. Kalnins. If

you force the functions to go through the points by point matching, then you'll

get this wildly oscillating type of behavior as we saw in the plot for Nx. If

you recall, from the slide, the function had to go through a few points

having zero values and then as it got into the body of the shell where you did

not have a free edge, this oscillation continued to build up. And one way to

cut down on this oscillation is, of course, to use this least squares

method which numerically is done very simply by taking additional points,

or as someone else mentioned, by actually adding additional supplementary

boundary conditions at points and coming up with a non-square set of equa-

tions, then multiplying through by the transpose to get a least square fit.

Now another key point. You can do even better in eliminating this wild

oscillation if you can add some type of singularity function at the base of

this crack and thereby remove the singularity and get rid of the residual

on the smooth function that's left over. Now, of course, guessing the form

of the singularity has to be based upon some other analysis.
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ABSTRACT

Before the comparatively recent developments in computer capa' lityg

the complexity of the thin shell equations made necessary the utilization

of various approximate solutions, which usually are leading terms of

appropriate "asymptotic" expansions of exact solutions. Even today, asymptotic

solutions are useful, since they provide simple formulas for preliminary design

and exact solutions for limiting cases in which straightforward numerical pro-

cedures encounter difficulty. Moreover, the asymptotic and numerical approaches

can have a healthy interaction in an investigation of a particular problem.

Various problems are discussed which show some of the strengths and weaknesses

of each approach, some past fruitful interactions, and some possibilities

for future interaction.

I. Introduction

II. Some Advantages and Disadvantages

1. Bending of Curved Tube

2. Dome 7,4th Tilting Moment

3. Heatt i Slab with Stress Pulse

III. Examples of Interaction

1. Pressure Vessels with Slope Discontinuity

2. Vibration of Conen

IV. Further Possibilities for Interaction

1. Stress Phlses in Inhomogeneous Solids

2. Moving Load Problems

3. Shells with Holes and Concentrated Loads
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I. INTRODUCTION

Various asymptotic expansions have been used by countless investigators

of the behavior of thin shells. For the basic problem of shell statics, one

type of expansion gives the "membrane" and "inextensional" solutions for the

leading terms while another expansion gives the "edge effect bending" solution.

However, these expansions are invalid in numerous situations of practical impor-

tance; for instance, when a boundary curve is tangent to an asymptotic line of

the surface, which occurs at a cutout on a cylinder, when a toroid is considered,

when the spatial derivative of the load distribut.ion or geometric parameters is

too large, and so on. Each type of difficulty seems to require a different,

basic modification in the expansion. Airy functions are used for the toroid,

Bessel functions for the sphere, and completely different terms are taken into

consideration in the expan ion depending on the "index of variation" of the

load. Furthermore, knowing %hen to apply these modifications requires whatf

appears to be mysticism to thn unitiated. It is little cause for wonder that

most of the current effort in 3hell analysis is in the development of computer

programs that can provide answers for a given problem without an undue amount

of analysis. HowL-er, the straightforward numerical methods remain fundamen-

tally inefficient for shell analysis, since a considerable expenditure of effort

is required for regions of the shell where the solution has little interest.

It now seems, at least remotely possible, the asymptotic techniques may

develope to the point that they might be used directly in a general purpose

computer program for shell analysis. Such would be the ideal situation, in

which all the known analytical simplifications could be utilized together

with the high speed computing capabilities for an analysis of maximum efficiency.

For the near future, however, the explorations of asymptotic and direct numerical

methods will continue to be rather distinct.

The usual situation is that the investigator, after completion of an

asymptoti1c analysis, might seek a direct numerical result for confirmation,

while the developer of a computer program likewise looks for asymptotic results

for check cases. For illustration, we discuss the problems of the bending of

"a curved tube [1], the dome with a tilting moment (2,3], and the propagation of

"a stress pulse through a heated slab (4,5]. These problems show the inherent

advantages and disadvantages of the asymptotic and numerical methods.

The objective of this paper, however, is to show that, in the course of an
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investigation of a particular problem, the simultaneous utilization of the

asymptotic &ad numerical methods can lead to very satisfactory conclusions.

Furthermore, these conclusions would, very likely, not have been obtained

with either approach alone. The examplas are the recent investigations

of pressure vessels with "weld sinkages" (6,7] and the modes of vibration

of the conical shell (8,9].

Of interest is a problem somewhat analogous to the vibration of a

conical shell in a fluid - the mechanical behavior of the cochlea of the

inner ear. Nany direct computational approaches have been used and have

failed to provide a basic understanding which would resolve the conflicting

theories (10,11]. However, a simple asymptotic result has been recently obtained

which seens to clear up many things, and should give guidance for future,

more precise, computations.

Finally, some recent asymptotic results (12-16], are briefly discussed

which would seem to be helpful, when combined with direct numerical calcula-

,tons, in various problems of shell statics and transient dynamics.

The problems discussed in this paper strongly reflect the interest and

recent work of the author. No attempt is made to give a general survey or

to acknwledg& all the significant results of other investigators.
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I1. SOME ADVANTAGES AND DISADVANTAGES

The basic notion underlying most "asymptotic" methods is that a

feature of a problem, which canses an undue amount of difficulty for a

direct numerical calculation, can be turned to an advantage by suitable

analytical manipulation. Indeed, there are numerous examples of such

trickd used on power series, integrals, matrix inversions, and so on.

Many features of the thin shell equations are in the standard equation

y" + p(x)y' + [1-2q(x)+r(x)jy- - X2 f(x) (1)

Where p , q , r , and f are prescribed functions and % can be taken as

the radius-to-thickness parameter, which is usually large. For moderate

values of X , there is no difficulty in obtaining an approximate solution

with the use of any direct numerical or energy method. But as X becomes

very large, the direct methods all encounter severe difficulties; the

capacity of any finite computer will be exceeded by a sufficiently large

S. The reason is that the finite difference or finite element grid

spacing must become very small, or the approximating polynomial must have

a high degree to adequately represent the solution. This feature can be

turned to an advantage, however, by finding the appropriate forms of the

asymptotic expansions of the solution.

The particular solution can be obtained as a usual perturbation

expansion

in which it is assuxped that each yi(x) is completdly independent of ),

After substituting the expansion into the equation and equating the terms

multipled by each power of > to zero, a set of equations is obtained for

the successive computation of Yo , y , .I. . The first is

y - f(x)/q(x)

For shells, such an expansion gives the"me-brane"and"inextensional"solutions. Thus
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many of the terms of the equation have a secondary effect on this particular

solution. This, however, is not a general solution since no arbitrary

constants are obtained. When the perturbation expansion does not give

enough arbitrary constants, we have a "singular perturbation" problem [12].

To find the missing complementary solution, which supplies the

arbitrary constants, an expansion must be used which gives a "rapidly vary-

ing" solution for which the second derivative term is significant. The

simplest form is

Wx11 (3)
y-6 (X) + -LX (x) + _L &2(x) +. 1

where • and all the ti(x) are assumed to be independent of the large

parameter ) . Substituting into the equation and equating the coefficient

of each power of X to zero gives an "eiconel" equation for the argument

function

(•)2_ q(x) m 0

and a "transport" equation for the first coefficient

+ o+p~)ont 0

then a recursive set of equations for the c ,12 , ... . When q(x)

is positive, or, more generally, when larg qj< n , then the solution will

increase, or ddcrease, exponential giving an "edge effect" or "boundary layer"

type of solution. When q is negative, the solution is oscillatory and

C(x) is the "phase integral" and the coefficient Oo(x) gives the variation

in the envelope of the waves. Although this solution was obtained by

Louiville (1836) and independently developed fo: shell theory by H. Reissner

and Blumenthal (1912), it is com•nonly, but erroneously, referred to as the

WKBJ (1928-1940) solution. When used on a partial differential equation, this

type of expansion gives the "geometric optics" solution [12).

To come to the question of advantages and disadvantages, the most impor-

tAnt point 8s that the direct numerical and asymptotic approaches are not
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competing methods for doing the same thing, but are most complementary. The

direct numerical computation gives answers for the low and moderate values

of X but becomes unreliable and/or expensive for large X , while the

asymptotic result is simple and accurate for very large, but is unreliable

for moderate, values of X . Then we have the possibilities for interac-

tion. For instance, with the general features indicated by the asymptotic

solution, the appropriate mesh size could be used, fine in the "edge zones"

and coarse in the interior, to improve the efficiency of the computer pro-

gram.

Unfentunately, the sl'-uations -n which these simple expansions are

invalid are all too frequently encountered. The modifications in the

asymptotic solution for "transition points", are indicated in the following

examples.

1. Bending of Curved Tubes - Several points can be illustrated by the

analysis of the bending of a curved tube [1]. The simplified equation is

11c)- illsincp4(cp) - Ai~cOsCP (4)

where is the change in curvature and the parameter is

P- a 12(l- 2)) 1/2 b2 /ah

where a-l and b-l are the curvatures of the tube and the cross section,

respectively, and h is the thickness. In this situation, the parameter

could be small or large. When the tube is initially straight p - 0 , and

the dimensionless rigidity factor p is unity. So the early investigators

considered a solution for a slightly curved tube, for which a perturbation

expansion in I could be used. Since * must be periodic,

11 =ain 2ncD+ 1 b scos(2n+l)qn
L nol,2,... n n

If only one term is retained, the result ior the straight tube is obtained

PM 1

If two terms are retained, the result is

16
P 6 + P 695



If three terms are retained

2
16 + -E

16 + 9

while-the four term result ij

16 +52

P= 41 2 1 4

Any of several existing computer programs usiug direct numerical methods

should easily b-. able to improve on the perturbation results by using more

exact equotions including the nonlinearities, etc. However, as P becomes

large, the algebra for carrying out more terms in the perturbation expansion

or the computer time becomes excessive. On the other hand, the simple

asymptotic expansion3 (2,3) are useless for (4) since the term multiplied by

the large parametet' has a zero, producing singularities in the leading terms

of (2,3) at points at which the equation is perfectly vell-l-.:haved.

So, a certa'a amount of trickery was required. Clark and Reissner [I]

came up with an extension of the lAnger "comparison equation" approach [12).

Inatead of (2) or (3) it is necessary to use, for the simplest unifoimly

valid asymptotic solution, the solution of

I,(x) - ixT(x) a I (T (r.) -ix- orIXI-')

in the expansion

t~)- T (kl /3 g(qT))[%((P)+ 7a2(0f+ 4

+ ý 2/3 T' ($ 1/(S0+..]()+1

Once the correct form of the expansion is obtained, it is straightforward to

obtain the functions
( 13- (l /2o )2/3

*O~q a P/3 kcot cf
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I1

The argument function M(p) has a simple zero at the transition point
Sa 0 , so qo(c and all the other terms in the expansion are well-

behaved.

It often teems that those considered the greatest mathematiciais are

those who can make simple things the most obscure. But the attractive

feature of asymptotic analysis is that "obscure manipulation" can end in

simple results. The above use of the T(x) function gives for the

rigidity of the tube

p - 2/p for p >>1

Fig. 1, from [1] shows the three term perturbation curve (A) and the

asymptotic result (B). The two curves are quite close for the moderate

values of p , so this is almost a case of "matched asymptotic expansions".

Generally, however, the expansions for small and large values of a parameter

will not overlap, but this is the region easily handled by direct numerical

methods.

2. Dome with Tilting Moment - For the shell of revolution whose meridiav

is a second eegree curve at the apex (sphere, ellipsoid, paraboloid) the

equation is

/rR2 2/ R
1 d __ n A (_)

rR2R1  dcp \R p~RR2  r 2 \V

where R R, - R2 and r s R.9 near the apex a - 0 , the large parameter

S- 12 (l- v2)11!4 (R/h) 1/2

and n is the Fourier harmonic index. Again the expansion (2) is not

valid near cp- 0 since the coefficients of (5) are sirugUlaro HIowever,

very near cp - 0 (5) has the form of Bessel's equation, so the "compari-

son equation" method can be used. The expansion is

( )((f) [%(qP + -• al((P .

+ T1(0 ( "c 1(c+. • •

697

-'4



* where T is the appropriate Bessel function

11(Q-L ;(bernC- ibeinC)

+ C. (ker, C - ikein C)

and we find

C Kc( R Rsin cprR)li dy

(I~rR 1/2 )1/2

and so on.

An advantage of the asymptot5.c solution is that some problems can be

solved in terms of the transformation variable C . One curve Fig. 5

from (3) gives C for a variety of geometry. For the dome shown in

Fig; 4, the stress at the upper edge is given in Fig. 6 by the value of

C at that edge. The dotted lines in Fig. 6 give the typical decrease

in stress away froiw the edge, This asympntc.ic result was used for a check

case for the computer program developed by Cohen [2], who found the

agreement shown in Fig. 7.

3. Re;t-•d Slab with Stross Pulse - The direct numerical and asymptotic

methoda also play :omplempntary roles in dynamic problems. For the transient

plane stress in a slab with a variable speed of sound, due to, for instance,
high heaerng of one face of the s lb, the equation is

c 4C) 2 " .ab• b2

After a Laplace transformation in time, the equation is of the form of (1)

ax c2

so for la-Se v•Alues of the transform variable p , the an.,ymptotic solution

•Lvorn in (51 to
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•(xp)- c~p(x• (W + l(z) +...

where we find

C*(x)- [c(x)/c(O)]

For a pressure pulse on the face

(O)It) -1co f(t) for 0 <t < to

(0 for t < 0 t >to

the constant C can be evaluated and the inversion integration performed

giving for a first approximation for the internal stress pulse

gi .~ ((x)f(t- %(x)) for t - to< I < t

00ro 0 for • elsewhere

This simple approximation is valid for a sufficiently high frequency pulse,

for which the internal reflections from the inhomogeneity is negligible.
r•• The function ao(x) gives the amplitude modulation and the function C(s)

gives the distortion in the pulse shape.

Thus for a slab with the variation in speed of sound .shown by

gcurve Fi. 3d, subjected to a triangular pulse, the

asymptotic result gives the compressional pulse traveling through the

slab In Fig. 2 (a-d) and the tensile pulse reflected from the free surface

in Fig. 3 (a-c). A comparison with the finite difference numerical solution

obtained by Haesard [4) is also shown in Figs. 3, 4.

Yor advantages and disadvantage,, the asymptotic result is very good

for the high frequency part of the pulse, so the sharp peak should be

accurate. However, the main part of the pulse has a sprt-1aI wave length

which is long in comparison with the distance over which c varies

significantly, so a significant internal reflection is missing from the

asymptotic result. On the other hand, in the numerical approach, the

actual variation in c was approximated by the step curve shown in

Fig. 3d, which should cause more internal reflections than are actually there.
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This is compensated by the artificial damping that must be used for

numerical stability. Thus the peak of the pulse, which is accurately given

by the asymptotic solution, is quickly lost in the numerical solution.

The conclusion is that the actual pulse ia somewhere between the two results.
Actually, if the two term asymptotic solution, which gives the internal

reflections, and the improved numerical solution with less internal damping

are used, quite good agreement is obtained.

One interesting feature, is that the cu,-;e for io (Fig. 3d), seems
to give the internal stress envelope even for th!.s long wavelength pulse.

If we take only the half sine wave porticn of the incident pulse, assume

that the prak is all lost in the numerical solution, then the maximum

tensile and compressive stress envelones from cto(x) and the computer

results are close.
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I

III EXAMPLES OF INTERACTION

In the previous examples, the direct numerical and asymptotic results

were obtained independently. Now examples are considered in which both

approaches were used simultaneously in the investigation of a particular

type of problem.

1. Pressure Vessel with Slope Discontinuity - When a pressure vessel is

formed from segments of shells of revolution welded together, often there

can be seen a very small deviation in the nominal geometry near each weld

seam. For simplification, this "weld sinkage" was approximated by a meridian

with a discontinuity in slope, as indicated in Fig. 8.

equations where used

* "";y + ( .0 +A+ A2 •y X oa+X a+a" (6)
dx -2 -1 -

where the components of y are the physical variables, x is the dimension-

less arclength, X is the radius-to-thickness parameter, the A are

matrices and the a are vectors due to the surface and axial loading.

The usual perturbation expansion (2) now is of the form

y-61 * ,(7)).6X~ + 61 + "1 .82 +. • • -

Substitution into (6) gives

A 60 - a0
A o•= Ao

Since A is nonsingular, all the 6 . can be computed; 8 gives the

membrane stress, 61 the corresponding radial displacement, .62 the rota-

tion, 8 the corresponding (small) bending stress, and so on. The com-

plementary solution (3) is now of the form
S2) . e~~%Yx) •

oa+ (8)

Substitution into (6) gives
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S(-'_)• ) - 0-

Thus- ' is an eigenvalue of Ao and 50 is the corresponding

eigenvector. For a1 to exist, the right-hand-side of the second equation

must be orthogonal to the solutions of the homogeneous transpose equation,

which gives the "transport equation" for the amplitude of the eigenvalue o "

If these "memLeane" and "edge-effect" solutions (7,8) are applied to

a pressure vessel with the slope discontinuity shown in Fig. 8, the maximum

meridional stress at the seam is found to be

2--- [1 + gi (9)
2hsinyp

where the stress concentration factor is

g 27 ]V4 r+

where C is the nominal angle

,p q+ ~)2

This "classical" asymptotic result gives a convenient grouping of the many

variables of the problem into the one significant parameter g .

Then comes the question of the range of validity of the analytic result.

Although error estimates cen sometimes be obtained for an asymptotic result,

the information gained is usually not worth the work required. Therefore,

the direct finite difference solution of Reissner's nonlinear equations [7]

was utilized. The computer results, as expected, agreed very well with (9),

except, however, when the edges became tightly curled or when the pressure

load was excessive. The tightly curled edge is a situation in which the

geometry varies significantly in the edge zone, a situation which is not con-

sidered in the literature of asymptotic methods. However, the computer

results showed such a smooth deviation from (9) as the curvature increased,

that we were sufficiently intrigued to seek an analytical explanation.

Indeed, an investigation of the cylinder, with its very simple nominal

geometry, revealed that an appropriate modification- of the membrane and edge
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effect solutions could be obtained, which gave a result that agreed with

the computer results. Then the computer analysis showed that the same

modification held for the sphere with the seam at any angle. This in

turn motivated the effort to find a solution for the general nominal

meridian.

For a meridian given by

r(s) - R(s) - g),2 exp)X(s)

where R(s) is the nominal radius, O is a constant, and C(s) is a

given function of the arclength with the expansion

C -iR sin(op+ 0(82)R(o)

where k is a constant, then the equation can be written in a form

displaying explicitly the dependence on X

-•,+ ()O +A+...+eC Bl e1 )C 4+...)-y

2 X2a+C+..+XeX•I+e2 XC •÷...

where the A1 and a are from the nominal geometry, while the Bi

and bi are due to the devia.ion from nominal. For the particular solution

the expansion is

Y. S+ 1 . .

while the expansion which works for the complementary solution is

-expOS 06 +xai+ a, 1
+ exp()9+ +4 -

2-2 +

+ exp F+ 2)XC)1 + 1
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The result of retaining only the first term giving the deviation from

nominal is that the stress concentration factor g in (9) is mu.tiplied

by F(p,p) where

F(Ik, p) 1-+ Lt[2(l + c)1l

(1+ ) 1/ ilP[2(+pf +P2ý(10)

where p is the curvature parameter and p is the ratio of the internal

pressure to the external classical buckling pressure.

The curves for F(Ik,p) are shown in Fig. 9, with points from the

direct numerical computation, for a nominal cylinder with R/h = 100 .

The agreement is reasonably good, even for excessive values of pressure.

The agreement remains reasonable, even for R/t =10 and a large discon-

tinuity in angle, as shown by the table in Fig. 10. The computer results

for geometric deviations other than the smooth exponential, show that (10)

holds if p is taken as the measure of the edge curvature deviation.

Thus a simple result valid over a wide range of the problem variables

was obtained, which would, very probably, never have been obtained by either

an independent analytical or numerical investigation. Without the guidance

of the asymptotic solution, the significant parameters would be very

difficult to determine out of the numerical output. On the other hand,

without the motivation of the computer results, the asymptotic solution

for rapidly varying coefficients would not have been attempted.

The analysis of [6], involving onll geometric nonlinearity, was

extended to an elastic-plastic material. Again a fruitful interaction took

place. The computer program, using a detailed elastic-plastic material

model, fails to converge as the limit load is reached. However, the

estimated limit load was in reasonable agreement with the analytic result,

using an oversimplified elastic-plastic model. So each solution by itself

would be subject to doubt, but together give a conclusive result - that the

local plastic collapse at the slope discontinuity can occur well before

the pressure for overall collapse of the shell is attained.

2. Vibration of Cones - The ability of the asymptotic analysis to provide

a simple qualitative understanding of a complex problem is shown in the

investigations of shell vibrations [8,9]. The significant feature is in
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the simpler equation for a beam on a foundation with variable properties

21 v ky + p& 0a22 +2

The expansion (3) is modified to the form

w(x,t) - eiW(tMc(x))[ow(x) + 1

The first term is the exact solution for constant properties, so for the

general case, this expansion should give a valid approximation for wave

lengths which are sufficiently small compared to the distance over which
the properties vary. Substitution into the equation gives the "phase

integral" (x~m k Ax

and the "transport function"

a -(, 3/ 2  -1/2

Therefore, in a region for which

e'> k/pA

there will occur sinusoidal modes which are similar to those for the
constant property beam, but with a distortion in amplitude and mode points.

In a region for which 2 < k/pA, ý will be complex valued, so no sinusoi-

dal modes can exist, i.e., w is below the resonance frequency. The

dramatic deviation of the variable from the constant property beam occurs
when 2 . k/p&A at a point on the beam. Then a transition takes place

from a sinusoidal mode in the more flexible region to an almost negligible
response in the stiffer region of the beam (or cone).

Past efforts to find the vibrational and buckling modes for conical
shells by an energy method, using a series of cylinder modes, have been

puzzling. In some situations convergence occurred with only a few terms,
while in other cases, hundreds of cylinder modes would be required for

705



7fr - "717IL~%2~

convergence to one mode of the cone. From the asymptotic result comes

the explanation; when the transition point is on the cone, the mode shape

is drastically different from any cylinder mode.

Thus in (9] the knowledge of the location of the transition point was

used to conveniently categorize the results from a finite element computer

program for some 3000 different configurations. Fig. 11 shows the frequency

spectrum for a cylinder, while Fig. 12 is for a 600 cone. Fig. 13 shows

the regimes I for which the transition point is off the truncated cone

toward the apex, III for which the transition point is off the big end of

the cone, and II for which the transition point is on the cone. Some

deviation is seen as the curves enter the region II on Fig. 12. More

pronounced is the effect on mode shapes shown in Fig. 14; the upper curves

showing "cylinder" modes are from region 1, while the lower curves are

well into region II.

An interesting problem that turns out to be analogous to the cone

vibration problem, concerns the analysis of the cochlea of the middle ear.

The sisplifiod mechanical model consists of a long, slightly tapered thin

plate (the basilar "membrane") immersed in a fluid. The means by which a

single nerve might be excited by a single frequency tone remaina a contro-

versial subject (10,11], even though several extensive programs for

numerical analysis have been utilized. It would appear that an asymptotic

analysis may offer some clarity for the situation. The taper of the plate,

as the taper of the cone, causes a transition point to occur whose location

is dependent on the frequency. Thus a simple formula using elastic properties

from the deflection of the plate under a static concentrated load at three

points along the cochlea, gives the curve shown in Fig. 15. The agreement

with the experimental evidence over most of the significant frequency range

indicates that something is going on at the transition point which excites

the local nerve. A satisfying resolution will likely depend on an inter-

action between the asymptotic and numerical methods.
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IV. FURTHER POSSIBILITIES FOR INTERACTION

There are numerous problems treated by the direct numerical methods

which are beyond reach of any analytical effort. On the other hand, recent

asymptotic results may offer some assistance for certain difficult problems.

1. Stress Pulses in Inhomogeneous Solids - For transient pulse propagation

in a solid with variation in material properties in two or three directions,

it is difficult to determine the pointe in space and time that maximum

stresr.s * -ur. The geometric optics approximation ran be applied

in som "seb. in [51, the bending of a stress ray due to the inhomweneity

is disi.ussed (Fig. 16), and applied to the slab heated on one face but

nonuniformly along the face. Thus an incident presgutz pulse will not

travel as a plane wave across the slab but will have an effect focused on

the caustics, the envelopes of the rays. The caustics can be obtained

from a relatively simple geometric construction and the time of arrival

of the peak stress at the cusp easily computed, but the details are more

difficult to obtain. Thus there should be a tie-in with the direct methods.

2. Moving Load Problems - The recent asymptotic results for shells of

revolution with axisymetric moving loads [14,15] show the development of

the "steady-state" out of the complete transient solution. Furthermore,

the behavior at the "critical" load speeds and the general behavior is

obtained, as shown in Fig. 18, for the cylinder. When the load speed and/or

the geometry varies, the asymptotic results become less useful, however,

the general features can be obtained. In Fig. 19, the load position 9

is shown as a function of time T for an increasing and a decreasing load

speed. When the speed exceeds the minimum phase velocity, waves are

generated which travel at their group velocity, giving the influence lines

in Fig. 19. Again caustics form as the envelope of these influence lines,

which give the locus of an accumulation of stress. Just how signifi-

cant this view might be, remains to be established by direct numerical

methods.

3. Shells with Holes and Concentrated Loads - The notions from geom~tric

optics of rays and wave fronts can be applied to shell statics. In [16]

the shell equations are reduced to the one equation

V . (p + 2 Vpa)+ L- 0
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where p is a symmetric tensor, which has the tang ntial stress resultants

for its real part and the curvature changes for its Emagit-ary part. p is

the trace of p , a is the unit normal to the surface, L is a Load

vector, and 0 denotes the tensor product. The "geometric optics"

solution is

Substitution into the equation gives the "eiconel" equation

(v0 - vt-"''-C-v9 0

where b is the curvature and c the rotation tensor. This equation

states that the gradient of t is equal to the square root of the normal

curvature of the contour lines. Since this equation is a first order

nonlinear pirtial diffezential equation, it can be solved by the method of

characteristics. The characteristics turn out to be, generally, not in the

direction of the gr~dient lines. Thus a nonorthogonal coordinate system

consisting of the characteriscics and the contour lines, on which • is

constant, is used.

For the cylindrical shell, the characteristics are straight lines

(i.e. geodesics) and the intrinsic part of VC does not chaage along

the characteristic. Thus for a circular rigid insert in the wall of a

cylinder, the picture is indicated in Fig. 20. The zone of significant

bending propagates a considerable distance along the generators tangent to

the hole. However, the maximum bending stress is about the same all around

the hole. In contrast, the usual "boundary layer" analysis utilizes ortho-

gonal coordinates and leads to a singularity at the points of the insert

tangent to the generators.

There seem to be many possibilities for this type of soluti', -. In

particular, It should be poss-ble to investigate shells with lightly

stiffened holes for which membrane and inextensional solutions are impor-

tant. Also problems of nearly concentrated lcading should be amenable.

Finally, it should be possible to obtain the generalization to orthotropic

shells and to the dynamic problems. Since all these are problems which are

far from resolution by the direct numerical methods, it would seem that

there remains a broad area of significant practical problems in which a

very interesting interaction of methods can and should take place.
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QUESTIONS AND COMMENTS FOLLOWING STEELE'S PAPER

COMMENT: I really don't have a question but I would like to make

some comments. You were talking about the cylindrical shell with a hole

in it and about the bending effects which may propagate it at long distance.

In a recent experimenta' program we put a nozzle n a cylindrical shell

similar to the one you discussed and we had great difficulty locating where

the strain gages should be to find the so-called membran-- stress part of

the cylindrical shell. Your paper provides us insight as to why this was

the case and I think your work will be of advantage to many if it is developed

further.

STEELE: Well, I must say that by using a rigid insert, I've

intentionally -... icted the problem to avoid the membrane and inextensional

solutions. If you really consider a flexible boundary, then the problem

becomes more difficult. I really haven't looked at it yet but I'm very opti-

mistic about this approach being able to do something definite about this

more difficult problem of the hole, or a hole lightly reinforced.

COMMENT: I want to make a comment rather than ask a question.

I think the work that Steele has done, especially that with Skogh most re-

cently, is very exciting. Too often numerical analysts and people with large

computer codes become so enmeshed in the numerical details that they don't

look up every now and then and try to see the physics involved. For instance,

in the conical shell problem which was discussed, modes were very hard to

interpret. You don't know whether you have a bug in the program or whether

to believe the results, and I think this interaction of numerical solutions with
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the analytical solutions as provided by methods described here i:. an extremely

powerful marriage--one that should be used much more frequently than it is.

QUESTION: The use of analytical techniques in combination with

numerical techniques seem promising but do you think you'll be able to

obtain analytical results for shells other than shells of revolution?

STEELE: Well, this last solution presented was for a general

shell surface. The problem comes in computing these rays. If you have

an arbitrary boundary curve on the general surface, then you can't get a

closed form solution. You must use a numerical solution. But the fact is

the large parameter is out of the problem, so you can use a fairly coarse

grid to compute step by step into thc interior and thus can easily compute

all the rays emitting ;rom an arbitrary boundary on an arbitrary surface.

I think it's a very feasible apprrach.

LIESSA: There's just a couple of points I would like to make

in summary. Regarding Prof. Kalnin's paper, I think the important thing

here is that we realize two types of methods or technirlues are being used.

The numerical integration technique that probably most of you associate

with Prof. Kalnin was not really necessary for that problem at all. What

he was attempting to do was to extend the technique into the circumferen-

tial direction by means of the finite difference, least square or some other

method, And, of course, the direct integration procedure as he presented

is adaptable to those types of shells for which it is virtually impossible to

solve using some exact technique.

Regarding Prof. Steele's paper, I think the important message there is
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that asymptotic methods are certainly a very strong complement to the

traditional numerical methods we're all familiar with. It gives us in-

formation tiat is extremely valuable if, for example, we want to change

a parameter and see what happens. In particular, I'd like to quote from

Prof. Steele's abstract where he says "asymptotic solutions are useful

because they provide simple formulas for preliminary design and exact

solutions for limiting cases in which straightforward numerical procedures

encounter difficulty. I certainly agree with that and I would add that if you're

trying to solve a design problem using finite elements, for example, you all

know which direction to change some variable to get a better design. I

think also that Prof. Steele showed us a number of directions where aymptotic

methods can be used.
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ABSTRACT

'• Aspects of postbuckling behavior are investigated for structures undergoing
plastic deformation. The structures singled out are characterized by a highly

imperfection-sensittve behavior where buckling takes place in the elastic roe.
A sinple codal study is carried out and is followed by an analysis of the plastic
buckling of a complete spherical shell under external pressure. In both instsncas,
the bifurcation behavior and subsequent defoouation of the perfect structure aswell as the influence which geometric Imperfections bare on buckling are studied.

1. INTRODUCTION

th Elastic structures which are labeled inperfection-sensitive have the property
that when a perfect realization of the structure undergoes bifurcation the loadcarrying capacity diminishes, and the bifurcation load is the (local) maximum load
that can be supported. Small imperfections arising from various sources usually

I have an appreciable affect an the maxiuum load such a structure can support. On
S~the other hand, when bifurcation occurs in the plastic range it is generally true

that bifurcation aunt take place under increasing applied load. At least this is
what happens according to the Shanlty concept [1-4], and Hill's [5, 61 general
study of the bifurcation behavior of elastic-plastic solids suggests that this is
the rule rather than the exception.

For an elastic system, a study of the equilibrium configurations in the
neighborhood of the bifurcation point reveals its stability characteristics. If
4he structure is imperfection-sensitive and if small imperfections are accounted
for in the analysis, then exact asymptotic results relating the buckling load
(local maximum) to the imperfection amplitude can be obtainad (Koiter [7, 8],
[9]). An analysis of the plastic buckling of imperfection-sensitive structures,
similar in spirit to Koiter's analysis of elastic systems, has not been
accomplished in part, no doubt, due to the considerable complications which
accompany the Introduction of elastic-plastic behavior. In fact, it seems unlikely
that results as general and concise as those for elastic systems will be obtainable.

• * Presented at Conference on Computer-Oriented Analysis of Shell Structures,
August 10-14, 1970, Palo Alto, California.

This work was supported in part by the National Aeronautics and Space
Administration under Grant NGL 22-007-012, and by the Division of
Engineering and Applied Physics, Harvard University.

720



In this paper we focus on the postbuckling behavior of structures which are
imperfection-sensitive when buckling takes place in the elastic range. First, a
simple model study is carried out which does yield some simpl and revealing
formulas for the effect of small imperfections. The nodal study is followed by
an analysio of the plastic buckling of a complete spherical shell. A brief
review of the bifurcation behavior of the perfect sphere is given, and a numerical
analysis of the axisymmetric postbuckling deformation of perfect and imperfect
spherical shells is reported.

2. BUCMING OF AN IMPEIRECTION-SENSITIVE SIDPLE MODEL IN THE PLASTIC RANGE

Significant imperfection-sensitivity of elastic structures is due to strong
geometric, or structural, nonlinearities. These nonlinearities will be equally
important when buckling takes place in the plastic range. The simple model
investigated here coibines the essential features of Shanley's [1 model of plastic
column buckling and Kiramn, Dunn and Tsien's (101 model of elastic buckling of
imperfection-sensitive structures. It is similar in a number of respects to models
studied by Smell [111 and Augusti [121 but differs in that the model possesses a
strong geometric nonlinearity and this property is exploited iu the analysis. An
elastic version of the nodal was used to study dynamic buckling in Ref. [131.

The rigid-rod model, which is shown in Fig. 1, can displace vertically as
measured by u and can rotate as measured by 0 . An initial rotation from the
vertical in the unload state is called the imperfection and is denoted by 0 so
that the total rotation is ; + e . The load-deflection behavior of each of the
supporting springs, #1 and 12, is also shown in Fig. 1 and Is given by

11 or 1pax , or

S-To"for and <10

E t E for F and > 0

where om - F for initial yield. Spring #3 is introduced to bring in a strong

geometric nonlinearity. Under a rotation 0 the force which develops in this

spring is Q B •B 2 . We shall assumie that the parmeter i/(ELI) Is large

compared to unity. This insures that Q is the only significant geometric
nonlinearity and permits us to replace sin 8 and cos 8 by 8 and 1
respectively.

The equations of equilibrium and the deflection-displacement relations are

F 1 + F2 a P (2)

- 2(F 2 -F 1 )L 1 + PL2 (O+6) + SL2 8 - 0 (3)
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a• u + L a( 41 1(4)

A 2 u - L1I

whe-, • subecripts denote springs #1 and 12.

The behavior of the model for a purely elastic response (Et-E) is shown ir

Fig. 2. Bifurcation of the perfect structure occurs at P ;2ErL and the

smaiavn support loaC in the presence of an Imperfection, > ' 0 , Ii given by

pa 2 5

For s .ufficiently small,

1-+ Of .. (6)
C " 1 I

Turning to plastic buckling, we first consider the bifurcation behavior of
the model with no imperfection. The lowest value of P at which bifurcation is

possible is Ptan w 2EtrL1 , the so-called tangent modulus load- but bifurcation

is possible for any P > itan • It is readily verified that the cotic~tons (1) of
loading and unlcad-4 can be satisfied at the bifurcation point only if one spring
loads and the other unloads. The interesting case is wen 0 > 0 for wh-!h
apring #I continues to load and spring #2 unloadi coincident with bifurcation. If
bifurcation occurs a. P - PC then the load-deflection relation is

S[C+ l+Bpme . 1+X 2 11+x -1 (7)
)P , -( ) e 1 + ; - , (

2 +81 1+ý ,r._p .. 2, 1 l+A. 2 pm- ) !1+..

"c+ e[r(±)(,r- 4cJ - e r--f 4f) (pr-pC) C r i.. J + ... (8)

where A a E /E . The reduced modulus load where bifurcation takea place with no
change in thl applied load, to first orý.ar, .s given by

? rr 2 Ptan

For PC c Pr* , bifurcation takes plac, under increasing load. The maximum

load which the perfect structure can support when bifurcation occurs at PC - ptav

satisfies the equation

(P1P(-)+ 4 0  )(:&40 P 35-o) 0 0 (9)
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or

P"I . Ptan[l + t +
0 20.

This value is only very slightly above the bifurcation load.

An example of the load-deflection relotion (7) is plotted in Fig. 3 for three

different bifurcation values. In this figure P is normalized by PC a ptan and

this curve is shown as a aol.-i line (i-0) . The upper dashed curve corresponds
to bifurcation at the reduced modulus load, while bifurcation takes place half way

between Pru and Ptan for the lower dashed curve. On each curve, the maximum
load occurs at the point marked by a cross. Our discussion this far follows LAat
given in more detail by Sewell [11] for a similar model.

In the presence of a small Imperfection, i 3 0 , the load-deflection behavior
is considerably more complicated. There are three distinct sequences of loading and
unloading which can take place depending on the magnitude of e . a irst, consider
the case for which 0 is sufficiently mall so that the resulting formulae will be
valid in the limit as 0 vanishes. In this case, it is found that there are four
separate steps to the loading history. With the first application of load both
springs are elastic. Next, spring 01 starts deforming plastically and is followed
by spring #2 at a slightly higher load. The load continues to rise. At a valut
of 0 , denoted by 6 , spring #2 unloads. From this point on spring #1 loads vhile
#2 stays in the elastic range.

The maximum value of P occurs at a value of e slightly larger than 0
Some of the formulas for the values of P and 8 at the various stages of the

history are rather lengthy and will not be listed here.t On the other hand, the

expressions for 0 and eaX are relatively simple. They are independent of F
and are given by y

• _W - + {W2 + re -/ (10)
1 +0/(2E-Ll)

S1

5 2E LI
4Mx~a ti1
0pa - 20te + jal+- 1 -) -l(;44)] (11)

Asymptotically for mall 0 , Ea. (11) becomes

} 1

PPax : .~ 0 J + .*(12)

0

I in indebted to N. L. Coldnan for a careful check of the analysis of the

simple model.
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where it in recalled that 0ax is the maximum support load (9) of the perfect

structure when bifurcation occurs at P. N pt

The asymptotic result (12) is particularly expressive in that it is very
similar to tho analogous result (6) for the purely elastic model. The important
"difference is the presence of Et in (12) rather than E . Thus, for small

imperfections the model Is more imperfection-sensitive in the plastic range than
in the elastic range in the sense that an imperfection amplitude A8 results in
the same relative reduction of the buckling load as does 8 in the elastic case.

Equation (11) ceases to hold when e is sufficiently large such that
spring #2 does not become plastic at all. In this sequence of loading, spring #1
yields at a value of P just under 2 i' and the model deflects readily under

only slightly increasing load until the maximum load occurs at a value which is
given very closely by

Paax A 2Fy (13)

Curves of P vs. e for the example of Fig. 3 are also shown for non-zero

values of . The parameters of the model have been chosen such that Pt n
(P C in Fig. 3) is forty percent higher than 2?y , the initial yield vAue for

the perfect model. Curves of the maximum load as a function of the imperfection
8 are shows on the right in Fig. 3. The asymptotic prediction (12) is shown as
a dashed curve and agrees very closely with the exact result until second branch
(13) governs.

If the 'elastic buckling load', 2ErL1 , is only slightly higher than the
plastic value, 2EarLI •, a third possibility arises in which for sufficiently large

imperfections ntither spring becomes plastic before the maximtm load occurs. On
this branch (6) holdsý Thus, for example, if a structure is highly imperfection-
sensitive an imperfection of modest size way trigger buckling before any plastic
deformation sets in even though the perfect structure would buckle in the plastic

range.* The example shown in Fig. 4 illustrates this t•havior. Here E /B - 3/4

so that the, elastic buckling load is only one third greater than the tangent
modulus load. Dranch A-B displays thr4 strong imperfection-sensitivity associated
with Eq. (11), while on B-C (13) hole.s. On C-D the maximuam loa4 is attained before
any plastic deformation takes place a" discussed.

Some specific calculations for cylindrical shells under axial rtompression
suggest that the oppos.te can be true [141. lamely, that an imperfection may
induce high local stresses and plastic deformation (which tend to reduce
the buck'iug load) even though the perfect shell would buckle in the
ele• ic range.
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3. BIFURCATION .'HAVIOR OF A PERFECT SPHERICAL SHELL IN THE PLASTIC RANGE

The critical external pressure for elastic buckling of a perfect complete
spherical shell is

PC 2E 2 (14)
13(1-v 2 ) 2

where t is the shell thickness, R is its radius and the isotropic elastic
properties are specified by the Young's modulus E and Poisson's ratlo v
The principle in-plane stresses are equal and are given by oc -pcR/(2t)

Associated with this critical pressure is a multiplicity of (2n+l) linearly
independent buckling modes whose displacements normal to the shell middle surface
are given in terms of the spherical surface harmonics of degree n :

W a S (6,#)

n (n
. a0 a(Cos 0) +-I P )n (coo 0)[% cos no b= sin a#] (15)

where 0 is the polar angle and # is the longitudinal coordinate. The degree n
is the integer which most closely satisfies

1

n(n+l) - 2[3(1-v2 )]2 R (16)
t

and P is the Legendre polynomial of degree n and P(12) is th2 associated

polynomial of degree n and order an

This result in its general form is due to van der Neut [15]. We have taken
the above formulas from a recent paper by Koiter (16] who has rederived these
results using the simpler Donnell-Nushtari-Vlusov shell equations which are entirely
adequate for this problem due to the shallow character of the buckling dcformations.

The state of stress in a perfect spher.cal shell prior to bifurcation is a
purely meabrane ont with equal principle In-plane stresses whether ot" not the shell
has undergone plastic deformation. Thus, the relationship between the in-plane
streso rates and strain rates at bifurcation Is necessarily Isotropic for any
plasticity Lheory with a single plastic branch as long as no elastic unloading
occurs. Therefore, it is possible to introduce an effectiv- tenoile modulus Ee

anid Poi3son's ratio ve relating in-plane stress and strain rate quantities. Under

the usual assumptions for thin t zlls that the Kirchhoff-Love hypot-.,eses apply, the
lowest bifurcation pressure in the plastic range is still given by (14) but with
E replaced by Ee and v by ve ; i.e.,

2Ee t 2SPC M 7-X<- (14&)
C
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where C = [3(1-v 2 ) 2  . The same axisymaetric and non-axiaymmetric bifurcatione e
modes (15) are posuible (coupled with a uniform radial displacement rate) if v
is replaced by ve in (16). Bijlsard [171 was apparently the first to note that

(14), approprie',ely modified, holds in the plastic range. It is rigorously valid
within the context of fir.i. ordar shell thaory as long as the bifurcation modes
are sufficiently shallow, that is, as long as n given by (16) is sufficiently
large (n .* 6 or 7 is probably a reasoxanble cutoff).

Bifurcation at the value PC given by (14a) ie only possible if no elastic

unloading occurs anywhere in the shell [1, 61. The rate of change of the J

stress invariant at the bifurcation point with loading everywhere can be obtained
by a srraightforward analysis which employs the bifurcation rate of the normal
displacement (15) and the associated Airy stress function rate of Donuell-Mushtari-
Vlasov shell theory. The details of this calculation are not given here.
Consistent with the assumptions of thin shell theory, the J2 invariant is taken
to depend only on the in-plane stresses so that with a o - 1k6

ij i - kk 4j

1 2 2 2 (17)
2 j*ij , a +3o12. a2)

We find that at a distance z measured outward from the middle surface of the
shell 2 is given by

C S2' 1C + ) -e -L} (18)
2 6C el t1-Ve PC

where p is the pressure rate and k Is the bifurcation mode rate given by (15).

For any plasticity theory based on the J2 invariant alone, such as simple flow

theory and deformation theory discussed below, the loading condition requires
1 2 t 0 everywhere in the shell. If the buckling amplitude rate at bifurcation is

denoted by 8 (i.e., 6 - sxaiS n), then no unloading occurs as long as

--1 -ve t(19)

"For J2 flow theory, for example, the effective Young's modulus and Poisson's

ratio for the perfect sphere in the prebifurcation state are given by

1 1 lE V a 1 E1 + ( -1)] and -A - -1)] (20)
Ee E t E t

where the tangent modulus Et is a function of J and is defined in the usual

way by a - Et for a uniaxial tensile history. The critical pressure is
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PC 4E (t)2 (21)•" PC " 1 R21

j6(1+v) (l-2v.,,./E t 12

This formula, "ihich was originally due to Bijlaard, was rederived by Batteruan
[18] unier the restriction of axisyametrit deformations using equattons for shells
of revolution given in [19]. Batterma [181 also gives a formula similar to (19)
derived specifically for J2 flow theory and under the restriction of axially
symmetric deformations.

For a 32 deformation theory of plasticity

1 11 3 V e 1,2(1-2v) 1 3 (2SE+ + E L -1 (22)
PE 4 EsE E 4u E[ E E EYe t se t s

and

PC" 4E t ()2 (23)
C 313 (1-2v) (l-2v+ E "), 2

{[ Et Es as

where E is a function of J2 and is defined in uniaxial tension to be Es - a/c

4. PLASTIC POSTBUCKLING BEHAVIOR AND IffERFECTION-SENSITIVY.TY OF A SPHERICAL
SHELL UNDERGOING AXISYMMETRIC DEFOMWATIONS

SFormulation of the rate equations and numerical analysis

In thts section a numerical analysis of the pontbuckling behavior of perfect
and imperfect complete spherical shells is carried out. Our investigation is
restricted to deformations and imperfections which are rotationally symmetric with
respect to some axis. Interaction between the axisymmetric bifurcation mode and
the many non-axisymmetric modes (15) is likely to be important particularly if
non-axisymmetric imperfections are present; but for elastic buckling at least,
there ic now little doubt that the strong imperfection-sensitivity of the spherical
shell is uncovered by an axisymetric analysis (16, 20-22).

Reiesner's (23] zoulinear equations for the axisymatric deformation of shella
of revolution are employed in the malysis. The strain-displacement and equilibrium
equations of this shbll theory are left in their uncombined form in which no
dependent variabla is differentiated more than once with respect to the polar
coordinate 8 . As discuosed in more detail below, the equations gemrning an
Incremental step in the deformation history are redu.ed to a set of six first order
ordinary differential equations.

A small strain theory of plasticity is used in which the relation between the
stress rates and strain rates for the material in the shell is a wused to be of
the form
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" LilktckL (24)

with Lijkt - Ljiku L Lkli = •These Instantaneous moduli depend, in
it Lijkt - JIkI * .LUI53~l*

general, on the stress history and here it is assumed that there are two branches
to L depending on whether loading or unloading occurs. In an approximately
plane state of stress only the in-plane stresses enter into the constitutive
relation and it is convenient to introduce the in-plane uod&Li according to

a uL c(25)

where the Greek indices take on only the values 1 and 2. The in-plane moduli are

related to the 3-D moduli by

L L33Lyp33

Lo L -G3~ (26)a *Oyu L33 33

Strain rate components a distance z outward from.the shell middle surface
are given in terms of the middle surface strain rates 2 a1 and the bending strain
rates KaG by

00 Go + zKo (27)

Using the usual definitions of the resultant stress tensor N% and the bending
moment tensor M , we find

' .. 13(1) j + (2) i and (2) +R13( (28)

where

t

RM .I - y - d: (29)

Two phenomenological theories of plasticity will be used in the present
analysis. In each of them the plastic deformation depends only on J 2 invariant

(17). ThM instantaneous moduli for J2 flow theory with isotropic elastic
properties are

1j;L ulv 2 ik jit + Y2 1+ v + 2 J 2 }

where for '2 0 or J2 < (12)n• , f -0 ; while for J2 " (J 2 )max and 32 -0
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f~ (31) ~

For J2 deformation theory (with unloading Incorporated),

E Lij 3(-v) ±k ij a (32
Lijkt +v+ g .(ik jtoat6]k) + 7(6-2o) ijk1 - + g +lg'J2 J

where 423- .*For unloading, g = g' 0 C ; whilc for loading,dJ 2

g a - iJ(33)

Rate equations of equilibrium for shells of.revol• lerg.ing axisylctric
daforuations involve five stress quantities -- H1 ' N2k -ll - 322 and 0 --

in the usual notation with the indice 1 associated with the polar coordinate. e
The strain rate-displacement rate equations involve four strain quantities, E 1 , E22

K1 1 and K22 •. two displacement rates, u and ; , and one rotation rate ;1 . Six

of these ratz quantities can be eliainated from the governing Reissner equations with
the aid of the constitutive relations (28) to give a set of six first order
differential equations which in matrix notation take the form

d i + Ai (34)

In this equation - ( . The colian vector p depends on the

loading rates and the current state of deformation of the shell through X , and
the 6x6 matrix A depends on the instantaneous moduli (29) and on X . This choite
of dependent variables has been used previously with success in the "alysis
of elastic shells of revolution [24-261 and a detailed discussion of the

nuwerical analysis of this system of equations is given in [27).*

The great rMvantage of dealing with a system of first order differential

equations in a plasticity analysis is that no diff6-entiation of the stiffnesa

quantities is required. Equation (34) is cast into finite difference form by

dividing the polar coordinate, e , into N equally spaced intervals with t1t+

stations at which X is defined running from the pole to the equator. Equation (34)

is replaced by

1 i~i Pi (i A5); !-X-• + At-~i~ 2 t "P (35)

3 where At and •iare evaluated halfway between the itth en h ~th sain

A Potters-type routine for the solution of the banded uat7.'x which ariues

when the equations are finite differenced was kindly supplied by W. B. Stephens.

'29
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As discussed in [27], the boundary conditions at the pole are Q u - 1 0

and these same conditions hold at the equator if the deformation in symmetric
with respect to the equator.

At any stage in the loading history, instantaneous bending and stretching
stiffuesses (29) are calculated by integrating the 'local' moduli LaBY through

the shall thickness. This can be accomplished in a number of ways. Here, the
distance through the thickness is divided into M equal intervals and the local
moduli are taken to be constant within each interval. As the deformation proceeds
the stresses and (J2)U&X are calculated (and stored) at the midpoint of each of

these intervals using (25), (27), (30) or (32). In this way, the toyp are known

in the M intervals through the thickness. So, for example,

(3 n M 2[ + t.(2)&ILj)
.(3)i) j1- ' s [2+ t2 yu (36)

where zj is the midpoint of the j th interval.

To evaluate (36) at a particular stage of the deformation history it is

necessary to anticipate whether the elastic branch or the plastic branch of each

L (I) will be active. Of course, if J2 ((J2 ),aX the elastic branch is active;

but If i2 0 (J 2)u= , the actual branch depends on the stress rates from the

solution to (35). A correct solution for any increment of the deformation history
requires an iterative procedure to finally obtain the branches which are everywhere
consistent with the sign of J2 which does occur. If the history is sufficiently

smooth so that the transition from loading to unloading, or vice versa, at any
point of the shell occurs only once or twice, a more straightforward approach is
possible which eliminates the iterations at each step. If J I (J 2 )Uax at any

stage of the history, then the plastic branch is taken to be active. If 32 turns

out to be negative, elastic unloading will occur in the next increment of the
history. This procedure will only be accurate if the incremental step3 making up
an entire history are very small; but anyway, this is consistent with the necessity
of taking mall increments to approximate nonlinear behavior by a series of
piecewise linear steps. The simpler procedure was used in calculating the results
reported here. An indication of the accuracy of the method and the ntmber of
stations required, both through the thickness and along the longitude, is discussed
in conjunction with the numerical results.

Numerical results

A Ramberg-Osgood-type relation between the tensile stress and strain is used
in the examples studied. The form used here is

E o (37

y ay y
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where a rwill be referred to as the yield stress in tension and the 'yield strain'y
is defined as ey G y /E . Note that if a - ay , then c - (l+a)cy so that ay

is only a reasonable measure of the yield stress if a is small. The tensile curve
for a - 0.1 and a fairly high hardening rate, n - 6 , is plotted in Fig. 5
together with the predictions for the critical bifurcation stress, ac = -pcR/( 2 t)

as predicted by (21) for J2 flow theory and (23) for J2 deformation theory. The

ordinate for the bifurcation results (dashed curves) is aC/ay while the abscissa

is 13(1-v2 )]l2Wetl( R) and with this choice the bifurcation curves fall on the

stress-strain curve in the elastic (linear) range. As is typical for plates and
shells, the daformation theory predictions fall below those of flow thaory.

The example chosen to illustrate the axisymmetric postbuckliug behavior is a
shell made of material with the stress-strain curve of Fig. 5 and characterized
by the additional parameters:

1
13(1 2] R) 6 4 5  - 0.00318 and v-- (38)

c31- yR t y 3

The ratio of the bifurcation pressure to the elastic critical pressure for a shell
of the same thickness to radius ratio is 0.492 according to the flow theory formula
(21) and 0.455 from the deformation theory result (23). In each case the
azisyametric bifurcation mode is a Legendre polynomial o! degree 14.

An IMperfection in the form of an azisyamtric initial deflection of the middle
surface v is taken proportional to the bifurcation mode of the perfect sphere so
that- -

V - -6 P1 4 (cos e) (39)

where Z represents the amplitude of the inward initial deflection at the pole of
the sphere. Plots of pressure vs. the buckling deflection at the pole are shown in
Fig. 6 for various imperfection amplitudes according to the predictions of J2

flow theory. In this plot, the oressure is normalized by the bifurcation pressure
PC of the perfect shell (21), and Wpole is defined to be the difference between

the actual deflection at the pole and the deflection of a perfect sphere in the
unbifurcated state at the same pressure.

The curve labeled 'perfect shell' is really the result of a calculation using

an extremely small imperfection, W - 10" 5 t . The maximum support load is only very
slightly abova the bifurcation value (21) and it occurs at a buckling defleczion of
almost one tenth of a thickness as indicated by a cross on the curve. Sketched in
Fig. 6 is the lowest possible initial slope of this curve which is consistent with
the condition no unloading at bifurcation as predicted by (19). This initial slope
for the perfect sphere is rather large; obviously, it can only be a good
approximation to the slope in an exceedingly small neighborhood of the bifurcation
point. For all practical purposes the maximam support load of the perfect shell,
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just as 'In the cgse of the simple model, is the lowest bifurcation pressure.

Eleitic and plastic regions of the shell at two stages of the loading history

are given in Fig. 7 along with the middle surface deflection at the corresponding
stages for the 'perfect' shell just discu.sed. Prior to the poirt at which the
maximum pressure is attained the elastic zones have grown from nothing (before
bifurcation) to the shapes shown at the top of the figure. Once the pressure
sterts to fall all of the shell but the region near the pole unloads. As shown
at the bottom of Fig. 7 the region near the pole dimples inward and continues to
deform plastically.

The character of the load-deflection curves for the imperfect spheres in
Fig. 6, including the location of the maximum points, is very similar to the
analogous curve3 for the simple model. A plot of the maximum support pressure

amanormlized by p0  , the maximum support pressure of the 'perfect' shell, as

a function of the imperfection amplitude normalized by the shell thickness is
given in Fig. 8. The effect of mall axisymmetric imperfections on buckling in
the plastic range is comparable to their effect in elastic buckling (16, 20-22].

FP2sults based on J deformation theory are also included in Fig. 8, except

now p0  is still normalized by the maximum support pressure of the perfect
shell as pvedicted by J 2  flow theory. As discussed above, deformation theory

predictions for the perfect shell fall about seven percent below those of flow
theory. However, once the imperfection amplitude becomes about one tenth of a
sh.v-l thickness there 'As virtually no difference in the buckling pressure
rredictions. A similar observation was made by Onat and Drucker [28] with respect
to the buckling of a cruciform column in compressicn where the disparity between
Lhe bifurcation results of the two plasticity theories was much greater.

The curve of buckling pressure as a function of the imperfection amplitude
does not level out at a pressure corresponding to the effective yield pressure
of the ;rfect sphere in the way that the sitmple model does as discussed in
conjunction with Fig. 3. Of course, the shell material in this example has a
high hardening rate with a very smooth transition from the elastic to the plastic
regime. Instead, the buckling pressure falls steadily with increasing
imperfection amplitude and at a value of 3/t - 0.4 the buckling L ad has been
reduced by a factor of two.

Some indication of the extent to which the computed buckling pressures are
sensitive to the discretiiation parameters is shown in the following table. There,
N is the number of finite difference stations from the pole to the equator, M is
the number of intervals through the thickness as in (36), I is the number of
linear steps in the computation history taken to reach the maximu'n pressure and
the fourth column is the ratio o; the computed maximum prebsure to the elastic
buckling load (14). The numerical values are for the shell of (38) and Fig. 6
with J2 flow theory and with 6 0 0.15t . Most of the graphical results were

calculated with N - 50 , M - 10 and I between 25 and 30
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• TABLE

N M Imax/ elastic

30 6 17 0.338

30 10 17 0.337

50 10 21 0.333

50 10 27 0.331

90 14 27 0.328

We have chosen our second example to illustrate buckling behavior under
circumstances in which buckling takes place just outside the elastic range. In
practice this might be expected to happen when a structure is inadvertently
overloaded or when the yield stress is overestimated. We will also investigate
another imperfection shape, the flat spot considered by Budiansky (291 and Koga
and Hoff [22). In this case a flat spot of radius r and maximum inward
deflection I is located at each pole. The Imperfection shape is given by
(at the upper pole)

S--{l - 3( )2(1- + 1',4" lei <
YY 3y

(40)
-0 , lei >

where sin 7 - i/R . With this choice the slope and the radii of curvatures
of the impergect shell vary continuously across 0 - y A convenient measure of
the width of the imperfection is

1

= [12(1_v 2)]• (41)

For elastic buckling, Kogsa and Hoff [221 found that the critical value of )
for a given imperfection amplitusde was about 4.

In our study, J 2  flow theory is used with the stress-strain relation (37)

with a - 0.1 and n - 12 together with the following shell parameters

1
[33 = 1l.2  , =64.5 , 000793 , 4 and v 1

y
(42)

For this choice the bifurcation pressure of the perfect shell (21) occurs at 80%
of the elastic critical pressure (14). As before, the saxism support pressure

733

.. - . ....



of the 'perfect' sphere ( - 10"5t) is only very slightly above the bifurcation
volue PC " A plot of maximum pressure as a function of the imperfection

amplitude is shown in Fig. 9. The results are not unlike thost of Fig. 8 for the
other Imperfection shape (39) except that for very small imperfection amplitudes
the bifurcation mode imperfection (39) causes larger relative reductions.

Included in Fig. 9 is a plot of the elastic buckling pressure (i.e.,
calculated with c - 0) in the presence of the same flat spot imperfections.
This curve is virtually identical to one given by Koga and Hoff (221 which was
obtained by a rather different method of computation for a flat spot at fnly one
pole. Once the buckling pT.essure has been reduced by about 30%,the discrepancy
between the elastic predictions and those which account for plastic deformation
is very small. Analogous to the behavior observed with respect to the simple
model, the imperfection reduces tite buckling pressure to the point where plastic
deformation plays a less Important role in the buckling process.

* 5. CONCLUDING RmIAA4,.S

If it is possible to generalize from the two examples investigated here, it
would appear that imperfection-sensitivity is potentially as much of a problem for
buckling in the plastic range as It is in elastic buckling. In practice, however,
it is not likely to cause the large reductions in buckling loads that have to be
lived with in some elastic shell structures. This io because, for shell structures

*: made of engineering materials for example, plastic buckling usually requires
relatively high thickness to radius ratios and in such circumstances the problem of
manufacturing 'reasonably perfect' shells is much less difficult than when the
thickness to radius ratio is very low.

Although there are some similarities between the analytic features of
bifurcation and buckling in the plastic range and the initial postbucklirg behavior
of elastic structures, plastic buckling has some distinct characteristics which
make an analytic treatment of imperfection-sensitivity very difficult. Not the
least of these is the fact that the maximum support load of the perfect structure
is not the bifurcation load.

Finally, we mention that we have purposely Included predictions based on both
of the two popular phenomenological theories of plasticity to emphasize that, for
the examples studied here, the predictions are qualitatively the same and our
cunclusions are not subject to the controversy concerning the ue of one of these
theories rather than the other.
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QUESTIONS AND COMMENTS FOLLOWING HUTCHINSON'S PAPER

QUESTION: Did I understand you to say that as the imperfection

increases the difference between plastic buckling and elastic buckling dis-

appears.

HUTCHINSON: I didn't mean that as a general rule. In the model

case it did disappear and in the one example I looked at, namely the last one,

it didn't disappear but it diminished. There are further remarks concerning

this on pages 5 and 15 of my paper.

QUESTION: In practical cases (R/t 600-1000) we do have imper-

fections. As you said, the plastic buckling analysis is much more compli

cated than elastic analysis. Would it be reasonable to make a design esti-

mate that elastic buckling analysis gives a good approximation to the behavior

of this shell or do we have to have a plastic buckling analysis?

HUTCHINSON: That's a very tough question. For fairly imperfect

shells, it might be reasonable although there is not much experience that

I know of to back it up. In my paper I refer to recent work on this question

by Mayers; you might take a look at that.

QUESTION: That was a very interesting lecture indeed on the

effect of plastic analysis and buckling. When I look at the curves, I note

that Koiter's theory predicts that the slope of the imperfection curves be-

comes infinite. Doesn't that happen in a plastic analysis?

HUTCHU[SON: I don't know. For the two degree of freedom model,

it is, but for a "continuum" structure my guess is that it will be quite finite.



As far as I can see, it's going to be very difficult and perhaps impossible

to do the asymptotic work to determine analytically the beha °ior 0in the

part f the curve you're talking about.

COMMENT: I would like to comment on a couple of things. First,

you use the name bifurcation buckling for the flow theory and in my opinion

this is a misnomer because if you have a flow theory you have a path depend-

ent relation between deformation and stress. Bifurcation implies an inter-

section between a fundamental branch and a branch for buckle equilibrium.

A branch for buckle equilibrium cannot be defined unless you have defined

the path " 1 which you get there; so it doesn't exist. Nevertheless, you can

use bifurcation theory as was used with a flow theory, but you don't really

have a bifurcation point there. It's not really defined and I think that would

relate to the difficulties involved if one wanted to apply a Koiter theory.

HUTCHINSON: Well, there is a genuine bifurcation at that point.

I hope I didn't use the word bifurcation buckling in the plastic range, because

it is not the buckling load. I wanted to emphasize that bifurcation takes place

there, then after further deformation takes place, the maximum load occurs;

that is what we would call the buckling load.

COMMENT: I would Alke to say that you would find the bifurcation

point if you analyze a shell with an imperfection and make the imperfection

smaller and smalier. In your case you can actually analyze with zero

imperfection, bu.t ii you have a numerical analysis you get closer and closer

to something whilch is a bifurcation point and this may and may not be the

same as the presently applied flov theory bifurcation buckling gives.
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The next comment concerns the curve you show that indicates when the

imperfection becomes bigger and bigger the discrepancy between flow

theory and deformation theory almost disappears. This is what you might

expect since, because the bigger the imperfections you have, the smoother

the curve in the stress plane; and we know that if we have a smooth curve

in the stress plane, then we won't get any difference between the t-wo

theories.

COMMENT: rm not quite clear here whether you're saying that

there is a question between the flow and deformation theories or in the

numerical procedures associated with each.

HUTCHINSON: It has nothing to do with numerical methods. In

fact, in my analysis, I treated deformation theory as a rate theory. It

wasn't necessary but I did it anyway, so both theories are treated identi-

cally. The difference really is in the theories themselves. Simple flow

theory is idealized in the sense that it in no way accounts for corners

(or regions of high curvature) on the yield surface whereas deformation

theory, in a very approximate way, does incorporate a corner or en effec-

tive corner and this is where the difference lies.

QUESTION: Yes, I know, but why the suspicion on analysis

with the flow theory?

HUTCHINSON: I'n not suspicious of the buckling analysis. I'm sus-

picious of comparing the analysis with experiments. The experience of the

1950's, and there's a lot of it, was that the agreement between experiment

and deformation theory was in general quite good, but flow theory gave con-
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sistently high predictions.

COMMENT: I think that it depends upon the type of experiment

and how the data is collected and how the comparison is made when you're

talking about whether the theory fits comparatively well. I would like to

see plots of distributions across surfaces of shells to decide whether the

method was adequate or not. What I have seen in the literature is that

one point is picked and followed through time as it goes from the elastic to

plastic regime and this is compared to an experimental point. I really

don't think this can be used as verification for theory without taking many

points and many positions on the model.
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SOLUTION OF S];iUCTURAL EIGEhVAi.UE

PROBLEMS USING SPAMSLY kP01ULATED J•AiC:S

Hussein A. Kamel* and Russel] L. LambertT
University of Arizona, Tucson, Arizonia

ABSTRACT

Eigenvalue problems in the area of structural analysis

occur in structural vibrations and elastic instability

problems. Computer methods so far have involved a decomposition

or an inversion of the basic matrices. With systems involving

a large number of freedoms these procedures are lengthy and

alternatives must be sought. This is particularly so for three-

dimensional problems which exhibit a large band width. The

paper describes methods for dealing with structural vibrations,

both lumped and kinematically consistent mass matrix approaches,

as well as the problem of critical buckling using the finite

element method. All pertinent matrices are stored in a sparsely

populated form. The procedures described do not necessitate

an inversion or decomposition of any of the matrices utilized.

Preliminary investigations involving over 350 degrees of freedom

systems show favorable behavior.
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NOMENCLATURE

SA= Aij 3, is a rectangular matrix with m rows and
(m n)

n columns.

A, = element of matrix A in the i- row and jth columi,.

d = Tu..dZ'dj is an (nxn) diagonal matrix.
(n7)

d = It diagonal element of d.

At - transpose of matrix A.

B-1  = inverse of matrix B.

I = a unit matrix.

0 = a zero matrix.

B_ = n power of matrix B.

K = stiffness matrix for structure.

K = Elastic stiffness matrix of a structure.

K G = Geometric stiffness m itrix of a structur-:.

r = Displacement vector of a structure.

R = Load vector of a structure.

X = Mass matrix of a Etructure.

I. INTRODUCTION

The problem of structural vibrations can be formuiated

using either the force or the displacement methods. 1 Of

the two approaches, the displacement method has become

Increasingly the more popular due to Its generality, simplicity

of approach, and therefore its great programrmabi3ity on -n

electronic digizal computer. This paper will, therefore, be

confined to the displacement nethod formulation.
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A finite element model with n dc6:'ees of f£rt-vcdov

w. I yield n eigcnvalues representinr the xatur-al f.equi !:-

cles of the system and n corresponding eiZenvector' Clving

the vibrational modes. In the case of free free body

vibrations some of the eigenvalues will be zero and the

associated eigenvectors will represent rigid body movcmeniers.

Of all the vibrational modes, ortly those currcspon$Ing

to the lowest frequencies are of interest; the hircr nodes

are inherently inaccurate due to their sensiltvity to the

modeling procedure. The power method 2 in conjunction with

the displacement method yields the least iinportan-t modes

first. To overcome this difficulty one of three proceJures

is usually utilized. An !nvers1 .on of the matrJx of stiff-

ness coefficients prcvidcz a formulation .:hich will

deliver the lowest ei&envalues fLrst. This Is time-consuming

and betcomes prohibiltlve with a large system. An imprcvemcnt

2
on this procedure Is the inverse power method . It neces--

sitates a decomposition of the stiffness matrix. The third

procedure involves a condensation of the dynamic matrix3

It involves a solution of a large system of simultaneous

equations. This paper describes first a technique which

obtains the vibrational mode in the cor,.ct order without

inversion, decomposition or solution of a matrix equation.

The basic technique utilizes the power method together with a

s~nple matrix origin-shift and is applicable to the finite

element lumped mass approach. 'Due to tiie absence of a ImLrPx

inversion or decomposition the basic matric..s may be storcd
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in a sparsely populated form. This results in great savings

in computer storage and at the same time a speed up of the

iteration cycle time. Since the power method is iterative,

the method proves to be perfectly suitable for application

of the powpr method using a computer. It is estimated that

1000 degrees of freedom problem can be handled in a 64 K core,

and 2000 with a 131 K core.

The problem of elastic instability of structures consists

of seeking critical load levels under which the structure

4
becomes unstable . Mathematically it is formulated in terms

of two large sparsely populated matrices, one of which repre-

sents the structural stiffness matrix and the other includes

the effect of deflections on geometry and therefore on the

equations of equilibrium. The second matrix, often called

the geometrical stiffness matrix, depends on the element

stresses due to the loading in question.

The traditional procedure5 involves the solution for

deflections and stresses within the model. Subsequently the

geometrical stiffness matrix can be computed and it remains

to find the lowest load level under which instability occurs

together with the associated buckling mode. In order to

find these results an eigenvalue problem has to be solved

which involves inverting one of the matrices or using the

results of previous decomposition prior to application of the

inverse power method. In cither case the storage requirement

increases considerably.

In this paper, it is argued that for the critical load
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level the combined stiffness matrix becomes singular. A

method is developed bý which the variation of the lowest

eigenvalue of the combined stiffne-t matrix is observed

as a function of the load level and, using the slope inter-

val method, the value for which this root disapocars is

determined. Ccnvergence to the desired mode is rapid.

The mathematical formulation of the kinematically con-

sistent mass matrix approach6 to structural vibrations is

identical to that of the buckling problem. It can be shown

that the method suggested for the solution of the instability

problem would also apply.

II. TH1U ORIGIN SHIFT TECHNIQUE

If a matrix A, order (nxn) has the n eigenvalues

A 11,2 ------- i ------ n

and the corresponding n column eigenvectors

1V1 ,2 ------- i ------ vn

then, by definition

A vi = A i " (1)

If we combine all eigenvalues X into one diagonal matrix

A =1) T,2 -- _ X An~J 2 (2)

and the column cigenvecltors into an n x n square matrix

V - [I 2 ---- v 1 ---- in] ,
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we may rewr.te Eq. (1) in a form that considers all

eigenvalues and vectors simultaneously.

A v = v A (4)

Note that the multiplication by A is a post-multiplicaLion

since it represents operations on the columns of v.

If we define the matrix B as,

B =A - , (5)

where a is an arbitrary constant and I is an (n x n) unit

matrix, then the eigenvalues and vectors of B are given by,

(X-C,), (x 2-a) ---- 0n-a)

and

X1 -2 - -n

The eigenvectors are the same as those of A and the

eigenvalues are shifted by tne value o. This process is

called a shift of origin, since it represents a displacement

of the datum associated with the eigenvalue spectrum, see

Fig. 1.

A slightly different form of this procedure, which is

going to be used throughout this paper is that of the matrix

C =a I-A (6)

which has the eigenvalues

1) 2 n)
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and the eigenvectors

v I .2 . .. . v
'l -2 -n

This is identical to an origin shift followed by a reversal

of a sign.

The shift of origin process is usually used to Influence

the convergence of the power method iterative procedure for

obtaining eigenvalues and eigenvectors of a matrix. In this

paper it will be used extensively to obtain simple and effi-

cient methods of solution to basic eigenvalue problems in

structural engineering.

III. TUE POWER METHOD

1. Determination of the Highest Root and the Corresponding

Vector.

To find the highest eigenvalue and the corresponding

eigenvector of a matrix A, an arbitrary vector, u, is assumed

at the start. Through successive pre-multiplication with the

matrix A, followed by normalization so that

ut u = 1 (7)

The vector finally converges to v1 , and the normalizing factor

to X,' where X, is the largest eigenvalue of A.

To prove this 2let us express u as a linear combination

of v I---- v n.

n
u= aivi (8)
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k |

After m multiplications with A, using (1)
i'n U

m, n m u m

i m n [(Xi] m9
Au 11 [ alX 1-- "

"- . ta=1=

if X is the dominant eigenvalue, so that

< 1

the first term of th•.ý series will predominate as m tends to

infinity. Since a computer has a limited word length, however,

the convergence is accomplished with a finite number of itera-

tions to a satisfactory degree of accuracy.

It is generally accepted that the speed of convergence

depends on the ratios (Xi/Al).

2. Sweeping of Modes. (Deflation)

Once a root Xi and the corresponding vector vx of a matrix

A have been obtained, it is possible to construct a matrix B

which has all elgenvalues and vectoi's of A except Xi and vYi.

This process is termed sweeping or deflation. B is given by:

B = A - A1 V1 vt (10)

where is normalized according to Eq. (7).

proof:

--Ji- i -i-75
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Case I i=

t v

and
B v = )i v -i v = 0

Case 2 1 j J

tV Vj = 0

j j -

The procedure is also applied for sweeping more than

one eigenvalue. If, for example, all eigenvalues X 1-,2 Xi

have been found, and the next largest, X(i + 1), is desired,

we construct the matrix

B = Vt (11) j

J~l i ij -

which has all ei.genvalues and vectors of A except for the

subset corresponding to X1 ---- Xi*

The process of sweeping will oe used repeatedly in this

paper.

IV. APPLICATION OF THE POWER METHOD
TO STRUCTURAL VIBRATIONS

The equation of vibration of a structure is given by:

(K w 2 M) r 0 (12)

where

K is the stiffness matrix of the structure, and

M is its mass matrix.

755



w is the equivalent angular velocity of vibration

and r is the corresponding vibration mode vector repre-

senting the displacement pattern.

It must be noted that the highest v,•C .... L, 2 1.% of

least interest since it corresponds to the highesL mode of

vibration. Correspondingly, the lowest value of 2 is the

most important.

There are basically two methods for converting Eq. (12)

to a standard form that can be handled by an eigenvalue pro-

gram. The first is obtained by premultiplying by M-1.

(14-1 K - w2 I) r 0 (13)

This has an advantage if M is diagonal, since the inver-

sion procedure is trivial. The matrix 1-1 K retains the original

bandedness of K.

The disadvantage lies in convergence of the process to the

highest w2 first.

The alternative form i. the inverse of that in Eq. (13),

(-! I - K-1  M) r = 0 (14)

and has the advantage of convergence to the lowest, more inter-

esting, modes first. On the other hand the inversion of K is

comouta.ionally forbidding. The :natrix K-1 M is fully popu-

lated, and requires a large storage capacity. Since the

solution is an iterative ojie, the constant transfer from and

to mass storage and thce amount of computation necessary for

each iteration slows the opei'atJon. The inverse power method

avoids forming an inver.se but i.,:quire.; thu decompositioi, of
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the K matrix, thus destroying its sparsely populated nature.

Most standard computer eigenvalue programs are mo',e

efficient in handling the ,special case of symmetric matrices.

It is possib)e to reformulate Eq. (12) in order to achieve

I symmetry If M is diagonal (lumped mass approach). Eq. (12)

may be rewritten as

2 M I -M ½ "

Pre-multiplying by M-½r,

K- Mlý- r 0

Introducing a unit matrix to the right of K,

(M-7 K 0 M_ -w2 M!) r .

In other words

(M-½ K M_½ W 2 I) Lil 1  - 0

which may be written as

(K* -2 ) u (15)

where
K* M"½ K M½ (Symmetric) (16)

and 
)

U = r

Thus the problem is transformed to a symmetric form, simpli-

fying the process of eigenvalue and vector determination.

V. ORIGIN SHIFT AND THE LUMPED MASS APPROACH

In this section a proccdure is described by which the

origin shift technique is applied to solve the structural
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vibration problem using a lumped mass representaticn. We

start with the symmietric dynar Ic matrix K* defined by Eq. (16).

K* = M K Y-½

2
Using the power method, the highest cigenvalue, w is obtained.

It must be emphasized that we do NOT seek an exact value,

but only the & proximate positiln of this relatively uninter-

esting quant4 to w.'h: •. say, 3 decivil figures. Let the

approximate va. of , e 2 Subsequen.i 'he matrix

K_*1 = (-.2 K*) %18)

is considered. Its eigenvalues will be giveni by

( 12 , .......... 2

The largest eigenvalue is now (w,2 _ w2), which corresponds to

the lowest frequency of vibration. The filst value, (w,2 W 2

is approximately equal to zer-o.

We denote a typical eigenvalu, of K_*" by 8si where
= ,2 2

SWnti+l) (19)

so that

81 > 82 > 83 - n- ' (20)

The corresponding eigenvector is ui, where

ui = M_ rn-i+l (21)

To obtain the m elgenvalues W 2 -- wL 2  corresponding
n' n-m+l

to the lowest frequencies and the associated eigenvectors, we

proceed by obtaining 80, u1, sweeping it to obtain 82 and u 2 ,

etc., until 8a and u In order to obtain B. ard we iterate
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with the matrix

U t

I - u u (22)

I - n - 1J---

in the standard power method fashion.

We observe, however, that ,j* is no longer a banded

matrix as K*V* is. This wIll result in all the disadv&ntages

associated with the form given by Eq. (14).

In order uo retain the efficiency of the method, a close

look at the matrix product K{: v, which represents the basic

iterative step in the method, is necessaw'y. If v is an (n x 1)

iterative vector, then
i-i

i-I K t
K•*v = (,w2 :[_•_•j -Iuj

= -2V K* v 8 % (i t v) . (23)
= n - - J- 1 J

Since U v is a sca)ar, the product becomes a linear combination

of (n x 1) vectors that may be computed separately, and subse-

quently superimposed.

v . V. - K* v - I I.2 (U v) uj (24)
_ -- "n J=1

It is only nece.ssary to store the K_ matrix in the most

economniical fashion, as well as tle previously obtained eigen-

values and vectors in full.

We must be clear at this point that the inner loop time.

will be introaz;cO, :;incc -,• JecpIng has to be repeated
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during every iteration. On the other hand, the faster

multiplication using the sparsely populated matrix repre-

sentation combined with the saving in storage space provides

a distinct advantage. The pay-off increases with problem

size and half band width, whilh renders the method particu-

larly suitable for large systems.

VI. STRUCTURAL VIBRATION - TEST CASES

In order to evaluate the method, the axial vibration of

a long elastic bar under different methods of support as well

as two dimensional frameworks were chosen as examples. In spite

of the simplicity of the problems many interesting results

lead to clarification of questions relating to convergence

of this method in particular, and of iterative structural

procedures in general. The largest system handled was a two

dimensional framework with 364 freedoms. The computation was

performed using 64 K of core, and the program was capable of

handling one thousand degrees of freedom in that space.

1. Vibrations of a Bar Between Two Rigid Supports - Effect

of Problem Size.

A uniform axial bar supported between two rigid supports,

Fig. 2, is divided up into a number of equal segments. Constani

strain rods were used as elements. The mass of each element was

lumped and shared equally between the Lwo adjacent nodes. The

number of nodes was varied from ]2 to 47 (10 to 115 d-grecs of

freedom). In determinIng the highest value necessary to coin-
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pute the origin shift three figures of accuracy were con-

sidered satisfactory. In obtaining the subsequent eigen-

values and vectors six figures of accuracy were prescrIbed.

The first five modes were computed in each case. Tables 1

and 2 show details of the computations for both 10 and 115

degrees of freedom on a CDC 6400. Figure 3 shows the vari--

ation of the number of iterations necessary for convergence

against the number of degrees of freedom for all five rootc.

Figure 4 shows the variation of the basic iteration time

for all modes against the number of degrees of freedom.

2. Conclusions.

The following conclusions may be drawn from the results:

a. No convergence problems were encountered.

b. The first mode was always the slowest to converge.

Higher modes required successively less iterations.

c. The basic iteration time increases linearly with

problen size, see Fig. 4. This is an extremely

important characteristic of a sparsely populated

matrix representation.

d. The basic iteration time increases with the mode

number, see Fig. 5, due to the necessary sweeping.

However, the increase is linear and the value

relative to the first mode is pratically inde--

pendent of the number of degre s of freedom.

The third and fourth modes n.eed approximately

50% more CP time per iteration than the first

mode and the sixth mode rnecdz twice the t'kmc.
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TABLE 1. CONVERGENCE CHARACTERISTICS
VIBRATIONS OF A UNIIORM ELASTIC BAR BETWEEN TWO RIGID SUPPORTS

10 DEGREES OF FREEDOM

Ruot No. No. of Necessary CP Time/iteration Total CP Time

iterations sec. sec.

Shift --.. .146

1 199 .00234 .465

2 137 .00286 .392

3 93 .00341 .317

4 75 .00395 .296

5 55 .00457 .251

No. of Nodes = 12 Shift Accuracy = 3 figures

No. of Elements = .1 Subsequent Root accuracy = 6 figures

No. of Freedoms = 10 Subsequent Vector accuracy = 6 figures

TABLE 2. CONVERGENCE CHARACTERISTICS
VIBRATIONS OF A UNIFORM ELASTIC BAR BETWEEN TWO RIGID SUPPORTS

45 DEGREES OF FREEDOM

Root No. No. of Necessary CP Time/iteration Total CP Time

iterationo sec. sec.

Shift -- -- 2.6e5

1 2743 .0088 24.139

2 2037 .0105 21.362

3 1401 .0122 17.096

4 1244 .0139 17.256

5 963 .0155 14.950

No. of Nodes = 47 Shift Accuracy = 3 figures

No. of Elements = 11 Subsequent Root accuracy = 6 figures

No. of Freedoms = 10 Subsequent Vector accuracy = 6 figures
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e. The number of iterations necessary for conver-

gence decreases monotonically with mode number,

gee Fig. 6. This compensates for the increase

in the basic iteration time, and the net result

is a decreaL.. in total mode time, see Tables 1 and 2.

f. By comparing the total time required for the most

time consuming mode, the first, between the 10 and

145 freedom systems, we observe that the time ratio

was 52 for a freedom ratio of 4.5. This indicates

a variation with somewhere between the square and

the cube of the number of degrees of freedom.

Should we extrapolate these values, it wouldr

appear that a problem involving 350 freedoms

would require 3 hours of CP time for the first

mode, and a 2000 freedom system 600 CP hours.

While this may be correct for a one-dimensional

system, it is an erroneous conclusion for two

and three dimensional cases. We know that the

increase in time is due to the increase of number

of iterations rather than the cycle time. It is

reasonable to assumc that the number of iterations

is primarily affected by the number of stations

encountered from one end of the structure tc the

other. .IJnoring secondary effects therefore, a 20

degree of freedom rod (22 nodes) is comparable to a

4811 node, 800 degrees of freedom two dimensional

framework or a 106148 node 24000 freedom three diinension-.l
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framework system. This is supported by results

of a two-dimensional frame vibration analysis

discussed in the next section. As an exam-

ple, the number of iterations necessary for

convergence of a 32 node rod compares with a (12 x 32)

two-dimensional framework as follows:

In the first mode 199 iterations against 677

In the second mode 137 iterations against 513.

Should we have extrapolated using the number of

degrees of freedom as the only parameter we would

have arrived at the figures 40,000 and 25,000 itera-

tions. Admittedly, the number o iterations seems to

be consistently three times as large, but this is

still of tne same order of magnitude. It would be

safe to assume that structural models with a large

slenderness ratio will tend to require more itera-

tions than equally partitioned grids. All times

given here are based on a FORTRAN IV program using

the CDC 6400 computer. No attempt was made so far

to speed the program up by many of the techniques

for optimizing inner loops.

3. Effect of Method of Support on Conver.ence.

Figure 7 shows an elastic rod model made of six elemetts

of equal stiffness (unity) and a seventh element of stiffneru.

0. As a is varied from unity to zero, the problem chamges from

that of a built-in rod to that of free-free vibration.

Figure 8 shows the effect of a on the number of iterations
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necessary for convergence. We observe that the computation

of the first mode becomes longer as we approach the free-

free case. On the other hand, the other modes hardly seem

to be affected.

4. Ap plication to wo-Dimcnsicnal Frameworks.

Figure 9 shows a two-dimensional framework, built-in at

all edge points. If the number of nodes along any one direc-

tion is n, the total number of nodes is n 2 . The number of

active nodes is (n-2) 2 and the number of degrees of fi'eedom

is 2(n-2) 2 .

At first a series of computations were performed using

values for n from 4 (8 unknowns) to 12 (200 unknowns). The

number of iterations necessary for some modes as a function

of size is shown in Figure 10. Convergence difficulties were

encountered in all cases with the second mode. Therefore, it

is absent from the figure. This should have no substantial

effect on the accuracy of the subsequent modes (see Section

11). The fifth mode also met occaaional difficulties. The

time per iteration is plotted in Figure 11. The results seem

to confirm the behavioral tendencles observed in the one-

dimensional case.

5. Effect of Symnetr.

Some convergence difficulties vwcre consistently encountered

in the two-dimensional framework example of VI. 4. It was felt

that the slow convergence was due to closely spaced eigenvalue

pairs. By using the symmetry of the structure, the modes may
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be separated into four subgroups of modes and vectors,

symmetric and antisymmetric in turn about the hcrizontal

and vertical axes. Convergence difficulties disappeared.

Results are given in Table 3 for a (6 x 6) grid representin~g

"a quarter of a (13 x 13) framework.

VII. IMPROVEMENT OF THE RATE OF CONVERGENCE

Let us consider an iterativ.! process designed to obtain

"a variable starting with a value v 0 and converging to v. after

an infinite number of iterations. We may express the result

of the pth iteration, Vp, in the form:

VP a 0 + [ ; =a 0 + a-+ _ + (25)
j=l p p p2

It is clear that as p--,

vp 0 a0

.'. a0 = vM (26)

We may apply equation (25),with a finite number of terms

m, to the results of (m + 1) consecutive iterations, obtaining

(m + 1) equations in (m + 1) unknown coefficients of which

only a 0 is of interest to us, since it gives an improved estimate

of v.

This process has been applied to both the vibrations problem,

and the buckling of a framework for m = 2, 3 and 4. The value

of m = 3 delivered the best result, cutting the number of itera-

tions by almost one half.

766



TABLE 3. VIBRATIONS OF (6 x 6) FRAMEWORK

MODE No. of EIGENVAIUE
No. Iterations

1 272 1.71374367 x 106

4 6
Symmetric (x) 2 281 1.78750610 x 106
Symmetric (y) 3 83 1.85149498 x 10

4 1911 2.03002336 x 106

5 125 2.10428310 x i16

1 143 1.44456879 x 106

2 98 1.57882136 x 106
Symmetric x) 3 251 1.78836755 x 106
Antisymmetric(y) 4 257 1.84714666 x 106

5 287 1.89707520 x ]06

1 89 1.57oo1619 x 106

2 101 1.67225707 x 106
Antisymmetric (x) 3 161 1.82149131 x 106
Symmetric (Y) 4 107 1.85910349 x 106

5 179 2.00221913 x 106

1 92 1.43814781 x lO6

2 185 1.60442560 x 1.066
Antisymmetric (y) 3 56 1.62676316 x 106
S4 185 1.79548J.17 x 106

5 68 1.82334918 x 106

47
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The three equations in this case are:

vI = a0 + a + a2

v 2 = a0 + a1 / 2 + a2/4 (27)

u 3  a 0 + a1/3 + a2/9

giving

a a0 (vI - 8 vB2 + 9 v 3)/2

The second order extrapolation is now a szandard general pur-

pose part of the program and has so far caused great improve-

ments in convergence speed, and no difficulties of any kind.

The maximum problem handled was a (29 x 29) framework. By

taking symmetry into account, only a quarter of the structure

was studied, resulting in a (15 x 1A) grid with 364 unknowns

for the doubly symmetric case. For example, the first mode

converged after 692 iterations and 141 CP seconds. The second

mode needed 3h7 iterations and 76 CP seconds. The third mode

needed 254 iterations and 59 CP seconds. In all cases the root

converged to 10 significant figures.

The procedure described above can be applied in general

to any iterative procedure. However, it was found, as 4n the

case of most such methods, that it may not produce the desired

effect under all circumstances. It appears to speed up mono-

tonically convergent iterative processes (buckling, dynamics,

Gauss-Seidel matrix solution) while presenting a positive dan-

ger if any oscillation, however small, is present (Jacobi Itera-

tive matrix equation solution). To circumvent this difficulty,
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two suggestions are given:

1. Eq. (27) can be rewritten in matrix form as:

v = P a (29)

We may apply Eq. (29) to more iteration steps than (m + 1),

and thereby obtain a rectangular P matrix. Next we apply the

least square method to obtain

a = (ptp)- ptv (30)

This has been applied to the iterative matrix solution

technique and has been found to behave well only for 3 equations

and 2 coefficients.

2. To use every second tteration, or use the mean values

of each two successive iterations as input to the improvement

scheme. This is applicable to oscillating processes with a

period of two iterations, as is usually the case.

VIII. FREE-FREE VIBRATIONS

To study the vibrations of an unsupported structure, a

singular matrix K iF formeds The singularity will show itself
2 2

in the presence of up to 6 zero eigenvalues 2 16 When

operating with the matrix K**, of Eq. (18), they will correspond

to the highest eigenvalues of the matrix. In order to avoid

unnecessary computations, it is possible to include facilities

in the program to construct rigid-body vectors as needed, resulting

in imnediate convergence, and hence elimination of the unwanted

freedoms so that the effort may be dirccted to the subsequent

elastic modes.
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IX. ELASTIC INSTABILITY

The Inasic equation5 for elastic instability of a struc-

ture is given by

(E+ A _. = 0 (31)

where KE is the elastic stiffness of the structure

KG is a geometric stiffness representing a first order

correction term accounting for the effect of change

of structure geometry on equilibrium. It is depen-

dent on the initial stress distribution in the struc-

ture due to the applied loading.

A is a factor denoting the load level at which insta-

bility occurs

and r is the displacement form associated with A.

Equation (31) represents an eigenvalue problem possessing

n possible solutions (Al. £l)' (A2 E2)' ------ (Ann r). The

most interesting of these is (Al, Kl)' representing the lowest

value at which instability occurs.

One suggested method for solution of the problem5 has been

to convert (24) to the form:

+ _1 1 )r (32)

for which the highest value corresponds to the lowest load
value desired. Other methods involve decomposition of the matrix KE'

it is apparent that this form of solution suffers from the

disadvantages associated with Eq. (14) Jn the vibrations problem.

The matrix CK 1  K ) becomes fully populated requiring excessive

E C
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storage and slowing down uhe basic iteration time. A new

method is suggested here which should overcome these problems.

1. Thc X Search Technique.

In order to predict the initial load. level, it is necessary

to fin, the lowest value of • for which the matrix

_ = (KE + X K) (33)

becomes singular.

The matrix KP has n eigenvalues

W1 . w2 -- - i l ----- wn

mentioned in descending order.

Each root, w., is a function of X. If A is zero, all

eigenvalues wi are positive since KE is positive definite.

As X increases in value, the spectrum of wi starts to shift

with each w. passing through the origin one at a time, each

time causing KL: to be singular. The lowest value of X for

whic'h K* becomes singular is therefore that required for w = 0.

In order to find the required X, it would seem reasonable

to solve the equation

S(X) = 0 (34)

using an iterative scheme such as the slope-interval method.

First we assume X = 0. For this case

K* (0) = K .

Using the power method, one finds an approximation to the value

of (1'W?, followed by applicat•.on of the origin shift technique

to obtain a value wn (0). This value corresponds to the highest
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,Wj I - -•o))

Next we assume a small positive value for A, X(i)" If

the original load is chosen to be lar.•-r than the buckling

load, but within the same order of magnitude, a value of

"( A = 0.1 is reasonable.

The process is then repe•c 1d for

K* = (KE , , KG)

with a resultant smallest eigenvalue .)n(0,(1)).

Now the iterative process has been initiated and should

continue according to the fo].ov.ing scheme:

[(p) -(p-l) ]
X (p+l) ' X(p) - On (A (p) (35)

[&n~ (A(p) ") - Wn (A(p-l)) J

until convergence is achieved to a satisfactory degree of

accuracy. The eigenvector rI associated with w n(X ), where Xl,

is the value X(A,) at convergence, is the c.'vrect buckling mode

associated with the value XA1 since

(K + 1 -) X 0 (36)

2. Higher Order Buckling Modes.
Although the lowest buckling load, XA, is the primaryA

objective of the analysis, it is still possible to obtain any

number of higher modes.

Should it be desired to find the eigenva].ue and corres-

ponding vector of buckling mode i, AX and it would be neces-

sary to find the value Xi such that the -th root of ' XA1
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disappears. For that purpose the following procedure is

followed:

i - Asstz% a value of X. Start with zero, then a

small number, then let the iteration proceed auto-

matically as before, though in a generalized form

as explained below.

ii - For each value of X, find the approximate va3ue foi'

the maximum eigenvalue of the matrix K*, W1.

iii - Form K* = (w I - K* (x)) (37)

iv - Find the highest (i-l) eigenvalues (wj - w1 n

('1 - wn-l) (w3 - wn-i) of K** using the power

method, and sweeping the appropriate values and

vectors as needed to obtain the following ones. The

corresponding eigenvectors are then u 1 , U 2 - i.-l'

v - Finally obtain (wi - wni ) as the highest eigenvalue
1 n-i+l

of the matrix

n-i
Kt)i wnI-K•x) I (wi - w ) uW ut (38)

X j-1 1 11 -i-i

vi Study the variation of wn-i+1 with X, and use the

slope interval method to improve its value till conver-

gence to zero. Upon convergence, 2i will be identical

to r,, the ith bue) ing mode.

3. Solved Example.

As a preliminary study, a simple two-dimensional framework,

Figure 13, was chosen. The method functioned as expected and

produced a load level x of 0.19611 and a buckling mode as shown

by the dotted line.
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Figure 14 shows some data describing the convergence of

the process. With X = 0, 8 iterations were used to obtain

the approximate highest eigenvalue w, and 21 to obtain the

lowest. The second trial, with X = 0.1, took only 2 and 8

iterations respectivtly. The speed up was due to the fact

that vectors obtained in the first process were used as

starting vectors for the second. The third trial value obtained

using the slope interval method required similar computational

effort. Afterwards convergence was fast and the fifth trial

value resulted in satisfactory convergence of the root.

X. COMPARISON OF LUMPED MASS
AND KINEMATICALLY CONSISTENT SYSTEMS

The question of whether to use a simple lumped mass repre-

sentation, resviting in a diagonal M matrix, or the kinematically

consistent mass matrix approach, resulting in a banded M matri.x

with an identical pattern to that of the K matrix, can only be

determined on the basis of the computational effort involved.

A kinematically consistent mass matrix gives a better repre-

sentation of the inertia of the structure, and allows rotational

freedoms but requires a lengthy matrix inversion. The lumped

approach is cruder, but it is computationally faster.

One of the arguments in favor of the lumped system is based

on the fact that the values of the frequencies obtained by both

methods are nearly the same, and that the difference in accuracy,

if any, hardly justifies the additional computational effort

involved.
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The method suggested for the solution of the buckling

problem is again applicable in this case. In obtaining

higher modes than the first, however, we expect more effort

than that in dealing with the lumped mass system. The process

is similar to that suggested in IX. 2.

In order to speed up the application in this particular

case, it is suggested that a first approximation to the roots

and vectors be obtained using the lumped mass approach, fol-

lowed by the X search technique described for the buckling

problem. This should ensure fast convergence.

Since the procedures described in this paper are capable

of handling both cases, a preliminary study was undertaken to

compare the two approaches. Again a uniform elastic rod between

two rigid supports was chosen, for which the exact solution is

known. Table (11) shows a comparison of results obtained from

both approaches with the exact value for the first root. Figure

(15) shows both first and second mode convergence as functions

of degrees of freedom. It was most surprising to find the

first mode accuracy practically the same with both approaches,

the lumped mass system having a slight edge. For thp second

mode the lumped mass system is definitely the more accurate

and the fastest converging.

XI. THE CASE OF THE NEAR OR EQUAL ROOTS

The basic iterative step in the power method is described

by the equation:

n in n
A u l ai v (39)
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TABLE 4. COMPARISON BETWEEN LUMPED 1MASS
AND KINEMATICALLY CONSISTENT MASS MATRIX APPROACHES

FOR THE VIBRATIONS OF A UNIFORM ELASTIC ROD

Error

No. of No. of K.C 2 M. L.. 2 2
Elements Freedoms i wI A•wK.C.M. A L.M.

2 1 .3333 .2222 .0592 .0519

3 2 .3000 .2500 .0258 .0242

4 3 .2885 .2604 .0143 .0138

5 4 .2833 .2653 .0091 .0089

6 5 .2805 .268o .0063 .0062

2

w exact 0.27416
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The process will converge to the vector x, and the value X,

if repeated sufficiently, each step being followed by a normali-

zation procedure.

The speed of convergence depends largely on the ratios

between the roots nearest to X and X itself. Assuming X2 is

close to Xi convergence will be slow, and may have to be

interrupted for reasons of economy. It is suggested here that,

in spite of that, one may proceed to higher modes and indeed

obtain accurate results there in spite of any local convergence

problems. Let us rewrite Eq. (39) as

A [av, + u= mv_ 2  + i ai (' i

V1  andvs tha u is ortogna toal te sbeuetl 3c(40)
If m is large enough, uwill be mnainly composed of vectors

Vyl and v2 so that u is orthogonal to all other subsequent vectors.

If u., is frozen at this point, at value u, then u 2 will follow

immediately from the arbitrarily chosen u 1. All other values

and vectors should not be affected.

A physical interpretation of this mathematical phenomenon

is possible. If we were dealing with a vibrations problem, for

example, there would be two possible modes that occur pratlically

at the same frequency, so that it would be very hard in the

physical situation to excite one mode without the other. The

process will be extremely sensitive to the method of excitation.

777



REFERENCES

1) Argyris, J. H., Energy Theorems and Structural Analysis,
Butterwork Scientific Publications, London, 1960.

2) Wilkinson, J. H., The Algebraic Eigenvalue Problem,
Clarendon Press, Oxford University Press, London, 1965,
pp. 570-647.

3) Guyan, R. J., "Reduction of Stiffness and Mass Matrices,"
AIAA Journal, Vol. 3, 1965, pp. 380.

4) Turner, J. J., Dill, E. H., and Melosh, R. J., "Large
Deflections of Structures Subjected to Heating and
External Loads," Journal of Aerospace Sciences, Vol. 27,
1960, pp. 97-102, 127.

5) Argyris, J. H., Kelsey, S., and Kamel., H., "Matrix Methods
of Structural Analysis," AGARDograph 72, Ed. De Veubeke, F.,
Pergamon Press, 1964, pp. 159-163.

6) Archer, J. S., "Consistent Matrix Formulation for Structural
Analysis Us:.,g Finite-element Techniques," AIAA Joui'nal,
Vol. 3, 19( , pp. 1910-1918.

T78



FIGURE I
ORIGINI SHIFT OF EIGE:IVALUE SPECTRU[I

EIGE14VALUE SPECTRUM OF MATRIX A

Origin

An . . .. .. A2  A1

EIGENVALUE SPECTRUM OF MATRIX (A - oI)

New Origin

(•n- (Ak2 -c2)(x 1 -a)

779

i~



Fil

47I

F"I GUiRE 2
UIlIFORiI AXIAL BAR BETWL-.-J. RIGID SUPPORTS

780



MODE 1

3000

Tolerance 1.0 x 10-6

2000 MODE 2

Iterations
MODE 3

1000 MODF 5

10 15 20 25 30 35 40 45

Degrees of Freedom

VIBRATIONS OF A U;IIFORXI ELASTIC BAR

FIGURE 3

781



.- . .... -- - - -

V
SI

Tolerance 1.0 x 10-6

.015 MD

.010 
MODE 2
MODE 1

CP SEC/
WTERATION

.005

10 15 20 25 30 35 40 45

DEGREES OF FREEDOM

FIGURE 4

VIBRATIO;IS OF A U;IIFORi ELASTIC BAR

782

IA -

Vt 4 5l. - "'ttt----.



2.5

10
2. 0 20

45 4
CYCLE TIME 1.5
RELATIVE TO
FIRST MODE

1.0

0.-5

-- t--- I I I
1 2 3 4 5

MODE NO.

FIGURE 5

CYCLE TIE RELATIVE TO FIRST MIODE
FOR VARIOUS DEGREE OF FREEDO-I SYSTEilS

783



;1. •i -o - _________. , =_._

.9.
.8
.7-

Yo. OF .6
-.i.-,tATIONS 5

RELATIVE TO .4i- 45
FIRST MODE .3-- 30

.210

.I-

1 2 3 4 5

MODE NO.

FIGURE 6

NO, OF ITERATIONIS RELATIVE TO FIRST MODE
FOR DIFFERE.IT DEGREES OF FREEDO1

784



k•1.

FIGURE 7

ELASTIC ROJ rODEL 111TH A WEAK E"D ELEMENT

785



Number of Iterations vs (,

N

70 _ _ _ _ _ _ _ _

60

Root
50 1

40

30
202

10 4

5

Q 0.2 o.4 0.6 0.8 1.0
c<

FIGURE 8
EFFECT OF M1ETHOD OF SUPPORT OF THE

STRUCTURE 011' CO;N1VERGENVCE OF TIlE ,1ETHIOD

786



FIGURE 9
TWO DI;IE;ISIO;NAL FRAXME'UORI( WITH BUILT-IN EDGES

S.787



Tolerance 1.0 x 1o-6

300
MODE 1

200

200 MODE 4iITERATIONS 
ME

MODE 3

I'I - ,- ° , I II
5 10 15 20 25 30 35 40 45 50

DEGREES OF FREEDOM

FIGURE 10
TWO-DIflEIS IO;'IAL FRA'EIIORK,

NUMIBER OF ITERAT1O;IS

788

-7T Il . . . . ..II" •-, _• • -•-- •:.,, .••,..•••...



Tolerance 1.0 x 10-6

MODE

.0203

CP SEC/
ITERATION

.010

1 20 30 4o 50

DEGREES OF FREEDOM

FIGURE ii

TWO-DIIEiSIO;JAL FRANIEORK,
TIME PER ITERATIONi

789

* . ,, - . * - .



200

MODE 1

150

NO. OF MODE 4

ITERATIONS

100 MODE

50

0 1 2

SPEED-UP ORDER

FIGURE 12

EFFECT OF SPEED-UP ON CONVERGENCE

790



11
I

0.19611 .

Young's Modulus E :1 Wbin 2

A for Diagonals = (2)• in 2

All others = 1 in 2

FIGURE 13

CRITICAL BUCKILIiG -,IODE FOR P-11 D1,IENISIOAIAL FKAIEBIORK

791



I.,J
FIGURE 14

0.2 CONVERGE;ACE OF THE CRITICAL
BUCKLIflG 'ODE OF A

TWO-DIiOE:1SIONIAL FRAIEWORK

0.1

0

No. of Its. No. of Its.

1• . nrf . . ...... .

0.0 8 21 5.7 x 10.2

0.1 2 8 3.0 x 10-2

0.2158 2 11 -7.1 y 10-3

0.1938 2 2 9.37 x 10-4

o.19614 2 2 -8 x 10-6

T92



-2

.35 --

.30 K.C.M.
.27416

.25 L.M.

.20

S1 2 3 4 5 6

F DEGREES OF FREEDOM

S2

SO2
1.5 -.

1.25 - K.C.M.

1.0 1.0966/ - M.

.75 -

-4---I - ! I

2 3 4 9 5 6
DEGREES OF FREEDOM

FIGURE 15
CO1.PARIS011 BETIEEi'N LUM.IPED MASS
AND IEATI CONSISTEINT M1ASS SUPPOR.,,

793



QUESTIONS AND COMMENTS FOLLOWING KAMEL'S PAPER

QUESTION: When you do your elastic instability analysis, it

seems to me that in order to find the incremental matrix you either have

to equation solve or invert the stiffness matrix to find the stress distri-

bution. But in your solution here you don't imply that.

IXAMEL: I didn't mention it, that's true, because we are

still experimenting. There is now so much incentive to keep matrices in

the sparsely populated form. Until about one year ago, I avoided iterative

techniques. I wanted to have something that definitely would converge and

I wanted to be able to estimate how long it was going to take. But in view

of the advantages in time that you gain from iterative schemes, I'm

beginning to think that one should put in an effort to try to find a fast itera-

tive technique or to find how to speed up the iterative solution using a

method such as Gauss-Seidel. You can apply such a scheme to a sparsely

populated matrix and keep it in sparsely populated form.

COMMENT: I have a few comments to make about thii type of

eigenvalue problem since I have been working in this area. First of all,

I regret that Dr. Kamel has not given any comparisons of his method with

transformation schemes such as Household-QR or with special techniques

for large systems, such as inverse power iteration with spectral shifts.

I mnention this because for problems involving less than 300 degrees of

freedom complete solution by transformation methods can be obtained in

a matter of sec.nds. The power method you presented does not work if you

have mu.tiple roots as in free-free vibration. If two roots are not equal but

794



very close, the deflation scheme is strongly unstable. This fact has been

well known to engineers who have used the Stodola and mode-sweeping

methods and have experienced rapid loss of significance as one proceeds to

compute intermediate modes. So I would like to ask if you have encountered

- sorte of those numerical problems and if comparison "ith other methods

has been made.

KAMEL: First of all, let me point out that the purpose of the

paper is not to say that the method is superior to others. I believe that

this method is sufficiently different and worth looking at. In the s( ond

place, it has the advantage of saving computer storage. With a 65K memory,

you can do over 1000 degrees of freedom and I don't think that is possible with

the other methods. The method is attractive if you have a small fast com-

puter, and you want to solve very large problems but cannot afford decom-

position techniques. The methods you describe did not r each that speed

until a high level of programming effort has been put into them. We are just

making a preliminary study of the method and the results presented simply

describe the current state of the code. No attempts have been made to

speed things up.

COMMENT: This type of direct power iteration for solving

vibration problems has been extensively used previously and a lot of

experience gathered so far.

KAMEL: Are you talking about the vibration analysis part of

the paper.

COMMENT: Yes.
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KAMEL: Yes, it has been used but in the setup that one has

to get your highest or lowest frequency first. The difference lies in the

use of the shift.

COMMENT: The shift has always been used as a means of speed-

ing convergence.

KAMEL: That is right. And that is how I came across it. I

used it on another computer in order to try to speed up convergence. How-

ever, no one has described how much to shift by. It has been a sort of try

your luck thing.

COMMENT: I just wanted to caution about the numerical problems.

I understand the reluctance in trying to code inverse iteration which requires

a good out of core equation solver.

KAMEL: Your computer time increases as you fill up the non-

zero elements inside the band.

COMMENT: Yes, it is a band-squared cycle time, but in inverse

itc "ation you normally need 5 to 10 iterations per eigenvalue, whereas you

are talking about thousands in your method.

KAMEL: I agree, but think again of the advantages of small

storage in large problems. The number of iterations will still remain the

same using this method. For the method you are talking about, they will

increase with the square or cube of the size of the problem. I am not

saying that this method will supersede all others. We tried to find a method

in which the structural matrices can .%e kept in a sparsely populated form.
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The method works and the next step is to compare and investigate.

QUESTION: When you extrapolate to find the intersection with

the axis and if you happen to have two close roots, do you run the risk of

hitting the wrong one.

KAMEL: Yes.

COMMENT: I have solved a number of bar and beam problems us-

ing both consistent mass and lump mass approaches and I found that consis-

tent mass has always come up with much better results than the lump mass

especially for higher order displacement functions. So I definitely disagree

with those results you presented.

JORDAN: Thank you, Prof. Kamel. I'd like to summarize

today's session. I think Prof. Hutchinson in his presentation pointed out

two significant facts. One was his discussion of the history of the con-

flicts between the deformation and flow theories of plasticity. He con-

tends, with some dissent, that this conflict will continue and it must be

resolved and he suggested looking into this stress-strain relationship.

Indications from Prof. Hutchinson's work also reinforce the fact that the

same types of problems that are encountered with imperfection sensitive

structures in the elastic range will also be encountered with the same type

of structures which buckle in the plastic range.

In Prof. Kamel's talk, I think he has presented at least a different method

of finding eigenvalues and eigenvectors for both vibration and buckling

problems.
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PANEL DISCUSSION B

FINITE ELEMENTS VERSUS FINITE DIFFERENCES

Chairman: R. M. Jones, Aerospace Corporation,
San Bernardino, California

D. Bushnell, Lockheed Missiles & Space
Company, Palo Alto, California

S. W. Key, Sandia Corporation,
Albuquerque, New Mexico

R. D. Krieg, Sandia Corporation,
Albuquerque, New Mexico

E. L. Stanton, McDonnell Douglas
Astronautics, Huntington Beach, California

JONES: The objectives of this panel are to examine the finite

element and finite difference methods relative to the advantages that each

of these methods might have as illustrated by the successes that people

have had. We also want to look at some of the disadvantages and the failures

of the methods. By way of an agenda, each of the panel members will make

some opening remarks. Then we will direct some questions in panel to one

another. Afterwards we will have some prepared c iments prior to the

panel convening and then we will open the floor to aiscassion.

BUSHNELL: I have prepared comments in two areas. The first

area I call numerical methods continuum. The second area has to do with

various nonlinear methods applicable to both finite difference and finite

element methods.

I can describe this numerical methods continuum with reference to Figure 1.

Let's put finite differences based on equilibrium equations on the left side.

A typical example in this category is the derivation of a general shell of

revolution analyzer which is currently underway at NASA-Langley. This

effort is based on the finite difference method in which the governing differ-
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Finite Finite Finite Piece-wise "Classical" Beams. Shear
Difference Difference Difference Rayleigh- Finite Element Panels,
With With Energy With Energy Ritz Method Method Hrennekoff
Equilibrium Mnimizatio Minimizationrids
Equations and Rectangular and Arbitrary

Grid Grid

Figure 1. NUMERICAL ANALYSIS CONTINUUM

ential equations are expressed in finite difference form. On the right-hand

end of the continuum, I would put the old beam and shear panel models of

aircraft analyses in which complex structures are divided into very simple

types of elements. Now in the middle of this continuum we have, for exam-

ple, the finite difference method used in connection with energy methods

with a regular grid. We're beginning now to resemble the finite element

method because we use more matrix operations. The actual programming

and structure of programs based on the finite-difference energy method are

rather similar to those based on the finite element method. Let's now locate

on this continuum a point which I'll call finite difference energy method with

arbitrary grid. We heard a paper this morning by Stan Jensen on tha_ sub-

ject. These finite difference methods begin more and more to resemble

finite element methods. We approach the situation where we can analyze an

arbitrary structure by maintaining complete generality in grid. Eventually

this method can be applied to three-dimensional structures as well as two-

dimensional.

Now approximately in the middle of the continuum is a fuzzy area where no-

body talks to one another. Here I'm going to identify a point called the

"Piece-wise Rayleigh-Ritz method. " In this method, we take some arbitrary
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shell and draw chalk marks on it. I'm not replacing the areas bounded by

chalk marks with flat elements or curved elements. I'm just drawing

boundaries within which I want to describe displacements in some func-

tional form- -polynominals with undetermined coefficients, for example.

Essentially, I want to go now from a finite difference, in other words a

point definition formulation, to a representation in which the functions are

continuous and differentiable within the bounded regions, and in which,

through constraint conditions, the appropriate displacement and rotation

compatability conditions are satisfied on the boundaries. We'll refer to

this model without reference to, say, a finite element but rather a finite

function form. I'm not convinced that the "piece-wise Rayleigh-Ritz"

method is exactly the same as a finite element method, mainly because the

energy functional now consists of strain energy plus appropriate constraint

conditions. Further to the right on the continuum we have the "classical"

finite element method which is the mainstay of the modern structural

analysis. By means of a very simple procedure, this method can be applied

to very complex structures and can be computerized in such a way that de-

signers and engineers can use these tools very effectively, as we've seen

during the course of this conference. I encourage comments from the audi-

ence about other methods that are different from these. My own feeling is

that the tendency is to move toward the middle of the continuum. Some-

where we'll meet and have a really great general analysis for linear and non-

linear problems.

The second comment has to do with nonlinear methods. I want to outline

very quickly which methods these are. All of them have been brought up at

this conference. In my discussion I'm following a very good summary by

Hoffmeister, Greenbaum and Evensen, presented in a paper at the llth

AIAA/ASME Structures, Structural Dynamics and Materials Conference

in Denver in April 1970. It's the best discussion I've seen on various non-

linear methods. For the overall structure of my comment, I therefore give

credit to them.

The first method involves putting the nonlinear terms on the right-hand side

with no change in the stiffness matrix. We had an example in a paper by

800



L7

Dr. Ball this morning in which the linear stiffness matrix is used and non-

linear terms are included in the analysis as equivalent loads.

The second method is what I'll call an incremental method without equili-

brium check. You take small load steps. The analysis for each step is

linear, but there is no iteration to guarantee equilibrium. However, if you

take small enough steps, you get a reasonable picture of what goes on in

nature. The fact that you do get a reasonably good picture is evident from

the work of Pedro Marcal, who has obtained good agreement between theory

and experiment in a variety of applications.

The third method I call the modified Newton method. What I mean by "rmodi-

fied Newton method" is a method in which loads are increased incrementally

and every once in a while the stiffness matrix is refactored; that is, the

stiffness of the structure is recalculated in order to get more rapid convel

gence. Between these loads for which the stiffness matrix is refactored, the

nonlinear terms are thrown on the right-hand side. The modified method is

sort of a halfway station between putting the nonlinear terms on the right-

hand side and a full Newton method. There is another method in here which

Hoffmeister, Greenbaum and Evensen mentioned and, in fact, which I think

they use in their own work. It's what has been called a one-step Newton

method--an incremental method in which equilibrium unbalance in each step

is taken into account. The unbalance in one load step is introduced as a pseudo-

load in the next load step. In this way you keep close to the proper load-deflec-

tion curve.

The fifth method would be the full Newton method in which ycu recalculate

the stiffness matrix for every load step and for every iteration at a given

load. This method is used in the BOSOR3 program, which is a shell-of-

revolution analyzer. You might say the full Newton method is needlessly

inefficient in the sense that you're getting a lot more accuracy than you

need. However, in a one-dimensional numerical analysis, it really doesn't

matter riuch because the computer times are so small.

The sixth method would be a direct search method for the solution of non-
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i ilinear problems. For more on this, I refer you to the work of Schmit at

Case Western Reserve (now at UCLA).

KEY: Well, I like very much the way Dave Bushnell has

described his continuum of numerical methods and I believe that, in princi-

ple, any of these methods are applicable to the problems we are doing. How-

ever, there are certain practical features about the various approaches that

either limit them in their application or actually enhance their application.

I'd like to attempt to describe those types of problems for which I feel

finite element and finite difference methods are currently most applicable.
V

Figure 2 shows a two-dimensional grid work. Vertically, I've put Material
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codes. Horizontally I've indicated a Deflection Scale. On the left end is

the infinitesimal deflection, classical shell work. Going over to the extreme

right, we have finite or large deflections. I've indicated regions in this grid

where one particular method seems to be used with greater prelevance. For

example, in the upper left-hand corner, the finite element method tends to

predominate while over in the opposite corner you have the finite difference

method. Now I don't mean to infer that the other methods can't be used in

these corners, but due to either practical features or personal preference

of the investigator, the designated methods have come to dominate these

regions. The other corners I tend to view as neutral corners. It depends

on au individual's tastes, how he approaches a problem and the formulations

involved as to which method is really going to provide results, The dashed

line across the middle is really sort of a neutral dividing line. If you're a

finite element type, you'll tend to move the line to the right while the finite

difference people will tend to move it left. Oiie of the things you see is

both sides tending to carry the battle to the other's camp and when they do

this they find that the method they're practicing tends to look a lot like the

other method chat was already there.

KRIEG: I think that shell analysis using finite difference and

finite element methods is reaching some sort of plateau at which we can

solve a large number of really practical problems. I think this situation

compares with that which prevailed in the area of stress wave propagation

just a few years back. Now that we have reached this plateau, we have the

time to sit back and examine other methods, to look at them very critically,

and to start tweaking on them. The wave propagation people thought that in

doing so they could achieve something like a. ten percent improvement in

computer time. But in examining other methods and re-examining their

own methods, they were able to come up with improvements like factors of

five in running times. I'm hoping that shell theory might be able to do this

same thing.

We've seen a simultaneous development of two methods, finite difference

and finite element, and I think that each of these methods has areas of

application iii which the other will find it very difficult to compete as out-
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lined by Sam Key. The two methods share some common problems and

deficiencies. I would like to see more research devoted to these common

areas. For example, a good mesh generator and initialization scheme is

needed and virtually the same one could be used for both methods. Alsc,

whether you set up the stiffness matrix using finite elements or finite

differences, it still must be solved. Improvements in equation solving

:.'outines and eigenvalue routines will benefit both methods. Time integra-

tion procedures need to be developed. Transient response problems are

generally costly to solve by either method and development of dynamic re-

meshing procedures in which remeshing occurs as the solution proceeds may

lead to considerable improvements in efficiency for both methods. To effec-

tively use remeshing techniques, you must be able to anticipate areas of high

stress gradients. If this could be automated, the same process will perhaps

work for both finite element and finite difference methods. Ideally, the user

would specify an allowable error in a given quantity and the code would then

automatically generate a mesh for him that would do that job. This intimate

knowledge of truncation error could probably be applied to both finite ele-

ment and finite difference methods.

An'ther problem is that of determining how to compare and evaluate differ-

ent programs; progr ms with different degrees of freedom, with different

unknowns, different accuracies, difft rent capabilities. We need some set

of norms to compare programs and check them out and to evaluate them.

Finally, we need to answer the question, "Are few high-order elements

"better than many low-order elements, or alternately, is high-order differ-

encing with a co..rse mesh work better than low-order differencing with a

fine mesh?"

STANTON: I'd like to begin by saying that the title of the session,

Finite Elements Versus Finite Differences, may imply to some people that

one or the otLer will prove to be intrinsically better. I don't believe that is

the case. I started out using finite differences in thermal stress problems

and dynamic response analyses .and the thought that Sam Key expressed

here just a moment apo was one of the first things that occurred to me.

Namely, is there one to oneness in the methods or are there areas of speci-
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alization in which one or the othez is not applicable in its present state

of development? There are areas of practical interest where the two methods

do not overlap significantly and areas where they seem to overlap fairly

strong~y, in tha latter case, the question of computational efficiency is cer-

tainly one of practizal importance. The finite element methods seems to be

increasingly used for nonlinear shell problems where the finite difference

method had an earlier start and one thought that occurs to me is the rather

mundane issue of generation times for the math model. I've been interested

in and am working with incremental stiffness matrices for a higher-order

shell element including prebuckling deformations in its interior, that has 48

degrees of freedom. Variations in the membrane stresses and bending dis-

placements causes the generation time for these elements to become sub-

stantial and I wonder if the generation time for the coefficient matrices in

the finite difference method may not be substantially less assuming, of

course, that you have comparable accuracy. These are two thoughts that

I would suggest for discussion.

JONES: That concludes the opening statements. What I'd

like to do now is address several questions in panel and then turn questions

over to the floor. Dr. Stanton, will you lead off?

STANTON: I'm sure the finite difference method applies to built-

up structures, but many of the hardware stress analysts that I've worked

with, especially the ones that have been steeped in the finite element method,

are not familiar with all of the modeling techniques that are available to the

finite difference method. Dave, will you enlighten me and maybe some of

the rest of us on the modeling techniques that are available in the finite

difference method--things like smearing out stiffeners?

BUSHNELL: Well, my experience v.•th analysis of built-up struc-

tures is mostly with the BOSOR program applicable to shells of revolution.

We have two ways of treating built-up shells of revolution: smearing out

rings and strings, and/or treating rings as discrete. These viodels have

nothing really to do with which numerical method you use--finite difference

or finite element. "Smeared" stiffeners affect the constitutive law, or the
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relation of stress resultants and moment resultants to strains and changes

of curvature. The geometric and material properties of a stiffened structure

are first taken into account in this law, the decision to use finite differences

or finite elements can be made after that point in the modeling. The dis-

crete ring is considered to be attached to the shell at a single point, and 1t

has the same displacements and rotations as the shell at that point. The

displacements of the centroid of the ring are expressed in terms of the shell

wall displacements at the attachment point by means of simple transfer

matrices. The ring cross section is assumed to be rigid. It can rotate and

translate, but it is rigid. In this way each discrete ring is introduced into

the structure as a stiffness coefficient matrix.

KEY: One of the beauties of a finite element code is the

generality of geometry that is invariably contained in it. I'd like Roy Krieg

to comment about how the finite difference method is going to be able to ob-

tain the flexibility of mesh geometry inherent in the finite element method.

KRIEG: This conference has helped to dispel the old wive's

tale that finite difference methods can't have flexibility of mesh geometry.

I think all of the finite difference papers presented here have had variable

size mesh in their finite difference grid work. However, there is one limi-

tation with my own and most other finite difference codes and that is that

we've been using rectangular meshes. As Jensen pointed out this morning,

a triangular mesh does give you more flexibility in the actual shape and his

work shows or explains how you can get around the limitations of a rectangu-

lar mesh.

I want to return to the dynamic remeshing concept. The details for the one-

dimensional case have been worked out and are now operational in several

wave propagation codes, in particular WONDY and PUFF, For example,

consider the problem of a shock wave moving down a one-dimensional

space. With dynamic remeshing you an-acipate that a shock wave is approa-.h-

ing and automatically put nodes in front of the shock wave. After the shock

wave has already passed and things are smooth, you rem~ove nodes, In

essence, it is an attempt to keep the finest mesh in the area of the greatest
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action as it progresses with time. However, WONDY is a finite difference

code. Sam Key, would you care to comment on how the finite element

method can achieve that sort of flexibility?

"KEY: Actually, there are two kinds of rezoning that go on

in the finite difference method and one of them is deleting and inserting

meshes or nodal points as you mentioned. The other approach that's

available is a floating grid work. The coordinate system is moving rela-
tive to the material or relative to the problem and that's an extremely

nasty proglem mathematically. It's about all you can do to formulate the

equations of motion, leave alone actually implement them. I don't know

that the finite element method is going to have a very easy time of coming

up with this capability. One of the things that you've got to do is actively

create and destroy meshes and that means creating and destroying entries

in a finite element stiffness matrix. I don't see any way to do it in the finite

element context. You really have to bend the finite element method into

what appears to be a finite difference method in order to get this kind of

flexibility.

Let me change the subject. One of the things that occurs automatically in

the finite element method is the symmetric stiffness matrix which reflects

the fact that you start out with a self -adjoint system of differential equa-

tions. One of the most difficult things to obtain in the finite difference

method is a symmetric stiffness matrix and, in my opinion, I think you've

committed a transgression to come up with a nonsymmetric stiffness matrix

in the finite difference method because you've altered the character of the

problem. I'd like to know from either Ray Krieg or Dave Bushnell how

you're going to resolve this problem in the finite difference method.

KRIEG: Ordinarily the finite difference method attacks a dif-

ferential equation directly. If you hold onto that stubbornness and persist

in it, I think you'll have a rough time. On the other hand, I think the way

to go about it is as Bushnell and Almroth have done. Would you comment

on that, Dave?
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BUSHNELL: All you're doing with the energy method is taking an

Integro-differential form and making an algebraic form out of it. When

you minimize or differentiate with respect to the dependent variables, you've

got a b•Mmetric matrix, sometimes positive definite and sometimes not,

but symmetric in any case. As far as making seif-adjoint differential

equations have symmetric matrices, I guess they do until you get to the

boundaries and then you have problems. You have boundary conditions and

constraint conditions. That's what destroys the symmetry. But if the

differential equation is self -adjoint and you use a uniform mesh with con-

stant spacing, then you would get a symmetric matrix, wouldn't you- -in

the absence of boundary conditions?

;• ]KEY: Well, part of a self-adjoint system of differential

equations are the boundary conditions that go with the differential equations.

So what you're saying is that the real trouble comes in the finite difference

method when you get ýo the boundary where the symmetry winds up being

destroyed grossly.

STANTON: Very often in static stress analysis the variables that

are of interest to the analyst are primarily the forces and not so much the

displacements. They may not even be calculated in some api;.ications,

particularly if the force method is used. I think that given proper elements

the redundant force method is a viable analysis tool for shell problems and

there are elements, possibly even hybrid elements, that could be used in

the force method without letting the number of degrees of freedom per node

get out of hand. How would you formulate a finite difference procedure to

compute the redundant forces in a shell structure?

KRIEG: I can't answer directly, but I think the way that I

would attack the problem is through an energy principle. Whether you

would have success in that regard, I'm not sure. But as far as attacking

it directly from a differential equation standpoint, I'm not sure how to pro-

ceed.

JONES: Dave, would you like to add anything?
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BUSHNELL: I would say you express some set of equations in

terms of forces instead of displacements and apply finite difference techni-

ques to these equations. There's nothing about either technique that says

you can't use either displacements or stresses as unknowns. I guess it

hasn't been done for the reason the force method just doesn't seem to be

as popular as the displacement method. Complementazy energy principles

just don't seem to be as popular as minimum potential energy principles.

In principle, there's nothing wrong with using either method applied to

either technique. It just depends on what information you want out. I guess

a lot actually depends on tradition--how much of a body of literature exists

in a certain area. The straightforward physical aspect of the displacement

method is more appealing than the force method and hence there is much

more work in that area.

I'd also like to ask what is the state of the art in the application of the finite

element method to problems involving composite structures and materials?

For example, eccentrically stiffened or layered hells. We've seen a lot
of literature on elements where there's a bending element and an exten-

sional element but for built-up structures, we often have coupling between

membrane and bending effects. For example, an eccentrically stiffened
shell has what I would call coupling terms, that is, terms which couple

bending moments and direct strains and direct stress resultants and changes

in curvature. These coupling terms can be very important, indeed, as wet.e

seen from the classical effect that external stiffeners on an axially compressed

cylinder may increase the buckling load by a factor of two or more over inter-

nal stiffeners. I'm wondering how would one do a finite element analysis of

an eccentrically stiffened shell?

STANTON: In yesterday's session, Warren Gibson from the Case

Institute talked a little bit about FESTRAN which is a program with the capa-
bility of using discrete stiffener elements which have nodal degrees of free-

dom off the midsurface of the shell being analyzed. That particular stiffener

element has been used at Case to look at things such as the effect of putting

the stiffening on the inside of the shell as opposed to the outside. Also, Dr.
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Montforton, while at Case, presented some work at the 1968 Dayton confer-

ence, in which he had a flat plate element with the stress resultants coupled

in membrane and bending and he was able to correlate well with an elasticity

solution for an unbalanced laminate. And in his presentation yesterday, I

think that Warren Gibson solved thermal stress problems for a laminated

strip and used a straightforward integration through the thickness giving an

unbalanced laminate type coupling between the membrane and the bending

action. At MDAC we are also doing some work along these lines very much

similar to what Montforton had done. The materials people provide us with

the coefficient matrices reILting the stress resultants. Once these data are

provided, we're able to use them in generating element stiffness matrices.

KEY: I think the answer is that we'll simply have to abandon

isotropic shell theories that utilize a middle surface of constant thickness

sheli theories. That's really not very serious because there's plenty of

information in the shell literature on how you develop a shell theory where

the reference surface is arbitrary. It's relatively straightforward and to

incorporate it in the finite element method simply means dealing with more

coding and a lot more algebra in generating the element.

QUESTION: I'd like to direct my question to Sam Key. I was

somewhat surprised with your answer to Bushnell's question. Such things

as layered shells and variable thickness are very common. In the direct

integration technique, the idea of a middle surface is now regarded as

ancient. I the finite element method really bound to a middle surface?

KEY: Not at all. What I was referring to when I said that

we'd have to abandon the middle surface concept is that in doing develop-

ment or research work in the finite element method, the question of iso-

tropic or orthotropic materials is completely irrelevant. So, for conven-

ience, most of the research work is based on isotropic materials. Among

the codes in production use, you'll invariably find orthotropic materials

and variable reference surfaces. That is, a reference surface whose

location is arbitrary.'
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JONES: The knowledge of just what material properties are

independent is a big educational barrier to get across. For example, anF orthotropic material doesn't just have one E and one nu. The shear modu-

lus in a composite material is completely independent, yet it's surprising

how little information is available on physical measurements of shear moduli.

I think that we have to take the principal role in educating the materials people

in perhaps just what to measure.

I also want to ask a question. How do the finite element and finite difference
methods compare in required computer running time for solution of nonlinear

problems such as in large deflection problems and plastic deformations?

There are many of.her ways this question 4.ould be stated and many aspects

of the problem, some of :hich already have been alluded to in the panel dis-

cussion, but I'd like each panel member to make an additional comment on
this question because I think this iq where one of the principal differences

between the methods does arise.

BUSHNELL: Well, really this is a very difficult question and my

reply to the question is six more questions. The first of these questions

is how many degrees of freedom are required for a given accuracy? Ob-

viously, the computer time depends on that. The second question is how

much computer time or cost per degree of freedom is requi ed for each

formation of the stiffness matrix? That sounds like sort of a funny way

to ask it, but sometimes stiffness matrices are formed while they are being

decomposed in some programs and so the effective cost is less. A third

question is how much computer time or cost per degree of freedom is re-

quired for factoring the linear equation system for each iteration? There

are many methods around for factoring these sy stems. Given a matrix of

a certain size, which methods costs the least? The fourth question is how

many times per case must the stiffness matrix be formed? In various non-

linear methods, such as those referred to earlier, this might be a different

number and obviously it's case dependent. A fifth question is how many

times must the linear system be factored in a given case? The sixth ques-

tion involves numerical conditions. Is double precision required for desired

accuracy? In forward integration techniques,- for instance, one can often get
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by with single precision. However, in finite difference or finite element

techniques, double precision is often needed.

JONES: I think these questions you raise point out just

exactly how complicated the overall question is. It's not easy to sit down

and make a simple statement comparing the methods. There are many

aspects to the entir" question.

KEY: I'd like to answer the question using specific numbers

taken from a specific example. There was a very nice finite element thesis

done at UC-Davis by Mark Hartsman. He used a two-dimensional finite

element analysis, including nonlinear deformations and nonlinear material

behavior, to solve shock wave propagation problems. I'd like to describe

one particular problem that was tackled which involved wave propagation

through a slab. Mark used elements arranged as shown in Figure 3.

Symmetry boundaries on both sides of this mesh produce a one dimensional

problem. A wave was initiated at x=0 and propagated into the region to x=L

and allowed to reflect from the boundary. The analysis was continued for

a couple of transmit times and the computer time for that was about nine

minutes of CDC 6600 CPU time. Well, the equivalent two-dimensional

finite difference code, called TOODY, which can be used to solve the same

problem is forced to use three rows of meshes as shown in Figure 3, in

order to handle the boundary conditions. I have an estimate that seven

minutes of CDC 6600 CPU time would be required for this problem. So
you can see the finite element method is about 20 percent slower at this

point. This really isn't the kind of problem that you want to do with a two-

dimensional code. The one-dimensional finite difference code for this
problem using the same mesh would take about two minutes and when you

go to the dynamic rezoning where you're taking out meshes and putting

them in as needed the time would drop to two-tenths of a minute. If you're
going to write a one-dimensional wave propagation code with the finite cle-

ment method, these are the execution times you're going to have to shoot

for and the kinds of features these codes should have.

KRIEG: I think, as Sam Key does, that finite displacements

812



•~S ymmetry

Free
Symmetry

0 L

Finite Element Mesh

"-- , -=a

I " ,.--

0 L

Finite Difference Mesh

Figure 3. Grids Used in Shockwave Propagation Problems

and plasticity are inherently going to be less efficiently handled by the finite

element method than by the finite difference method. But, if you're talking

about the linear problem in which you only have to generate the stiffness

matrix once, I think the finite element method will prove to be more effi-
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cient in terms of accuracy per unit of computer cost.[ STANTON: I want to take minor exception with Ray's comments.

In earlier experiences with plasticity problems, I had occasion to solve

the same problem both with the finite difference technique and the finite

element technique. It was a strip problem with a parabolically varying

temperature field, one that Mendelson had studied. In that particular

application, the finite element method for a given level of accuracy in the

stress resu.tants was a little faster than the finite difference method. You

may discount that somewhat because solution procedure used in the finite

difference code was different, but this was a specific elastoplastic thermal

stress problem in which a higher-order finite element, one that was bicubic,

was able to do a fairly nice job on the stresses with a coarse mesh, whereas

a central difference operator in the finite difference approach required that

I use a fine mesh to get the similar stress accuracy. I'm not having the

same sort of experience in the geometrically nonlinear area where I'm

coming up with long generator times on some of these incremental stiff-

ness matrices. I would have to agree with the general opinion that the

finite element method is usually longer running, especially for problems

that are essentially one-dimensional in nature.

JONES: Before we open the discussion to the audience, I

would like to ask Dr. Gerald Wempner and Dr. Liessa to present their

prepared comments.

(Edited versions of comments by Wempner and by Liessa appear at the

end of this panel discussion.)

COMMENT: I would like to comment on the efficiency of the two

methods. If we confine ourselves to problems which have neatly defined

surfaces and easily defined regular grid, then some comparisons on the

run time between what we consider an efficient finite element and efficient

finite difference program are useful. The regular grid helps the finite

differences in terms of setting up the matrix. It takes hardly any timV.

The time for factoring is about the same as the Hi: ite element method
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with elements having the lowest possible numbers of freedom. For some

different cases, including the vibration of a cylinder with a cutout and the

pear-shaped cylinder which Dave Bushnell discussed in his paper and one

more case, we found a factor of between two and a half and three in run

times between finite elements and firite differences with the finite differ-

ence being the faster. Those times apply if the grid is the same in the two

cases. We have made a much more restricted comparison between the

convergence -f the two methods and Bushnell's paper illustrates that we

needed twice as fine spacing for the finite elements to achieve comparable

accuracy with finite differences.

When you use the finite difference/energy method, you must determine the

coefficients of the first and second fundamental forms of the shell surface.

The analytical expression for the energy contains these coefficients of the

fundamental form and derivatives of the displacements. For both finite

elements and finite differences, the derivatives of displacements are deter-

mined numerically but when we use finite differences, in the way we general-

ly apply it, we use analytically determined coefficients in the fundamental

form while in finite elements we define only the coordinate points and I

assume that means we are taking these derivatives numerically. If we go

to more complicated structures, with more complicated boundaries, but

still nice and smooth, or mathematically well defined surface, or if you

want to concentrate the points, we can still determine the coefficients of

the fundamental form analytically provided that the shell surface is smooth

or mathematically defined, and I think we'll continue to be more efficient

with finite differences. If you go still further and say the surface is not

suitable to mathematical definition, then we would have to derermine also

the Lame' coefficients by taking numerical derivatives and I think it's an

open competition between the two methods. I probably would put my bet

still on finite differences.

Finally, if we go to a structure which really is not a continuum but is dis-

continuous to start with, I'll say that finite differences are generally out.
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QUESTION: My question refers to the bread and butter problem--

static stress and deflection analysis of linear structures. I don't ask it

of the finite difference people because I accept it is the same as the finite

element and I've already asked the finite element people. We do get pro-

duction stops in the stiffness approach due to loss of numerical significance.

A number of years ago, Denke was able to point to production runs approach-

ing 1000 with nc stops due to loss of numerical significance. This is with

the force method of finite element analysis. I'd like to ask the panel to

comment on that subject in general.

STANTON: First of all, let me say that I'm sure in that problem

of 1000 that the number of redundants was probably no where near that, but

Dale Warren is here in the audience and he is a lot more familiar with the

latest developments. Would you like to take a shot at that, Dale?

WARREN: I have a slide to show tomorrow that summarizes the

production analysis done on the DC-10 using the force method. As I recall

them right now, the structure was divided into two major areas, each total-

ing in excess of 20, 000 unknowns. These were further divided into sub-

structures, five I believe, each having on the order of 1, 000 to 6, 000 unknowns.

This required solution of simultaneous equations in the structure cutter

of the force method of roughly two-thirds of these sizes total. We found

only one instance of a job failure associated with any kind of conditioning

problem. This is all done with single precision on a 36 bit machine. This

one occasion was where a substructure was unwisely selected--a boundary

on a unit of the complete composite was not well chosen; it was not more

than a one-week exercise to correct that and proceed.

QUESTION: My question is addressed to the whole panel. In

finite element methods there exist many hybrid models where you can

start a problem assuming stress and finally using displacements as unknowns

mixed together in tbe regular displacement method. Is there an equivalent

method in finite difference?

BUSHNELL: It sounds, at least this late in the afternoon, like the
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other question: can you use the complementary energy method or mixed

energy method with finite differences? Again, I don't see why not. And

as to whether it's been done or not, I don't know.

COMMENT: I think anything the finite element method can do, the

finite difference/energy method discussed by Dr. Bushnell can also do, and

vice versa. E... ; concerned with evaluating a functional. In the finite

element method, you use explicit interpolation functions; in the finite dif-

ference/ energy method, you use implicit interpolation functions in a sense

that you replace the first derivative by a difierence expression and which

implies a linear function and so forth. In fact, if you take the plane stress,

constant strain triangle finite element and use Dr. Bushnell's method, you

come up with exactly a finite element method, if you choose your finite

differences in the right way,. So I might suggest a better division of the

topic is differential equation method versus direct variational method

instead of finite elements versus finite differences. Now what I think

distinguishes the finite element .- iethod from others is that you deal. with

that region you call an element. You may think of it as a physical element

or a mathematical region, but what we do for the element does not depend

on anything else outside. Then, you build up your whole structure just by

superimposing one element after another. I think this is an essential fea-

ture of the finite element method. Now Dr. Bushnell's method may include

this and may go beyond it actually because when he evaluates his integrals

in the domain, he integrates over an area. That area may be considered a

finite element provided all his derivati-ies depend on thin-s in or on a bound-

ary of that area. But if he goes beyon'd, then his method would be different.

But both fall, I think, into thL domain of direct variational methods.

BUSHNELL: Well, I'll just make a quick comment. It does go

beyond and, in fact, this was the reason ior Budiansky's title on .is

paper "Nodes Without Elements. " There are, of course, node points out-

side the elemental areas of integration.

JONES: I don't think we've resolved whether there will be any
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survivor of the battle between finite elements and finite differences. I'm

sure they will both continue. Hopefully, I think we have a better perspective

of what some of the advantages and disadvantages of each of the methods

are. It is not a simple comparison to make. There are many aspects of

itumerical computation and material models and so on to consider. Without

considering each and every one of those aspects, I don't th-L.k the question

can be answered yes or no. Thank you very much.
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STATEMENT FOR PANEL B

by

Arthur Leissa

Professor of Engineering Mechanics
Ohio State University

The attention of this conference has been primarily focused on

those methods of computer-oriented shell analysis which deal with discrete

models, namely the finite element and finite difference methods. While

these methods have great versatility and capability, there are many types

of problems which can be analyzed more accurately and with less computer

time and cost by methods using continuous variables.

Two methods which depend upon using continuous variables are

point matching and its generalization, the method of boundary point least

squares, These two methods are examples of a class of weighted residual

methods which use exact solutions of governing field equations whie satis-

fying boundary conditions eith6r exactly or in the least squares sense at a

finite number of boundary points. These methods have been used with great

success on various boundary value and eigenvalue problems of structural

analysis, including the analysis of shells. They rely hearily upon the digi-

tal computer for the formulation of the pointwise boundary conditions, the

solution of the resulting large sets of simultaneous equations or character-

istic determinants, and evaluation of the solutions at desired points through-

out the shell.

The point matching and boundary point least squares method have

been used by the author to determine:

i. Stresses and deflections in shallow spherical shells having

edges which are non-circular and non-rectangular and

having var-ious types of edge restraint.
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2. Stresses and deflections in the vicinity of a rigid Insert

in a shell. The insert is loaded and of arbitrary confi-

guration.

3. Stress concentrations in the vicinity of cutouts in shells.

The cutouts may be noncircular.

Some of the advantages of these methods over the finite element and

finite difference procedures include:

1. Capability of fitting irregular boundaries simply and straight-

forwardly.

2. Satisfaction of the shell equilibrium equations exactly at

every point in the structure.

3. Capability of representing rapidly changing functions

(including load singularities) such as bending stress in a

shell smoothly and with no particular difficulty.

The greatest disadvantage of the methods occurs when a general set of solu-

tion functions to the equilibrium equations cannot be obtained, such as in

the case of a shell having continuously varying thickness or for the nonlinear,

large deflection shell equations.
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FINITE-DIFFERENCES VIA FINlTE-rLEEMOTS

by

G Wempner
The University ot Alabama in Huntsville

A discussion of:

"Finite-differences versus finite-elements"

The following comments are offered in the hope that they will place

"finite-differences" and "finite-elements" in a certain perspective. From

our viewpoint, the method of finite-elements appears as a means to derive

finite-difference equations of a particular kind. Hopefully, the advan-

tages and disadvantages will be more evident from such a vantage point.

The technique of finite-elements pzovides a means to approximate a

continuous field by discrete values. Usually, the desired function(s)

belongs to a particular class and providoz a stationary value of a given

functional. The approximation provides a stationary value among a subclass

of spline functions, i.e., functions defined by nodal values and prescribed

interpolating functions. The algebraic equations which determine the

approximation must approach the Euler equations of the continuum theory as

the element diminishes. In other words, the resulting algebraic equations

are difference equations.

To illustrate the point, cons'der an equilibrium condition of

"Plane-stress" as required by the expression of virtual work:

J(S + + fI) bu dS =0 (1)

S

Now, in the method of "finite-elements", the function 6u is approximated

by a spline function. For example, if Lagrangian interpolation is used,

then the function is expressed in terms of nodal values:
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rz 6u •t 6• f•(X1,X2)(26u. (2)

Here the suffix signifies the node (xI =xx, x2 = XN) a~id summation isimplied by the repeated suffix. In the manner of Ritz, the functional is
rendered stationary with respect to variations of the nodal values. The
stationary conditions follow:

I (1 + f S 2 + fl) fN dS =0 (3)

S

Observe that the discrete conditions are a weighted average of the Eulerequation. Moreover, the averaging extends over a finite subregion about
the node (x 1 - XM, x2 ' xN) since the weighting function ?ý is nonzero
only in the region of elements adjacent to the node.

If the condition (3) is obtained by the stationary theorem ofE. Reissner, then the 3tress and displacement are treated as independent
variables and each is approximated by a spline function. If Lagrangianinterpolation is used, then the stresses and load are approximated in the
form of (2), and the condition (3) takes the following form:

sf ff Nf + 12f 
N 1

S1 rr f dS + SM f f2NPd fi4QJf fMQ f dS - 0
S S S (4a)

For rimplicity, we can normalize the coordinates and utilize an element of
unit length and width. Then, (4a) takes the explicit form:

4 (S(l)Q S(M-I)Q) I - S(l3 + (M3 (M+I) ( M+l

12 12
3 (4+1 1 (M 1)(Q -1)) 3 (Q~ ) (Q 21) ( .) )

3~ (M I(Q I -Sg 1 )(Q 1 l), 3 (M1~Q )(Q+l) - ( )( -)



4 f 1  +~ f~ +f+ fMQ 9 (M4)Q + f( -lQ + (Q+l) + (Q-l)

+1 f1 +1 1 1l)

+ (3614(, P l. + f(M+l)(Q-l•) (M-1)(Q+l) + fM-1)(Q l))0

(4b)

Equation (4b) is our discrete counterpart of the Euler equation and

approaches that differential equation as the elements shrink.

We may ask: What is the distinguishing feature(s) of the difference

equations obtained via finite-clements? Firstly, the equations are obtained

by a consistent application of the Ritz technique. The" stationary condi-

tions are imposed upon a subclass which approximates the continuous field

as closely as computer time and storage permit. Secondly, a higher-order

approximation usually entails the introduction of higher-derivatives

(rather than additional nodal values).

To illustrate the higher-order approximation of finite-elements,

consider a one-dimensional problem wherein we seek an approximation S(x)

satisfying the stationary condition:

TX_ 6u dx = 0J dx

0

The simplest difference-equation is achieved by a linear interpolation

between adjacent nodes (x = xM, xM+ 1 ). Usually, the higher-order

difference-equation is obtained by quadratic, then cbic approximations,

etc., accompanied by one, then two, or more, intermediate nodal values

of the function 'S'. In the method of finite-elements, no additional

nodes accompany the cubic interpolation; instead, nodal values of the

derivatives are introduced. Then the stationary theorem provides two

difference equations for each node as the nodel values of the function

and derivative are variable. The additional difference equation is the

discrete approximation of d2 S/dx 2 . 0. The result is quit,: natural, for

we introducc the derivative(s) because the continuum theory requires the
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existence of the derivative(s), e.g., in the Kirchhoff theory of plates

the continuum theory requires the first and second derivatives and so our

approximation must possess the discrete counterparts, the nodal values of

the function, first and second derivatives. Stated otherwise, as the class

of functions in the continuum theory requires derivatives, so the subclass

of spline functions requires the corresponding nodal values.
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SHELL ANALYSIS WITH LARGE GENERAL PURPOSE PROGRAMS
by

Caleb W. McCormick
Director of Engineering Analysis

The MacNeal-Schwendler Corporation

Introduction

During the last severai years a number of general purpose programs for
structural analysis have been developed. Many of these programs treat both
static and dynamic analyses. While several of these general purpose pro-
grams include a restricted nonlinear capability, they are basically programs
for linear structural analysis. Most of the nonlinear analysis capability
still resides in the smaller, special purpose codes. Although these pro-
grams have used finite element methods for model definition, there is no
fundamental reason why finite difference procedures could not be included
in a well-designed general purpose program. Most of these programs, partic-
ularly the most recently developed ones, use the displacement method of
problem formulation and solution.

This pape, discusses the development and use of large general purpose
computer programs for structural analysis. The use of finite element mod-
eling procedures and the displacement method of problem solution are assumed
for the following discussion. The main additional requirement of a general
purpose ?rogram to make it suitable for shell analysis, is that it include
an adequate library of finite elements for the representation of shell
structures.

General Purpose Requirements

The most importont requirement of a general purpose program Is that It
have a modular design. The modularity allows one to make modifications and
additions to the program in a reasonable amount of time and for a reasonable
cost. The ability to make modifications and additions is Important if a
program Is to maintain Its usefulness for an extended period of time. Since
the initial cost of a general purpose program is high, it is desirable to
maintain the usefulness of the program over as long a period as possible.
This means that one must be able to substitute new matrix routines and add
new finite elements as the state of the art develops, to modify routines to
take advantage of new hardware developments In secondary storage and arith-
metic processors, and to extend the program to include new problem areas,
perhaps even outside the field of structural analysis.

There are a number of considerations in the design of a modular pro-
gram, but the primary requirement is that the calculations and data process-
ing be accomplished by independent subprograms that are not ailowed to
communicate directly with each other. This requirement suggests the need
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for an executive program to control the execution sequence of the independent
subprograms and to manage all cornunication. Small amounts of freauently
used Information can be held in main memory, but most of the data will have
to be stored on secondary devices (disks, drums, tapes), in order to preserve
the main memory for working space. In any case, the executive program must
store and retrieve information for the subprograms upon their request.

The control of the sequence of execution of the individual subprograms
may be either under user control or program control, using a finite number
of -tored tables. The most generality Is achieved by allowing the user to
control the sequence of module executions. However, it is time consuming
for the user to prepare the necessary instructions and there Is a high prob-

ability of failure on the first attempt for a given problem. The use of
rigid formats, in the form of stored tables, relieves the user of the respon-
sibility of controlling the sequence of operations. It Is believed that a
general p. 'pose program should provided both the generality of direct user
control anj the ease and reliability associated with the use of rigid formats.
The generation of rigid formats Imposes an additional burden on program devel-
opment, while direct user control requires greater understanding of the pro-
gram and additional input preparation on the part of the user.

The success of any general purpose program is largely dependent on the
quality of the basic matrix operations that are available In the program.
The matrix routines must be reliable and efficient. The following list of
matrix operations should be available:

1. Decomposition

2. Multiply-Add

3. Add

4. Partition and Merge

5. Transpose

6. Solution of Linear Algebraic Equations

7. Extraction o' all of the elgenvalues and eigenvectors

8. Extraction of all eigenvalues and eigenvectors in a specified range

9. Integration of Linear Differential Equations

All matrix operations should allow for single, double, or perhaps higher
precision arithmetic. All routines, except the integration of equations,
should be available for both real and complex arithmetic. The decomposi-
tion routines should be available in both symmetric and unsymmetric versions.
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The preliminary draft of a survey on shell analysis was distributed as
background Information for this conference'. It Is stated in this survey
that an efficient and reliable technique Is needed for the extraction of all
eigenvalues In a specified range. The inverse power method with shifts2 is
an effective procedure for extracting all elgenvalues in a specified range.
This procedure has been operational in the NASTRAN program since August 1968.

The success of a general purpose program Is also dependent on the quality
and variety of finite elements that are available. Since there are wide
dlfference.; of opinion among structural analysts regarding the use of finite
elements, it is Important that the library of elements be as Inclusive as
possible and that provision be made to add elements to the library. The
following is a list of elements that are useful In shell analysis:

I. Flat triangular and quadrilateral shell elements

2. Doubly curved triangular and quadrilateral shell elements

3. •am elements with offsets

4. Solid elements - tetrahedron, wedge, and hexahedron

5. Conical shell elements

6. Doubley curved axisymmetric elements

7. Solid axisymmetric elements.

In order to model stiffened shells and other more complex shell struc-
tures, It must be possible to combine elements In the above list. In par-
ticular, the combination of axisymetric elements of different types, and
axisymmetric elements with nonaxisymmetric elements Is desirable. The latter
may require the use of multipoint constraints (linear relationship among
selected degrees of freedom). The use of multipoint constraints permits the
use of one-dimensional shel' elements for problems that are basically axisym-
metric, but have loads, mat,ses, boundary conditions or limited amounts of
structure that are not axisynmetric. This procedure permits the treatment
of problems that have only modest departures from axisymmetry as modified
one-dimensional problems. If the structure departs radically from axisym-
metry, it should be modeled as a two-dimensional problem.

I Hartung, Richard F., "An Assesment of Current Capability for Computer
Analysis of Shell Structures", AFFDL Technical Report, February 1970.

2 MacNeal, Richard H., Editor, NASTRAN THEORETICAL MANUAL, NASA SP-221,
Section 10.4.
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Some of the more recently developed finite elements use derivatives
of displacements as degrees of freedom in the formulation of the stiffness
matrix. In order to include these elements, provision must be made for
more than the usual six degrees of freedom at each grid point. Provision
must also be made to accomodate the larger than usual number of grid points
that are used in the formulation of the stiffness matrices for some of the
recently developed finite elements.

Since there are a number of different computers that are suitable for
the execution of general purpose programs, it is desirable that the program
be written in a language that is acceptable to as wide a range of computers
as possible. This imposes an additional burden on the development of the
program, but a program cannot be considered to be truly general purpose if
it is designed for a single piece of hardware. The program should not only
be designed to take full advantage of the kinds of hardware that are avail-
able, but also to modify the instructions to the executive program at
execution time in order to take full advantage of the hardware that is
available for a particular run. These modifications are associated with
such things as, the amount of main memory available, the amount and type of
secondary storage available, the size of physical blocks to be written on
secondary devices, and the type of plotter that is available.

Large Problem Requirements

The solution of very large problems imposes additional requirements on
a general purpose program. Probably the most important requirement for a
general purpose program, that is intended to solve large :"roblems, is that
it must include effective sparse matrix routines. Both the £torage require-
ments and the computing times are excessive if full matrices are used in the
solution of large problems. A full tape or a complete disk pack is required
to store a single fll matrix of 2,000 order. Even the largest and fastest
c3mputer requires about five hours to multiply two matrices of 2,000 order
and about half as much time to make a symmetric decomposition of a matrix of
2,000 order. The average third generation computer would require more than
an order of magnitude longer to perform these operations on 2,000 order full
matrices. This means that if problems of several thousand order are to be
solved in a reasonable amount of time and for reasonable cost, the problems
must be formulated in terms of sparse matrices, and either reasonable sparsity
must be maintained, or effective matrix reduction techniques must be used to
reduce the order of the problem.

In addition to routines for sparse matrix operation, utility routines
must be provided to pack the sparse matrices so that only nonzero terms are
stored on secondary devices. These utility routines assemble the data into
physical blocks that are appropriate for the particular type of secondary
device that is being used. The efficiency of the packing routines is partic-
ularly Important for large problems, as all intermediate results should be
placed on secondary storage devices in order to reserve the main memory for
current matrix operations. This results in extensive use of the packing
routines with resulting significant effect on total computing time.
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it is Important In shell analysis that the matrix operations be performed
with truly sparse routines, and not be limited to operations within a de~ined
band. There are many shell problems for which the matrices are reasonably
well banded, but have a few widely scattered coupling terms. Some examples
are branch shells, axisymmetric shslls In which multipoint constraints have
been used to couple some or all of the harmonics, and two dimensional shells
with a modest amount of internal structure.

In order to minimize computing time for large problems, It is necessary
to have as large a fraction as possible of the main storage available for
each matrix operation and thereby minimize the use of secondary storage.
This dynamic use of main storage can be accomplished if the executable program
is well overlaid, and the executive program monitors the available core
storage and advises each subprogram at execution time as to the amount and
location of main storage that It currently available. The matrix routines
must in turn be designed to utilize whatever storage is available in the
most effective way.

It Is Important In shell analysis that arbitrary limits not be placed
on the order of problems that can be handled by the matrix routines. Some
problems, such as axisymmetric shells with a large number of harmonics or
when a large number of simple shells are connected in series, result in
large order, but rather narrowly banded matrices. In such cases, the core
requirements and computing times are not great, but arbitrary limits on
problem size frequently preclude their solution.

Since main storage must be preserved for current matrix operations, all
of the Intermediate and final results generated by the program must be written
on secondary storage devices. Moreover, a very large number of separate data
blocks are generated In each problem solution, and since many of these data
blocks are needed only during a portion of the solution process, it is
desirable to use the secondary storage space in a dynamic manner. The dynamic
allocation of secondary storage, as well as the reading and writting of
Information on secondary devices, are tasks that must be reserved for the
executive program. The executive program must be prepared to handle data
blocks that vary widely In size. In order to effectively handle files of
varying size dynamically, it Is necessary for the executive program to
maintain a pool of secondary storage space, unless this service can be pro-
vided by the resident operating system. In any event, problem size may be
limited by the availability of sufficient secondary storage space. Morever,
the extensive use of secondary storage requires that efficient Input/output
routines be provided for the executive program If large problems are to be
efficiently solved.

The formulation of stiffness matrices (also mass matrices In the case
of consistent mass formulation) may consume a large fraction of the total
computing time. This is particularly true for the newer, more sophisticated
finite elements. On the other hand, the longer computing time per element
is at least partially offset by the fact that fewer elements are required
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in the model. In any event the computing time is significant, and for large
problems consideration must be given to the fact that only a portion of the
stiffness matrix can be held In main memory.

The general question of matrix assembly will be discussed with refer-
ence to Figure 1. The initial, straight portion of the solid line Indicateb
the I!near growth of matrix assembly time with problem size when the complete
stiffness matrix can be held In main memory. The curved portion of the solid
line Indicates the rapid growth in matrix assembly time with problem size,
when the stiffness matrix is assembled from element stiffness matrices that
are stored on a sequential access secondary storage device.

The dashed line in Figure 1 indicates a linear growth In matrix assembly
time for the case when the required partitions of the element stiffness
matrices are regenerated at each grid point. The slope of this line Is pro-
portional to the number of grid points connected to each finite element.
This procedure will be superior tr the use of sequential access devices for
large problems. The location of the crossover point will depend on the
ratio of the time to generate an element stiffness matrix and the time required
to retrieve the same information from a secondary storage device.

The dotted line In Figure 1 Indicates a linear growth In matrix assembly
time when the element stiffness matrices are retrieved from a direct access
secondary storage device. The slope of this line is proportional to the time
to generate the stiffness matrix for a single element plus the time required
to retrieve the element stifftiess from a direct access device. The total
time to generate a stiffness matrix, using direct access devices should be
only slightly greater than when the entire stiffness matrix can be held in
miln memory.

it has been shown3 that double precision (60-70 bits) floating point
arithmetic is necessary for both stiffness matrix formulation and static
solutions if problems containing more than a few hundred grid points are to
be solved with reasonable accuracy. Examination of Figure 2 Indicates that,
if double precision arithmetic Is used In the formulation of th2 stiffness
matrix, one-dimensional problems having a thousand grid points, and two-
dimensional problems having a hundred thousand grid points, can be solved with
an accuracy o• several decimal digits In the solution. On the other hand,
the use of single precision arithmetic wou!d restrict one-dimensional prob-
lems to less than a hundred grid points and two-dimensional problems to not
much over a hundred grid points. Examination of Figure 3 results in similar
conclusions for errors associated with the solution of the equilibrium
equations. The error in the equation solution is largely in the decomposi-
tion of the stiffness matrix.

Substantially greater errors thin those Indicated above will result If
isolated finite elements are significantly stiffer than the rest of the
structural model. An isolated element that is two or three times stiffer
than the rest of the model can cause an additional loss of two or three

3 MacNeal, Richard H., Editor, NASTRAN THEORETICAL MANUAL, NASA .P-221,
Section 15.1.
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decimal digits in the solution. Errors a- Lciated with extremely stiff
elements can be avoided if such elements are replaced with rigid elements
In the structural model. Consequerý'-, provision should be made In all
general purpose programs, using the displacement formulation, for the use
of rigid elements.

Provision must also be made to guard against errors associated with
solutions obtained from poorly conditioned stiffness matrices. If the
equation to be solved is

where (K] = stiffness matrix

{P) = applied load vector

{u) = displacement solution vector

a residual vector, {SP}, can be determined for each solution vector asS~follows:
S{6P) 

{P) - [K1{u} 
(2)

The residual vector can be used to calculate the following error ratio.

- {u) T {6P} (3)
{u)T {P}

This error ratio is the ratio of the energy associated with the residual
load vector to the energy associated with the applied load vector. The
magnitude of this error ratio gives an indication of the rumerical accuracy
of the solution vector. A somewhat more time consuming operation is to
solve the equation

[KIf6u} (6P} (4i)

where {6u0 gives a direct Indication of the roundoff errors associated
with the solution of Equation 1. in any event, none of the results associ-
ated with the use of the residual vector can be any more accurate than the
residual vector itself. The residual vector will only have order of
magnitude significance, unless higher precision is used in Equation 2 than
Is used in the solution of Equation I.

Under many circumstances, parts of previous solutions can be used in
succeeding solutions. This suggests that the executive program should con-
tain some form of checkpoint and restart capability. The use of previous
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Intermediate results is particularly Important in large problems where sub-
stantial amounts of time may hav3 been Invested in the Initial solution.
In the case of unscheduled exits due to program errors, machine .failure,
or user errors, restarts can be made following correction of the error.
Th!s restart procedure will usually result in the saving of most of the time
already Invested in the partial solution. Scheduled exits, followed by
restarts, may be made to examine Intermediate results before proceeding with
the solution. Following completed solutions modified restarts may be made
to request additional output, or to obtain solutions for new boundary condi-
tions and/or new loading conditions. These modified restarts can be completed
by using only a fraction of the computer time required for the initlil solution.

The restart capability may be conridered in two parts. First, the execu-
tive program must write all data blocks that may be needed for restart on
a secondary storage medium that can be saved, probably a tape. The second,
and far more difficulh tack, is for the executive nrogram to select those
data blocks that are usei-ul under any particular set of restart conditions.
In order to make this selection, the executive program must consider such
things as, was the previous solution completed, have any changes been made
In thz finite element model, have any changes been made In the boundary
condition- or loading zonditions, and has a change been made in the type of
solution to be made, stich as statics the first time and dyramics the second
time.

The basic input for large problems may e3sily consist of several
thousand cards. Most of this Information is usually associated with the
geometry of the finite element model. There are two serious problems associ-
ated with the preparation of large amounts of input data. First, it is
time consuming, and secondly, it is difficult to detect errors in the data.
Therefore, it is highly desirable to provide procedures that will take
"advantage of any regularity or special characteris,;cs of the model, and
getzrate the bulk of the Input data with the program. For example, in the
case of two-o!mens~onal structures, it is cnnvenient to specify the loca-
tions of the grid points at the boundary and allow an Input generator to
generate the geometrica1 information for the interior ;.oints. These input
gener3ýors may either be part of the general purpose program or they may
operate as auxiliary routines.

The presentation of the results is an important consideration where
large problems are concerned. In particuiar, the user must be able to
select only that output which he wishes from the large volume that may be
available. Since It is difficult for the user to interpret large volumes
of printed results, graphic output is an important consileration. Struc-
tural plots of the undeformed and deformed struc-jre should be available
as he'l as curve plots for various structural responses. Punched output
is frequently usefil as input to other programs. These auxiliary programs
may themselves be .nncerned with cht- presentation of results In a more
meaningf:Al form.
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Solution of Large Problems 4

Any well-designed general purpose program will probably solve shell
problems larger than one is willing to pay for. Although the amount of
available secondary storage may limit problem size, the most likely limit
is computing time. Static solutions for shell structures having a few
thousand grid points can :•e completed in abnut one hour on the larger third
generation computers. For larger problems and limited main storage avail-
ability, it may be necessary to use structural partitioning in order to
avoid excessive use of secondary storage devices during the triangular
decomposition of the stiffness matrix. Assuming double precision arithmetic,
structural partitioning --ill not reduce the computing time unless the main
storage available for the triangular decomposition is less than the square
of the semiband of the stiffness matrix, or more generally, less than the
square of the maximum number of nonzero columns that exist at any stage of
the decomposition. Structural partitioning may al.- be required because
Insufficient secondary storage is available for intermedlate results.

If only a few vibration modes are required in a specified range or
ranges, the inverse power method with shifts is the most effective procedure.
11 requires about twice as long to extract a single elgenvalue as to com-
plete a static analysis. if a large number of eigenvalues are required,
it is far mcre efficient for large problems to reduce the stiffness and
mass matrices to five or 10 per cent of their Initial size, and extract
all the eigenvalues, after first reducing the dynamic matrix to tridiagonal
form. The inverse power method with shifts Is particularly effective for
buckling problems where usually only one, or at most a few, buckling modes
are required.

In dynamic response problems, the user should have the choice of a
direct formulation or a modal formulation. In the direct method, the dynamic
degrees of freedom are the displacements of the grid points in the finite
elemeit model. This procedure is satisfactory for large problems If the
number of frequencies or the number of time steps to be considered is
small. if the number of time steps or frequencies to be considered are
large, It may be more efficisnt to reduce the stiffness, mass, and damping
matrices to five or ten per cent of their initial size, and then proceed
with the response calculations using the smaller dense matrices, rather
than the larger sparse matrices.

In the modal method of dynamic problem formulation, the vibration
modes of the structure, in a selected frequency range, are used as degrees
of freedom, thereby reducing the number of degrees of freeoom while main-
ta;ning accuracy in the selected frequency range. The modal method will
usually be more efficient in problems where a small fraction ol all the
modes are sufficient to produce the desired accuracy and where the number
of frequencies or time steps to be considered are large. For %eery large
problems, it may be desirable to use a modal combination procedure, wherein
the vibration wodes are determined for a number of substructuras rather
than for the structure as a whole. The modal resilts i.- thcn combined to
form a complete model for which response calculation5 ai-e performed.
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Advantages and Disadvantages of General Purpose Programs

Large general purpose programs for structural analysis have a number
of advantages as well as disadvantages. The following lists conc'ude this
paper:

Advantages of general purpose programs.

1. Only have to learn how to use a single program in order to solve
a large class of problems.

2. General purpose programs are more likely to be user oriented,
whereas special purpose programs are frequently low budget, and
hence less likely to be user oriented.

3. Easy to add new capa.1iity to the program, while taking full
advantage of all utility routines, matrix operations, and other
services provided by the basic general purpose programn

4.. If, through wide use and/or government support, the cost of
obtalaing the program is small enough, the smaller organizations
can have a far greater problem solving capability.

5. Proper modular design allows quick implementation of the latest
In the state of the art for matrix operations, finite elements,
new solution techniques, etc., without expending effort to
modify unreiated parts of the program.

Disadvantages of general purpose programs.

1. High Initial cost of program development.

2. Requires continuous central;zed maintenance to c:,rrect errors,
make additions, and maintain the integrity of the program.

3. Spec!al purpose programs are faster in execution. However, the
advantage is likely to be greatest on small problems where the
total computing time is small. In any event, good program devel-
opment can minimize this difference.

4. Most users have to use the program as delivered, as it Is unlikely
that the average program'ming staff can make changes in a large
sophisticated program.

5. Some form of initial training in the use of a general purpose
program is likely to be required.

6. Even If the initial cost of the program is low, a budget must be
provided to keep the program operational at any particular facility.

Sa 3.
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QUESTIONS AND COMMENTS FOLLOWING MCCORMICK'S PAPER

QUESTION: I'd be interested to hear your comments on what the

best wiay would be to make a capability like this available. Do you have

one single copy of the program and make the capability available through

some kind of a network or do you make thousands of copies and everybody

in every small shop has one? The optimum must be somewhere in between

there and I'm sure you've given it a great deal of thought at this point.

MCCORMICK: I'm not sure I can answer it, but I'll give you my

thoughts. First, I would preface my answer by the fact that, in general,

the larger computers are more effective and less costly for solving large

problems. This means that you would like to run on the larger, and pre-

ferably the largest, computer available. This tends to lead away from

running the programs in your own shop because most shops can't have the

largest computer available. So I think there's a lot to be said for having

central facilities where the program is maintained, particularly now with

the hardware terminals being as good as they are. You can have line

printers, card readers and everything in your own shop. Even though a

lot oZ outfits have that big machine, I believe that the tendency will be in

the direction of the central facility.

QUESTION: I'm interested in these accuracies you've been talking

about. As a user of an IBM 360, this worries me considerably. I can't

acquire the accuracy you're discussing here without very expensive
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modifications such as multiple precisions. What about 16 bits?

MCCORMICK: You've got to get out to 60 or 70 bits before you can

do problems of any size at all. Even then you can get into difficulty but

generally 60 to 70 bits will carry you quite a ways. Remember we all like

to look at the one dimensional structures because they're easy to under-

stand btLt what you're really trying to solve arc the big two and three

dimensional problems.

QUESTION: I've looked very carefully at that curve you presented.

In most large problems, you're talking about two to five thousand elements.

This is what we're really aiming for. And with the type of accuracy we

can get on 360, do we have a chance?

MCCORMICK: Well, the 360 operating in double precision has 64 bits.

That's about the same as 60 bits on the CDC. You just can't use the IBM

single precision, 32 bits, for problems of any size.

QUESTION: Your equation (2) indicates that the residual on the

equilibrium or the residual forces are not necessarily sufficient indicators

of quality of solution. I wonder if you would expand a little bit on that?

Perhaps something like sum of the squares of residuals would be a better

indic ator ?

MCCORMICK: Well, I think I gave my answer to that question by

indicating that I prefer to dot the residuals with the displacement vector
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and calculate this energy ratio. That gives me a number to look at and

I think a better overall feel for what's going on. It's been my experience

that this is a good physical indicator.

QUESTION: This question relates to stiffness variation. You

said that when you have a large order of magnitude differences in differ-

ent elements or different entries in the stiffness matrix, it might create

a problem. I wonder what, in your opinion or by your experience, is an

acceptable range for such variation.

MCCORMICK: The rough rule that I sort of use is that if the entries

vary by an order of magnitude, I figure I'm going to lose something like a

decimal digit. That's very crude and very rough but that's sort of a rule

that I use.

COMMENT: We have run problems with ratios of elements to the

106 power for systems of 4500 by 4500. I don't know whether that's good

or not and it's probably structure dependent. Now you said that if you

lose a digit per 10 power it would mean that I would have lost 6 digits in

accuracy. But that didn't seem to be the case.

MCCORMICK: Well, I have run some problems of this sort anca in

the worst cases that is what I have found. But my experience is very

limited, so I guess I can't really help you too much.

QUESTION: You mentioned in your paper, although you didn't
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discuss it this morning, the solution of large eigenvalue problems and you

mentioned where you want to get a large number of mode shapes and fre-

quencies in a large system that you recommend reducing the number of

degrees of freedom down to 10% or 15%. I wonder if you would discuss the

technique that you would use for this reduction and how you would automate

it in your regular program procedures.

MCCORMICK: The reduction technique that I use is what I prefer to

call a stiffness reduction, although some people call it Guyan reduction.

The procedure is well documented in the NASTRAN theoretical manual.

It's a well known procedure. It simply amounts to partitioning the stiffness

matrix, making a decomposition and calculating a transformation matrix

and then operating on the stiffness and mass matrices to get them reduced.

These matrices will generally be full. One of the reasons for a significant

reduction--I think I said 5 to 10 percent--is that computing times may well

get out of hand and be more than would occur without reduction if you're

careless and reduce to about half size. You have to come well down in order

to keep the computing times within range and then my tendency is to use a

tridiagonalization technique or something similar which is most effective as

long as you can hold the matrices in core.

QUESTION: In the Guyan type of reduction, how do you choose the

degrees of freedom to be retained?

MCCORMICK: Well, this, of course, requires judgment on the part of

the user, and in general you have to look at the dynamic degrees of freedom

and decide how many you think you need to adequately describe the problem.
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This depends on the nature of the problem, the kind of response, what the

forcing functions are and all this sort of thing. But in general what you're

trying to do is to keep a courser mesh and, in particular, be careful to

retain those points that have big masses on them. This sort of thing is

well known among structural dynamicists, isn't it?

COMMENT: I think there is more to that question because it costs

you quite a bit to reduce that matrix to begin with, you gain something in

solution time of the reduced system, and you lose something in accuracy of

the final solution. So there probably are a number of questions involved.

MCCORMICK: Let me juct say one thing. If you're going to do large

dynamic problems, you have to find some way of handling them. This is

one way to do it. It may not be the best, but we have found it can be

reasonably effective. If there are other ideas here, I'd like to learn about

them.
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THE IMPACT OF FUTURE DEVELOPMENTS IN COMPLTER TECHNOLOGY

William R. Graham

The RAND Corporation, Santa Monica, California

June 1970

Computer hardware design is progressing at such a rate that it is
difficult to understand where it is now, much less where it is going.
On the other hand, computer software still exists only as a pre-science
technology, and therefore it is very difficult to make any generaliza-
tiomi about its status, other than to say that it is a sufficiently
primitive art to require the name "Computer Sciences" in most centers
of research.

This paper will make an attempt to move away from analyzing com-
puter capability only in terms of raw hardware speeds, and will try to
give a rounded picture of the disadvantages as well as the advantages
of some radically new machine designs. The point of view will be that
of a person interested in solving very large and complex problems.

HARDWARE

The current state of the art in computer hardware may be sumnarized
in terms of switching speed as follows (Ware, 1969]:

Device Switching Time
(Seconds)

Magnetic cores 10-7

Magnetic films 10-9

Transistor 10-9

Projectiug what lies ahead is a particularly risky undertaking in the
electronics business. However, a few things can be said. If a tran-
sistor is to be built using light, then the base width is constrained

Any views expressed in this paper are those of the author. They
should not be interpreted as reflecting the views of The RAND Corpora-
tion or the official opinion or policy of any of its governmental or
private research sponsors. Papers are reproduced by The RAND Corpora-
tion• as a courtesy to members of its staff.

This paper was prepared for presentation at the Joint Air Force
and Lockheed Aircraft Conference on Computer-Oriented Analysis of Shell.
Structures on 13 August 1970.
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by diffraction to be greater than a wavelength--abocat 3000 angstrom.
This width would give a switching time of about 10-10 seconds. If an
electron microscope is used for constructing the device, the base width
might be reduced an order of magnitude, decreasing the switching time
to about 10-12 seconds (Linvill and Gibbons, 1961].

There appears to be another speed limit which is both considerably
more general and considerably more distant [Ware, 1969]. If a state
of a switching device is to be stable in an environment at temperature
T, then an energy of at least a few times kT (where k is Boltzman'c z
constant) must be transferred to the device to switch it. After switch-
ing, the energy must be dissipated ([Andauer, 19611. To keep the energy
dissipation requirements low so that the device density can be large,
not a great deal more energy than is required for switching should be
provided. To determine the switching energy within kT, the Heisenberg
uncertainty principle tells us that a time of at least h/kT (where h
is Planck's constant) is required. This gives an ultimate room tem-
perature switching time of 1.6 x 10-13 seconds. Noce that 5 kT is a
switching energy of 2 x 10-20 joules, which could appear, for example,
as 11 millivolts at 11 microamps for the 1.6 x 10-13 seconds. At cryo-
ganic temperatures, th. switching time would be decre,.sed in the same
r'.tio as the absolute temperature, with a corresponding decrease in
che total switching energy.

To stemarize, in the future we may expect a probable switching
speed increase of one order of magnitude, a possible increase of an
additional one to two more orders of magnitude with small 3emiconduc-
tor devices, and an ultimate switching speed at least another order of
magnitude faster still.

THE SOFTWARE OF ELEMENTARY OPERATIONS

The software of elementary operations in a computer is the collec-
tion of wirced-in algorithms for executing the operational code of the
comnputer. it was not until many years after electronic computers were
built and operating that a theory of the minimum t4me required to per-
form simple arithmetic operations was developed [Winograd, 1965, 1967].
When the Winograd limit is compared with the speed of good present-day
machines, we find that addition is performed at roughly 60% to 802 of
the Winograd limit, and that multiplication goes at 30% of the limit
[Ware, 19691. This means that we can exrect at most an improvement of
a factor of 3 in speed from algorithm improvements in these elementary
operations. Proper design of the more complicated algorithm which
calculate exponentials, trigonometric functions, etc. may result in
considerably greater increases in speed.

If elementary hardware and software improvements wer#e the only
saeans to increase machine speed, then obtaining another two or three
orders of magnitude in speed would probably be a rather slow, expensive,
and difficult process. However, there is another way to increase speed.
It is to make basic char-es in the overall organization of the computer.
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.vo examples of radically new machine organization plans are those used
in the University of Illinois' parallel-organized ILLIAC IV and the
Cortrol Data Corporation's pipeline-organized STAR. The price paid
for the speed improvement iv these machines is extracted from the user
in a subtle but definite way (Chen, 19G9]. To understand the drawbacks
and advantages of these machines, one must first understand their or-
ganization plans (Graham, 1970).

THE PARALLEL CO4PUTER

The parallel computer, such as the University of Illinois' ILLIAC
IV, is based on the notion that two conventional computing machines can
work at twice the rate of one machine. The major deilciency in this
approach is that two machines also cost twice as much as one machine.

N / /

- I /
91

Air

Fig. 1. ILLIAC IV Memory Interconnection
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To overcome so fundamental a drawback, the parallel design has many
identical copies of the conventional computer's arithmetic unit driven
with only one control unit. The control unit is responsible for ob-
taining, decoding, and issuing instructions, and generally assuring
that the machine will do what it is supposed to do. Since the control
unit is rather sophisticated and expensive, a considerable ameunt of
money is saved by having only a single control unit in charge of W
identical arithmetic units. (W is called the "width" of the parallel
processor.) The price paid for getting by with only a single control
unit is that each of the arithmetic units must do the same thing at the
same time or else be inhibited and do nothing, a condition which some-
whaht limits the flexibility of the computer.

The parallel processor must be organized so that it is impossitle
for two or more arithmetic units to attempt to change the same number
in memory at the same time. This is achieved most simply by allocating
to each arithmetic unit an exclusive block of memory, not directly ac-
cessible to any other arithmetic unit. The result is that if avithmetic
unit J needs a number stored in the memory of arithmetic unit K, the
control unit must have K recall the number and then transmit it, over
specially provided channels, to J. The number of channels that would
be required to interconnect directly all of the arithmetic units is W -W.
If the designer wishes to sacrifice transmittal time, a smaller number
of channels may be used. For e.ample, in the ILLIAC IV, if one imagines
the arithmetic units strung on a circle, then only the two nearest units
and the two seven units away are in direct communication. Another way
to visualize the interties is to arrange the arithmetic units on a toroid
as shown in Pig. 1. Then only the four nearest neighbors (two on the
circles shown and two along the toroid) can communicate directly. In
this arrangement, eight transmlisions are required for communications
between the most distant arithmetic units.

THE PIPELINE PROCESSOR

A quite different approach underlies the design of the pipeline
processor such as the STAR, which is under development at the Control
Data Corporation. In the conventional computer, the time required to
retrieve operands from the memory, execute the operation, and return
the result to memory must be greater than a time equal to the distance
traveled by the information divided by the speed of light, and several
other less inevitable factors. The'pipeline processor, shown schemat-
ically in Fig. 2, gains its advantage by starting the retrieval of a
second set of operands, each located in memory adjacent to the first,
before the first result has been returned to the memory. Thus, a pipe-
line begins to fill, and the mound-trio distance divided by the speed
of light no longer limits the apparent cycle time.

So that the arithmetic unit will rot be an obstruction to the flow,
it too ii built as a pipeline. It can receive ani start working on a
second set of operands before finishing the calculation for the first
set. The hardware required to make the arithmetic and memory units
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Arithmetic Unit

Fig. 2. The Pipeline Processor

vork as a pipeline is elaborata and expensive, so that if the pipeline
processor is to be economical, the pipe must be kept full a substantial
part of the time.

To complete the memory-to-memory pipeline, the arithmetic unit
must deliver the results back into memory at the same tiste and rate
that it is receiving new pairs of operAnds from the memory. It is
sometimes desirable to skip an operation on certain operands in the
pipeline. This is done through the use of a control vector which con-
tains one bit that is associated with each operand set in the pipeline.
Depending en whether the associated control vector bit is one or zero,
the operation is either performed or skipped. If no operation is per-
formed, the memory locatior for the result does not have its previous
content changed.
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The logical control processes that must take place for the number
stream in the pipeline to flow smoothly are collectively referred to
as a Boolean Orgy, and are sufficiently difficult that the foreseeable
pipeline machines will permit only one type of arithmetic operation per
stream (e.g., add or multiply or divide) and only ont stream at a time.
(A rather amazing exception to this is the vector inner product opera-
tion, which may be implemented on the STAR.) Furthermore, the pipeline
memory retrieval and storage locations for each operand string are con--
strained to lie on a consecutive linear sweep through the memory. Aq
with the parallel processor, both the maximum computing rate and the
opportunities for inefficient operation are greatly increased by this
design.

PARALLEL AND PIPELINE

To compare the two types of machines, it is first necessary to have
a clear idea of what computation can proceed in parallel and what in
pipeline.

The hierarchy of computer activities starts with the basic step;
the retrieval of a set of cperands from memory, the operation, and the
return of the results to -.etory. At the next level is the parallel or
pipeline stage. The stage is the collection of all of the program steps
which could be done in parallel or in the same pipeline stream without
creating a dilemma in the logic of the program execution. A stage is a
property of the logic of the problem, but not of the computer width or
pipeline capacity. Finally, all of the stages connected in the• rn•.:
order constitute a computer program.

The following conditions result from the constraints of logical
simplicity beinag imposed in present computer designs. N computing steps,
S1,S2 ,...SN, form a parallel stage if (1) no step depends upon the result
o any other in the stage, (2) all steps require the same operation to bt
performed, and (3) the operands are properly distributed among the arith-
metic unit memories.

N computing steps form a vipeline stage if (1) no step depends upon
the result of any other in the stage, (2) all steps require the same op-
eration to be performed, and (3) the members of each operand string are
packed in successive memory locations. Comparing these two sets of con-
ditions, one sees that (1) and (2) are the same, only (3), memory loca-
tion assignment, is different for the parallel and pipeline machines.

A world of trouble is hidden in these three conditions. The first
condition means that many implicit differencing schemes, including, for
example, the usual two-pass algorithm for solving the Crank-Nicholson
equation, will reduce pipeline and parallel computers to conventional
one step per r* .. operation, with a corresponding long execution time
and low mach .. xiclency. The third condition, proper storage allo-
cation, makes , Yforning such a simple operation a3 multiplying a matrix
by itself a substantial problem in parallel or pipeline operation. The
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parallel computer requires that the operands for a stage be distributedthroughout its arithmetic units' memories in a two dimensional arrange-

ment, while the pipeline computer requires that the same operands be
packed together tightly in the one-dimensional memory. This difference
in memory allocatlon and the ability of the parallel arithmetic units

to communicate with each other are the dominant differences that the
user sees between the two types of computers.

Assuming that the three conditions have been met (a non-trivial
assumption), one may then proceed to compare the machines on the basis
of execution time and the efficiency with which resources are used.
One overriding fact to keep in mind through the following discussion
is that one step at a time sequential operations will greatly diminish
the computers' performance. If half of the operations executed are so
well matched to the machine that they take essentially no time to exe-
cute, but the other half must be done one step at a Lime, then the to-
tal program execution time is at best an unimpressive factor of two
less than that for a conventional machine.. As a first approximation,
the ratio of the parallel or pipeline program execution time to the
conventional computer's time is the ratio of the number of sters that
must be performed sequentially, one at a time, to the total number of
steps. To make efficient use of the parallel or pipeline computer's
resources, it is not sufficient that a few steps of the program be
suited to the machine; the majority of the program steps must be part
of large stages--ones which each contain many steps.

PARALLEL VS PIPELINE: EXECUTION TIME

In a parallel processor, the thrze parts of a computing step--
the memory retrieval, the operation, and the memory storage--may be
diagrammed as follows:

0T

) time
Memory MemoryT 1 Retrieval - Operation I Storage I ;

2 I

W process- 3 successive
ing steps

elements 41
(width W)

Fig. 93



Here, the step time TJ[ depends upon the specific operation being per-
formed. For a stage of N steps, the time required for execution by a
parallel machine is T| times the integer part of (N-14W)/W, usually
written as Tjj [N-I+W1.Q-]

The operation of the pipeline machine may be diagramed:

0 2T TP

I I , > time
: :: :I I

Memory Memory
"Retrieval I Operation I Storage

successive steps

Fig. 4

The time required for the pipeline computer t-% execute a stage of N
steps is T + T(N-l). Knowing the parameters TI1 , T , W, and T of two
machines, these times may be calculated as a functioK of N. For example,
when N-1, the parallel machine time is just T! and the pipeline machine
time is T . At the other extreme, as N tends to infinity, the partllel
machine tr*e per step tends to TIIjW, and the pipeline machine time per
step tends to T.

With a parallel machine, the execution of a stage of N ateps takes
a time that is always less than or equal to TII.(N+W-l)/W. Thus, if
TI|/W is less than T and TII is less than TV then the parallel machine
will execute any stage, of whatever size N, more rapidly chan will the
pipeline machine.

For a stage of N steps, the parallel machine will always take a
time greater than or equal to the larger of the times TI and TI N/W.
If T11 is greater than Tp + (W-l)x, then the pipeline machine will exe-
cute any stage faster than the parallel machine. In general, the re-
sults can be more mixed, and it is quite possible for the advantage
to shift back and forth between the two machines as N increases.
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Table 1

64 BIT PRECISION CHARACTERISTIC PARAMETERS

FOR THE CDC STAR AND THE ILLIAC IV

CDC STAR ILLIAC IV
Operation Tp T T1 1 o

_______________________(one_ quadrant)

Addition 1.76 usec 20 ns. 1.28 Usec 64
Multiplication 1.76 psec 40 ne. 1.45 psec 64
Division 1.80 usec 80 ns. 3.76 Usec 64

Using the preliminary information in Table 1 (shown her2 for illus-
trative purposes) one may deduce that the STAR and an ILLIAC IV quadrant
have comparable speeds for performing addition, with the ILLIAC having
the edge when only a few sums are to be formed. In multiplication, the
ILLIAC IV is always faster than the STAR, while iv division, the STAR
is about twice ae fast as the ILLIAC in finding a single quotient, but
the ILLIAC is about 1.4 times as fast as the STAR in calculating a long
sequence of quotients. Of course, accurate determinations of the hard-
ware speeds must await the final stages of machine development.

Computing rates are also shown in Table 2 for the IBM 360/75, the
CDC 7600, and the IBM 360/195.

Table 2

64 BIT PRECISION COMPUTATION SPEEDS **(MEMORY TO MEMORY)

IN MILLIONS OF OPERATIONS PEP SECOND

Steps ILLIAC IV
per IBM IBM CDC CDC (One

Operation Stage 360/75 360/195 7600 STAR Quadrant)

Addition Nm- .24 4.6 5.2 .10 50
N-1 .24 .55 1.6 .57 .78

Multiplication N-- .14 4.6 5.2 25 44
N-1 .14 .53 1.5 .57 .69

Division N- .096 1.7 2.0 12.5 17
N-1 .096 .43 .93 .56 .27

The figures are preliminary and for illustrative purposes only.

For the ILLIAC IV and the STAR, the figures are preliminary and
for illustrative purposes only.
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Although the 7600 and 195 are much faster than the familiar 360/75,

they are obviously not in the same league as the STAR and the ILLIAC IV
when it comes to performing long sequences of identical calculations.
However, except for problems well suited to parallel or pipeline manip-
ulation, the 7600 and 195 are as fast or even faster than the STAR and
ILLIAC IV.

PARALLEL VS PIPELINE: EFFICIENCY

The cost of executing a stage is more closely related to the effi-
ciency with which each computer's resources are used than it is to the
execution time. For the parallel computer, maximum computing rate i.
reached when all processors are used. At the maximum W/Tj steps pnr
secorA ,re executed. For the pipeline machine, the maximum computing
rate i- reached when the pipeline is filled; then the rate is l/T steps
per second.

Efficiency for a stage may be defined as the ratio of the actual
computing rate in steps per unit time to the maximum computing rate;
Ohis efficiency always lies between zero and one. For a stage of one
step, the efficiency of the parallel machine is A/W and that of the
pipeline machine is 'r/T p. For a stage of N steps, the efficiency of
the parallel machine is N/(W.[(N-l+W)/W]) and the efficiency of the
pipeline machine is N/(T p/T + N-I).

It is useful to remember when formulating a problem that the effi-
ciency of the parallel computer reaches unity whenever N is an integer
times W but is not monotonic in N, whereas the efficieacy of the pipe-
line processor increases monotonically with N but approaches unity only
asymptotically as N tends to infinity. The ILLIAC IV has a quadrant
width W of sixty-four, so it would execute a stage of sixty-four steps
with unit efficiency. The STAR would execute a stage of this size with
an efficiency lying between .42 (for addition) and .75 (for division).
For a stage of 65 steps, the STAR efficiency would increase slightly,
while the ILLIAC IV efficiency would drop to about .5.

To see what the efficiencies are in the worst case, note from

Table 1 that the one step efficiency for the STAR is between 1% aad
4 1/2%, depending on the operation, and for the ILLIAC IV is always
about 1 1/2%. The license for inefficient use of computer resources
which the parallel and pipeline designs give to the programer and to
the compiler far exceeds any habitual excess yet seen in the computing
world.

The efficiency with which a complete program is executed is the
average of the efficiency Ei of each stage weighted by the total time
Ti required to complete that stage:

Program Efficiency- i T iE Ii Ti.
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Stated most simply, the program efficiency is the ratio of the time
required tu execite a program if the computer is operating at unit
efficiency as defined above to the actual execution time. For a pro-
gram which has half of its operations executed at unit parallel or pipe-
line efficiency, and the other half executed one step per stage, memory
to memory, the overall program efficiency would lie between 22 and 9%
for the STAR and be 3% for the ILLIAC IV.

The parallel and pipeline designs will produce computers that when
used to their maximum, unquestiovably will be fxtcr thmn more conven-
tional computers. Hottever, formulating problems and writing programs
which will use the new machines to anything approaching their maximum
ctpabilities will prove a severe and perhaps on occasion an overwhelm-
ing challenge to the creativity of all concerned. Whether these huge
machines will become the workhorses of computing hardware or go the
way of the dinosaurs has yet to be seen. Their future hinges upon tnu
skill of the users.

PERFORMANCE ON PRACTICAL PROBLEMS

To understand how well the parallel and the pipeline machines work
in practice, the Air Force Weapons Laboratory had a series of program
written for solving the same problems on the 64 P.E. one quadrant ILLIAC
(Wirsching, Alberta, McIntyre, Carroll, 1970] and the STAR [Wirsching,
Alberts, 19701. Parts of two large running programs, HEMP and SC, were
coded in ASK, the ILLIAC IV assembly language, and PL/*, the STAR assem-
bly language. Only the central 5% of the total HEMP and SC program was
coded for the parallel and pipeline machines, but this 5% accounts for
952 of the running time on the present generation machine.

HEMP is an electromagnetic source and field calculation involving

the time dimension and one spatial dimension. Its five sections break
down as follows:

Section 1: Combination of input and intermediate values which
result in input to section 2.

Section 2: Search for match and subsequent interpolation on
volues resulting from section 1. This is a logis-
tics problem which is not directly related to the
mathematical algorithm.

Section 3: Convolution integrals.

Section 4: Interpolation or restructuring of data resulting
from convolution. This is also a logistics prob-
lem not directly related to the algorithm.

Section 5: Calculation of the electric fields.

853

M*,a.-.-



After the same parts of these sections were codu4 for the ILLIAC
IV and STAR, the execution times were determined to be the values shown
in Table 3. The efficiency as well was calculated for the ILLIAC IV,
and has been derived approximately for the STAR from the data given.
These efficiencies are also shown in Table 3.

Table 3

HEMP TIMING AND EFFICIENCY

Present
Ceneration
Machine

HEI• ILLIAC IV (64 P.E.'s) STAR (50 ns. cycle) (z6600)
Seecion Time (Sec) Efficiency (2).Time (Sec) Efficiency (2) Time (Sec)

1 0.11 90 .301 93

2 8.80 22 1.539 99.8

3 6.40 51 8.067 98

4 0.22 2 .009 67

5 0.35 29 .672 74

Totals -5.88 32 overall 10.59 98 688

For the HEMP problem, the STAR is about 65 times as fast as the
present generation machine (PGM), while the ILLIAC IV is about 43 times
as fast. The high efficiency of the STAR is due in part to the very
powerful operation code of the machine, and in part to "brute force"
techniques that are natural to use on the STAR for some operations, such
as linear search table lookups. This last point is substantiated by the
closeness in the total execution times in light of the similar hardware
speeds of the two machines. The variation in the ILLIAC IV efficiency
among the various sections of HEMP gives some notion of the control
which the programmer and the algorithm have on the computer performanc2.

SC is an electrodynamics program that solves Maxwell's equations
in the time dimension and two spatial dimensions. Some of the variables
are defined recursively by the equation

TIj m TI(J-I)*C •

Straightforward iteration of this formula for a fixed I would seriously
degrade the performance of both the pipeline and the parallel computers.
Fortunately, it was found that the equations were uncoupled for fixed J
over an appropriate choice of I's, so that by performing the operation
for a range of I's and a fixed J efficient use could be made of the
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machines. The results of the SC coding are shown in Table 4:

Table 4

SC TIMING AND EFFICIENCY

Present
Generation
Machine

ILLIAC IV (64 P.E.'s) STAR (50 ns. cycle) (z6600)
Time (Sec) Efficiency (Z) Time (Sec) Efficiency () Time (Sec)

6.55 85 15.2 90 590

For the SC problem, the STAR is about 39 times as fast as the PGM,
while the ILLIAC IV is about 90 times as fast. The overall efficiency
of the ILLIAC IV is considerably improved over its value for the HEMP
code, while the efficiency of the STAR Is slightly decreased. It was
pointed out in the original work that a slight change in the ILLIAC IV
memory allocation scheme would double the total SC running time and
halve the efficiency, and it is probable that similar small errors in
allocation would greatly reduce the STAR program efficiency. This agaia
demonstrates the sensitivity of these machines to the user's skill.

LANGUAGES

The ILLIAC IV has two machine languages: one for the CONTROL UNIT
and another for the PROCESSING ELEMENT. Both of these languages must
be mastered by the assembly language programmer. Both operate on a
rather conventional elementary level: fetch A, add B, store SUM, con-
ditional branch, etc. A language called Glypnir now exists which is
above A.3K but below something like FORTRAN.

The STAR language, PL/*, is at once a high level language and
nearly a machine language. This is the result of the very high-level
operation code which is wired into the machine. For example, one sin-
gle instruction in the STAR will transpose an 8x8 matrix, another will
perform a dot product:, another a vector average, another will evaluate
a polynomial, and another will multiply one string by another condi-
tionally dependent upon a control vector and place the product string
back in the designated area of memory.

The programming for the STAR required about 1/6 as many instruc-
tions as the programming fnr the ILLIAC IV. The STAR instructions were
considerably more complicated than the ILLIAC instructions, and each
required on the average about six times as long for execution. Although
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it is not explicitly stated in the reports, the programmers seemed to
give the impression that the STAR was somewhat easier to program than
the ILLIAC IV, at least in assembly language.

FINAL CAUTION

One last word should be said concerning the interpretation of the
results reviewed above. Only the central 5% of the HE14P and SC programs
were coded for the ILLIAC and the STAR. Although these portions of the
programs required 95% of the running time on the present generation
machine, the division of time may be considerably different on the
parallel and pipeline machines, as was noted earlier. It is not in-
conceivable that if the remaining 95% of the programs were to be coded,
it might result that the additional code would dominate the running
time, reducing the overall efficiency to something in the range of 10%
to 40%. Such are the curiosities of these machines.
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QUESTIONS AND COMMENTS FOLLOWING GRAHAM'S PAPER

QUESTION: You mentioned that these machines don't do to well

with inner products, but structural analysis, as we know it today, consists

primarily of taking lengthy inner products over and over again. Would you

care to Lomment on that particular point a little further.

GRAHAM: If I chose my words correctly, I said that a single dot

product isn't done terribly efficiently an these machines. Now it's not

done as poorly as you would think. For example, the inner product is a

hard-wired instruction on the STAR as is almost everything else you can

imagine, like polynominal evaluation, matrix transposition and so on. The

designers have tried to take that programming out of your hands and put in

the most efficient algorithm they can. On the ILLIAC IV, doing an A. B is

somewhat inefficient, but doing a matrix multiply which requires a lot of

inner products is very efficient. The reason is that the ILLIAC starts

forming 64 inner products at the sa'-ie time and car.ies them all through

together. It doesn't have any one finished until it's got 64 finished, but

it can do those at peak machine speeds. So, if you vwant to lo more than one

inner product as you would for a matrix multiply, then the mac)-ines will

work pretty well. I I1ope those are the inner products you were mostly

concerned with.

COMMENT: I rea!ize that i, the ILLIAC IV every parallel processor

has to do the same thing at the same time; but conceptually I wonder why

this is necessary. Why couldn't you have a number of processors sitting

around and hand each one a stage where the stage itself is independent of
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the other stages. Perhaps the control unit could be just a super shuffler

that could hand these things out and take them back.

GRAHAM: The control unit is already a kind of super shuffler

compared with decoders in the present machines. I think there's no basic

reasca one can't do what you suggest. A practical concern has to do with

the complexity of the control unit. One of the drawbacks of the ILLIAC IV

type of design is that the control unit is so complex that at the machine

language level you have to use two languages, one of which is the control

unit language and the other of which is the processing element language.

The control unit tries to do a lot of look-ahead and also does fixed point

control arithmetic operations inside itself.

If one goes far enough in the direction you suggest, one obtains N independ-

ent machines. There's no reason thal. you can't run N entirely independent

machines that just talk to each other once in a while. In fact, a weather

code exists that runs on four CDC 6400's which communicate through a

common extended core memory.

COMMENT: One reason the control unit is so complicated -nay be

that all of the processors are doing the same thing. You must continually

think to yourself, "Well, do I want all those elements doing the same

thing, " and you have to say, "Gee, just because I'm moving data from A

to B, I'm also moving it from D to E and do I really want to do that?"

So, it's complicated.

GRAHAM: It makes the machine L,.ss complicated to do that but

it makes the programming more complicated. You're always juggling a 64

bit vector where each element of the vector is a yes or a no on whether or
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not you want the correspondingly numbered processing elemenu on. As

you issue each instruction, youtve got to go consider all your processing

elements and decide which ones you want on and which ones you want off.

A good deal of the programming time goes into that process.

QUESTION: I'm somewhat concerned about not the theoretical speed

of the machine, but rather the practical speed of the machine. Does the

machine have many registers or do you store everything in core? What

are the speeds of the peripheral equipment and how do they influence the

calculation speed of the machine?

GRAHAM: The ope--ations I was discussing were all core to

core. The STAR also har a 256 word very high speed register memory.

VTe typical size of STAR memories will be half million to million words

while ILLIAC will have 128, 000 words per quadrant. Each of these

machines is designed with careful attention to the I/O so that you can be

shuffling things in and out of the memory while the machine is also doing

arithmetic. The total rate of all the memory fringes on the ILLIAC or

on the STAR is about a billion bits per second. Both machines have peri-

pheral stor..ge devices that operate at several hundred million biL per

teond. The addiessing on the STAR will be from a logical address through

a table lookup to a physical address. If the table happens to say that the

physical address is on the drum, then you pay whatever the drum access

time is to start moving the numbers into the core.

QUESTION: Using a machine like the CDC 6600 in a multiprocessing

environment, there's a large amount of software programming that resides

in core or is being handed in and out of peripheral devices. A large amount
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of time is now devoted just to systems operations for looking after every-

thing. Can we expect this kind of overhead or extra cost to go up or down

with these next generation machines?

GRAHAM: The ILLIAC IV does not presently have memory boundary

protection; if a memory address calculation gets out of hand, any part of

the memory could be changed. Therefore, only one problem at a time will

be permitted in core. An average overhead of about 73 milliseconds must

be paid each time the core is reloaded. Most of the rest of the ILLIAC IV's

overhead opcrations will be performed by the associated B-6500 computer.

Since the B-6500 also does all the program compiling, it may become the

ILLIAC IV's bottleneck.

The STAR was designed to serve as the pinnacle of an interconnected pyra-

mid of tinke-sharing computers. In this scheme, much of tht overhead

would be handled by lower-level computers. Nonetheless, the STAR's

logical to physical address table lockup could slow down the computing

in same cases.
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THE OPTIMUM APPROACH TO

AHALYSIS OF ELASTIC CONTINUA

R. J. Melosh, Staff Scientist
Philco-Ford Corporation

ABSTRACT

The optimization of structures requires many analyses. This provides the
incentive to reassess analysis approaches and select one which insures that
complex numerical analyses of structures are performed efficiently.

This paper classifies the decisions of analysis which, in turn, classify
analysis methods. B; example and rationale it examines analysis alternatives
and selects the more attractive ones for maximizing analysis accuracy per unit
of analysis effort. In the process, it reviews some important analysis issues.
New arguments are furnished on the question of the force versus the displacement
method, coarse.versus refined models, and finite elements versus finite differences.

The paper identifies error control as the key issue. It indicates that
lack of a theoretical basis for directly controlling undesirable errors makes
published comparisons of methods and operators of questionable value. This
lack insures that arguments for one alternative over another must often be less
than rigorous.

it is concluded that the optimum unmixed analysis approach uses an integral
equation formulation, displacement behavior states, intersecting operators,
low order extra degree articulation, and determinate error control.
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INTRODUCTION

Optimizing structural designs incurs calculations for redesign and for
design analysis. Redesign calculations produce new variable assignments for
a design of improved merit. These calculations have high leverage. They
determine the number of design analyoes required before the sequence of improved
designs converge. Design analysis provides measures of the effect on behavior
of changing design variables (influence analysis) and evaluations of the integrity
of given designs (reanalysis). Efficient performance of these operations is
important because it requires moat of the effort in an otpimization cycle.
Thus, the desire to optimize structures places incentives on developing an
efficient analysis approach.

This paper addresses itself to identifying such an approach. Attention is
restricted to numerical analysis methods in which generalized behsvior coordinates
are associated with control points (joints) on thu structure. It is only
incidentally concerned with mesh refinement and convergence.

Many researchers have examined M ects of this subject. By examining various
finite element models, Pian and Tong have scrutinized the effect o1 21arious
integral equation formulations on response predictions. Leissa et al. have
asked similar questions for the differential equation methods. A feM apers
show rigorous concern for the af 9 uacy of models. Reference 3, Key, and a
series of papers by Walz et.al, are cited as examples in the engineering
literature.Papers reporting results of numerical experiments showing the effect
of articuiation of the structural system on solution accuracy are too numerous
to list here. Some of these are found in Ref. 6 and many more are referenced
there.

This paper presents an assessment of the classes of decisions made in
analysis of linear elastic continua under static loadings. The next section
defines the classes of decisions involved. The third section examines the effects
of each choice on analysis efficiency. The fourth section relates other issues
of analysis to the context. The last section lists conclusions.

This study was stimulated by the need for a strategy for designing complex
multicomponent structural systems usirg the finite element method. Thus it is
closely associated with a Goddard Space Flight Center study on this subject.
Acknowledgement is made to Dr. Richard McConnell and Mr. Thomas Butler of GSFC
for their contributions in discussions of analysis strategy.
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I
DECISIONS OF APPROXIMATE ANALYSIS

In general, analysis decisions are those involved in defining the
mathematical and numerical models of the structure and in translating the
numerical results into predictions of behavior of the real system. This
encompasses decisions which are regarded as perogatives of the engineer as
opposed to computer configuration decisions. The analysis decisions are
complementary to solution decisions, i.e., the decisions and approximations
made in solving the equations which model the structure.

Analysis decisions fall into two classes: numerical modelling and
mathematical modelling. Loosely speaking, itume*:ical modelling decisions are
implicit in the set of numbers modelling the structure and In interpreting
results. Mathematical modelling decisions involve the basis selected for the
computer program and options exercised in its use.

Though numerical modelling decisions will not be considered in detail here,

their importance is not discounted. They include approximations, with bounded
errors, in the idealization of geometric and material anisotropy and joint force
and displacement boundary conditions. They may include unbounded errors incurred
in modelling geometry. Despite the importance of the numerical modelling
decisions, definition of this strategy must still be regarded as an art, rather
than a science.

Some modelling decisions inte--ct with mathematical modelling decisions.
As examples, selection of the number and disposition of mesh points, and
selection of material anisotropy to model geometric anisotropy are interactive.
The best decisions in these cases depend on the mathematical model as well as
the system being analyzed.

Mathematical modelling decisions are of concern here. These decisions
incur bounded errors. Their importance is due largely to their strong effect
on analysis accuracy per calculation.

In the approximate analyses of interest structural behavior is assumed
to comply with a set of interpolating functions related to mesh point generalized
coordinates: K

where ~ are comjnentr of response,

are generalizee' coordinates scalars•

are interpoluzing functions in the spatial coordinates x, 6, z,

Nis the number of generalized coordinates and Interpolating functions,

is the number of responsa components required to completely define
system behavior.

Suppose the set of f is mathematically complete and satisfies certain
continuity conditions (see Ref. 7). Then, with appropriate choices of the )a'
Eqs. (1) can represent the solution of the equations of elasticity as accurately
as desired as N approaches infinity.
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When N is finite, resporise predictions will unilly be approximate. Then
the A are evaluated, as pointed out by Crandall, by choosing to minimize
some weighted measure of analysis error. The mathematical modelling decisions
of concern here involve selection of the interpolating functions, fi, and the
error criteria used for quantifying the X .

Table I provides a decision ladder which groups mathematical modelling
decisions. The top three rungs of the ladder involve mainly selection of
interpolating functions; the lower two, selection of error criteria. Decisions
at all levels, however, affect analysis efficiency.

Decisions at the highest rung fix the analyst's goal by identifying the
equations whose solution is being sought. Either a differential (D. E.) or
integral equation (I.E.) approach may be taken. The differential equations
will be the equilibrium, constitutive, and compatibility equations. The I. E.
approach involves finding the solution of these equations by minimizing an
integral (variational approach) or solution of a Fredholm integral equation.
Since it is always possible to transform from the differential equation form
to the integral, and conversely, the analyst can always choose either formulation
for his analysis.

The selection of formulation identifies specifications for the f functions.
The D. E. approach requires functions which can be differentiated and will
provide good estimates of the variation of the differentials over the structure.
The I. E. approach requires functions which are Integrable and whose integral
are good estimates of the corresponding exact 'ntegral of structure behavior.

The analyst can also choose to use any of a spectrum of hybrid approaches.
In these approaches, functions are chosen which can be both differentiated and
integrated. The approach can be to choose functions which would make zero
particular terms of the integral and find the AZ to satisfy differential equations.
Alternately, the approach could be to minimize the integral subject to differential
equation conditions of the functions. These hybrid approaches are not popular,
though they offer a great deal of analysis flexibility.

Though not usually done, the analyst could choose to mix the two approaches.
He could use the differential equation approach for part of the structure and
the integral for another part, and hybrid over a third part.

The second decision level limits the type and form of the behavior functions.
The most important of these decisions is the choice of the !X These may be
stress components, strain components, or hybrid functions boA stress and
strain components. The selection can also be spatially mixed over the structure.

This decision establishes the form of the equations and PIditional conditions
on the f For example, if the differential equation approach is taken and the

are stresses, the equations take the Beltrami-%Uichell form. The functions
must be differentiable through the second derivatives. If the corresponding
integral equation approach is taken, the functions must have integrable second
order derivatives, satisfy the differential equations in the regions of definition,
and satisfy the homogeneous conditions at the boundaries. If the differential
equation approach is taken, and the Oare displacement components, the equations
take the Navier forin.
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Table I

Analysis Decision Ladder

Formulation: Differential Integral Mixed Hybrid
Equations Equation Equations Equations

Behavior Model: Stress of Strain or Mixed Hybrid
Force Displacements Functions Functions

Operators: Intersectina Disjoint Both

Articulation: Sub Degree Least Degree Extra Mixed
Degree

"Total Error Uniform Galerkin Positive Mixed
Criterion: Weighting Weighting Weighting Weighting
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If both stress and displacement functions are included, the differential
equations of elasticity in unreduced form are to be solved. Alternately, in the
1.2 approach nonextreium variational Irinciples (such as Reissner Energy) define
the equations of interest.

The behavior model is further particularized by the decision to attack the
equations in microscopic or maczoscopic form. In microscopic form, stress or
strain (or displacement) variables are retained. To write the equations in
macroscopic form, they are integrated over some of the dimensions of the structlire.
Stress variables are replaced by force resultants and strains with displacements.

The third decision level involves the selection of difference and integral
operators. The difference operators will transform the differential equations
into difference equations. The integral operators will replace the integration
with a summation. These operators will form a collection from which operators
will be picked for given systems.

At this level, an important decision is whether the collection will contain
disjoint, intersecting, or both types of operators. Each disjoint operator can
be uniquely identified with a particular region of a structure. The region can
be delineated by fictitious cuts. Inclusion of only these operators limits the
analysis method to finite element operators. The collection must include an
operator model for every element topology and material model that may arise.
Intersecting operators, on the other hand, are defined among mesh points. They
need not be based on functions which are uniquely defined over a region nor be
associated with fictitious cuts. A complete set of these operators requires
subsets of operators for the boundaries of the structure and for the interior.
The finite difference method uses intersecting operators.

The operators may ilso be classified by characteristics of the functions
upon which they are based. This, in turn, can distinguish between analysis
methods. Use of only harmonic functions is a hallmark of the Treffetz and
Rafalson methods. Finite difference methods are based on first order estimates
of the derivatives based on their definitions, which, using Taylor's series, is
comparable to a polynomial basis. The complementary energy method restricts
operators to those based on functions which satisfy the stress equations of
equilibrium everywhere in the interior and match surface tractions across
boundaries. The potential energy approach requires functions which satisfy
displacement coninuity (not compatibility) everywhere. Except for the finite
difference method, specialization of the basis in these methods insures a solution
bound. If the analyst will forego bounding, practically any piecewise continuous
f functions can be used.

The fourth level of decisions establishes the difference equations which
model the structure. Consider that numerical modelling identifies nesh points
on the system and the requirement to produce specific data at these points, say
displacements. Then, in the differential equation approach, the fourth level
of decisions defines at what points, across what lines, or over what regions the
difference equations will be expressed. In the integral equation approach, this
level of decisions determines where and how many fictitious cuts will interlace
the mesh points. These cuts delineate the integration boundaries,
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Minimizing the sum of the parts with respect to the generalized coordinates
produces the difference equations. (It is noted that a direct minimization
attack could be used to find the generalized coordinates, but this is a solution
decision rather than an analysis one).

One important decisiop ts what degree operators shall be used. The method
is called sub-degree if the number of degress of freedom in the analysis is less
than that specified by the idealization. In this case, interpolation must
be used on the numerical results to obtain response evaluations at points
specified by the analyst. In least degree analysis, generalized coordinates are
only associated with idealization points. In extra degree, the operators are based
on additional coordinates to those specified. In the finite element approach,
these elements have been referred to as superelements. Of course, the analyst
may choose to vary the degree of operator over the structure, using a mixed
approach.

AAnother articulation decision determines the order of the operators to be
used. These may be least order or refined. Least order operators are based
on functons which imply the simplest elastic behavior. The rod, beam, and
Turner triangular membrane finite elements are least order. Refined operators
involve hi07r order behavior states. The six joint triangular membrane model
of Argyris illustrates this type of operator.

The final analysis decisions concern the basis for minimizing analysis
* errors. The errors may be considered components of an error vecotr.

The analyst must decide how many error components to use. He can define as
many as there are generalized coordinates (determined set) or more (over determined
set). The analyst can also choose to evaluate the A) to minimize any norm
measure of this error vector. if there are an equal number of error components
(difference equations) and \/', the system of equations is determinaýe and the

A; can be evaluated so all components of the vector vanish. If there are morý
error components than '-, the A can be found so the sum of the squares of the
error is minimum (Euclidean vector norm), the maximum error is minimum (min-max
norm), or the sum of the absolute value of the error is minimum.

A more important error decision defines how the error shall be weighted
over the system. All methods evaluate error by measuring an inadequacy of the
assumed behavior in satisfying the equations of elasticity, but they differ on
how these errors shall be weighted in combining them into a single error criterion.
Uniform weighting may be used (finite difference and Biezeno-Koch methods),
weighting the error by the behavior states, Eq.(l), may be used (Galerkin's
method), other positive weightings can be used, or these weightings can be mixed
over the structure.

Table II catalogs a number of analysis methods based on decisions made bt
each ladder level. The decision ladder permits classifying 768 analysis
methods. Thus, the 12 given in Table ii are a small sample of the possibilities.
Detailed description of these 12 methods can be found in Ref. 7. In this table,
"open" means that the relevant decision may be any of the alternatives suggested
at that level in Table I.

This table shows that, except for methods 1, 2, and 3, and 8 and 9, the
group decisions are sufficient to discriminate among the methods. IWthods 1,
2, and 3 differ in their choicc ot function and weighting of the integral of
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Table II

Catalog of Methods

Method Formulation Behavior Differences Articulation Criterion

1. Ritz,Rayleigh Integral Displacements Undefined Open Galerkin
Ritz,Galerkin

2. Treffetz Ixtegral Displacements Undefined Open Galerkin

3. Rafalson Integral Displacements Undefined Open Galerkin

4. Biezeno-Koch Integral Displacements Undefined Open Uniform

5. Complementary Integral Stresses Undefined Open Galerkin
Energy

6. Reissner Energy Integral Stresses and Undefined Open Uniform
Displacements

7. Collocation Differential Displacements Intersecting Least Uniform
Order

8. Boundary Point Differential Displacements Intersecting Extra Uniform
Least Squares Order
(Mikhlen)

9. Interior Differential Displacements Intersecting Extra Uniform
Least Squares Order

lU.Airy Stress Differential Stresses Intersecting Least Uniform
Function 3rder

ll.Maxwell-Mohr Differential Stresses and Intersecting Least Uniform
Displacements Order

12.Finite Differential Displacements InLersecting Least Uniform
Differenc Order
(Navier Eqs.)
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the error. In method 8, functions are restricted to those which satisfy the
cifferential equations in the interior. In 9, they must satisfy the boundary
conditions exactly. Thus, these methods would be distinctly characterized if
details of the basis of the difference operators were included. This is not
indicated as an independent ladder level because selection is so diverse.

Assuming the methods given are representative, additional conclusions can
be drawn. Most methods use displacement variables. No methods are restricted
to use of only disjoint operators. In integral methods, selection of operators
is always open. The uniform error criterion is most popular.
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ANALYSIS OF ELASTIC CONTINUA

This section considers the Pffect of decisions on anaiysis economy
accuracy calculation. Alternate decisions at each ladder level are considered
independently.

To make the discussion less abstract, it illustrates points of view using
approximate solutions of the membrane shown in Fig. la. This 100 x 140
rectangular uniformly thick panel is composed of an isotropic material with a
Poisson's ratio of 1/3. The left and right edges are stress free. The upper
edge is clamped. The lower edge is welded to a rigid stiffener which is
translated in the direction of its length 0.001 units. The panel is considered
sufficiently thin so that it behaves as a linearly elastic membrane (plane
stress). Deformations are required for points on the 4 x 8 uniform mesh shown.

The "exact" solution predicts the structure will deform as depicted in
Fig. lb. This shows that the central region distorts in, predominately, shear
action. Near the free edges, the strain pattern is complex.

This solution was developed by a finite difference analysis of the problem.
A regular 15 x 35 mesh was used. The 1050 equations were solved, by a relaxation
process, to five significant digits of accuracy.

In the sequel, the accuracy of a given analysis will be measured by defining
an error vector 6,

where em; and 6Vi'are ccmponent errors for displacements in the x and y
directions as illustrated in Fig. 1.

and X.are the displacement components from the "exact" analysis

Sand Vare displacement components from the approximate analysis.

Thus, the G vector is null for the exact analysis.

A single error measure is given by

e ~ Z U.'4~) (2)
where e is the "mean component error"

Formulation

To particularize a comparison between D. E. and I. E. formulations, consider
the articulation illustrated schematically in the upper panel of Fig. 2a. In
the model, the u and displacements are assumed to vary linearly over each
triangular region. i.e.

At issue is whether tie A's shall be determined by minimizing the errors in
satisfying the differential equations of elasticity or by minimizing weighted

integrals of the error.
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The D. E. alternative is represented by writing equilibrium equations
across all the unfixed boundaries of the membrane. This is a collocation
solution. Across the real free boundaries, stresses are required to be zero.
Across fictitious boundaries it is required that the stresses be continuous
at the midpoint of triangle sides. This results in 206 equations in the 64
unknown displacements. The unknown displacements are then found such that the
sum of the squares of the residuals in each equation is minimized.

The I. E. alternative is reprecented by a potentisl energy analysis of
the system. This involves direct use of the Turner triangular element membrane
stiffness matrix for the mesh chosen. It results in 64 equations in the 64
unknown displacements. In this approach, the method corresponds to evaluating
displacements so the integral of the error in satisfying the differential
equations of equilibrium, when weighted by the assumed displacement functions,
will be a minimum.

These analyses indicate the error norm for the potential energy method is
less than half that for the differential equation model. As would be expected,
the fact that all diagonal cuts are made in the same direction makes it difficult
to interpret the error pattern over the planform.

Figure 2b shows a different mesh for the same membrane. Two analyses like
the above were made of this model using, as assumed displacements,

.he collocation solution involves only 136 equations and the potential energy
64),in the 64 unknowns. The finite element stiffness matrix is given in Ref. 10.

These analyses indicate the error norm for the potential energy solution
is less than one third that of the differential equatior solution. Figure 3
shows analysis error contours for these last two solutions. These have been
normalized to the maximum error to facilitate interpretation. Because of the
utformation asymmetries, one quadrant of the system is representative of all.
Only errors in v displacement components are plotted, since these are twice as
big as tA displacement errors. Both analyses given errors indicating predicted
displacements are lass than exact.

Both analyses have the largest errors at the free edges. The spacing of
contours for the collocation analysis is more regular than for the potential
energy. This suggests the collocation analysis will yield better estimates
of the distribution of stresses if the difference in deflections is dominated
by the errors. Nevertheless, since the potential energy solution has smaller
u and v errors at every joint, it is more accurate.

In these analyses, the potential energy approach is more efficient than
the collocation. The potential approach is not burdened with the extra
calculations of the least square error evaluation and is more accurate.

If this argument for the integral approach is not convincing, a more
compelling argument may be found in the analysis of determinate structures.
Consider the prismatic, tip-loaied ccentilevered beam shown in Fig. 4. The
displacements for zhis beam obtained by solving the beam equation are shown in
continuous curve in Fig. 4.
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2Assume displaLements vary with x2, the coordinate measured along the beam
from the root toward the tip. Then the displacement estimate for the Biezeno-Koch
is shown as the long dashed curve in the figure.

The two short dashed curves bound the predicted behavior when the generalized
coordinate is chosen so the beam equation is satisfied. The upper curve occurs
when collocation is made at the root. The curve lying on the x axis is the
predicted behavior whp- "ollocation occurs at the tip. The span between thc
curves is indicst'.e of the relatively high sensitivity of the D. E. approaclh
to selection or collocation positions. Even if the optimum collocation point
were known ab initio, a different point would be required for each loading, thus
requiring a complete analysis for each load. Then even if both approaches had
the same accuracy, the differential will carry excessive calculation penalties
for multiple loadings.

For the same number of generalized coordinates the I. E. approach requires
mere calculations than the differential. In the integral formulation more effort
is r~ojired in developing equation coefficients. Irregular regions are usually
tu.ated by performing integrations numerically. Difficulty is experienced in
the differential equation approach with defini g the equations in regions of
geometric anisotropy and mesh irregularity. The first difficulty is masked ty
allowing the analyst to select from a limited number of non-uniform geometry
models at no signif''ant calculation penalty. The second can be overcome by
choosing functions identified with regions rather than points, as was done in
the anelyses described above.

It ia concluded that the I. E. approach is intrinsically the more efficient
approach, as long as excessive penalties for integration can be avoided.
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Behavior lMdel

Figure 2g, 2h, and 21 show three articulations used to compare the affect

of the selection of the behavior model on analysis efficiency. The Fig. 2g and
Fig. 2i representations provide the bases for analyses using assumed displacement
functions and the potential energy approach. The Fig. 2h model pertains to use

of assumed stress functions and the complementary energy approach.

The displacement analyses uses a square membrane finite element matrix based
on the Turner triangle model. Two P&iffness matrices are developed for a
square region. Each is for one-half the membrane stiffness. One has an upward
slanting diagonal and the other, a downward. These matrices are added to define
an "unbiased" stiffness matrix. Use of this matrix insures displacement predictions
with the desirable deformation asymmetries.

This element model is used in the two displacement method analyses. The
Fig. 2g articulation results in 64 equations and unknowns. The articulation of
Fig. 21 leads to 270 equations and unknowns. Despite the added degrees of
freedom in this model, the components of the error vector are taken as only those
which also exist in the Fig. 2c model.

Tl~e stress variable analysis is also based on a triangular finite element
model which is formed by adding two stiffness matrices. As DeVeubeke(ll)has
shown, complementary energy solutions can be developed by the direct stiffness
method using the Turner triangle if joints are located at the middle of the
sides of the triangle. Then, because the displacement function given by Eq. (3)
implies uniform stress distributions, matching displacement components corresponds
to satisfying the microscopic equations of equilibrium across eich bound.ary of
the triangle.

Accordingly, stiffness matrices were developed for the diagonal-slanting-
down and a diagonal-slanting-up square. These matrices were added. Then the
equations associated with center joint were reduced out.

Applying this model to the arrangement of squares shown in Fig. 2h leads
to a set of 206 equations in 206 unknowns. Evaluations of these unknowns
produces the desired displacements.

Unfortunately, a direct comparison of the norms of the error vector for the
two types of analysis cannot be made. The stress approach dces not yield unique
values for displacements at the points of interest. (Note that a corresponding
deficiency exists in the displacement method for stresses). This difficulty
is circumvented by defining displacement errors components at the mesh points
shown in Fig. 2h.

Values of the mean component error for articulations associated with Fig. 2g,
2h, and 2i are, respectively, .0136, and .0131, .0050. These data do not show
that the stress variable has intrinsic accuracy advantages over the displacement
for a given number of degrees of freedom and comparable assumed behavior functions.

This triangular membrane stress model avoids the calculation penalties
usually associated with use of stress variables. These arise because it is
necessary to develop coefficients of the total set of structural equations to
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maintain stress continuity.

Usually, the equations are written and solved choosing the force method
of manipulations. Then, as Bamford also points out, the number of calculations
can be increased by several orders of magnitude over those required in the
displacement method due to calculation penalties associated with redundant
selection. A minimum of a factor of four is projected. Table III reproduces
data from Ref. 13. These data are indicative of the calculation penalty in
practical problems for stress variables selection when comparable articulations
are used.

To examine the desirability of using both displacement and stress variables,
consider a system with "d" displacement redundants or "s" stress redundants.
To obtain the exact problem solution requires, in general, either d displacement
states or s stress states. Using both sets of states must always result in more
equations than the minimum. Thus, the two variable approach cannot be as
efficient as the better of the stress and displacement approaches.

Thus, displacement variables should be used to maximize analysis effictency.
Their efficiency is attributed to the relatively few calculations required in
solving the associated reduced set of structural equations.
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Table III

Calculation Effort for Practical Analyses

Relative
No. of No. of No. of No. of

Structure Method Equations Redundants Calculstions Calculations

Swept Wing Displacement 360 --- 0.45 x 10"6 1.0
Force 390 101 1.71 x 106 4.3

Unswept Box Displacement 300 --- 0.26 x 106 1.0
Force 390 161 3.58 x 10 6 13.8

Table IV

Relative Calculation Effort

No. of Disjoint Operator Intersecting Operator Calc.

Equations Mesh Wavefront Mesh Wavefront Disi./Inter.

300 6 x 8 36 9 x 16 18 3.8

1000 11 x 15 66 20 x 25 40 2.6

3600 21 x 29 126 33 x 52 70 3.3

14000 41 x 57 246 70 x 100 140 3.2
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Operators

To compare the efficiency of disjoint and intersecting operators, consider
deformations on cross sections taken through the membrane. The continuous curve
in Fig. 6 shows the exact v (y direction) deflections for 8 cross section along
the first line of mesh points (see insert).

Now consider a disjoint and an intersecting operator, each based on a cubic
displacement function. The disjoint operator uses the deflection and its first
derivative at each end as generalized coordinates. It involves a Hermite polynomial.
The intersecting uses the deflection at the ends, 1/3, nnd 2/3 points.

The relative accuracy of these two operators can be compared by comparing
their fidelity in interpolation for structural problems. The two dashed curves
in Fig. 6 permit this comparison for line i of the membrane. These curves show,
separately, the interpolation curves. These data suggest that the intersectingoperator will be more accurate than the disjoint.

Table IV cites the value of the solution wavefront as a function of the
number of equations for the membrane, using increasingly finer meshes. The
number of calculations is given by,

N = 2Nw2 + 4Nwc (5)
s

where Ns is the number of calculations for equation solution for N•1,

w is the wavefront, and

c is the number of loadings (1.0).
Meshes are chosen so both analyses will have the same number of equations.

The number of calculations to develop operator coefficients is,

Ng 2

Ng ~D (6)

where N is the number of generation calculations for N: 1,g
is a scalar, and

D is the number of degrees of freedom referenced.
Since, in this comparison, D is the same for both operators, the difference in
the number of calculations is dependent only on the number of equations and
wavefront.

These data show disjoint operators involve about three times as many calculations
for equation solution as intersecting for this membrane. Though the factor will vary
with the problem and basic articulation, the conclusion that the use of disjoint
operators will involve a calculation penalty is valid in general. Since the inter-
secting operator requires fewer calculations and will be as accurate as the disjoint,
it is more efficient. (The complications in implementing intersecting operators,
however, may not justify the small gains expected.)

The only requirement for each operator is that it be based on a function
which faithfully represents the structural behavior over its domain of application.
Since the behavior is unknown, ab initio, this requirzment is that the function be
an adequate interpolation function, i.e., that thd error associated with its use
vanish as the number of mesh points approaches infinity. This is the requirement
of mathematical completeness.
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If this requirement is met, the exact solution may be developed by choosing
a sufficiently refined mesh, barring manipulation errors. Functions need not
satisfy compatibility, equilibrium, nor Hooke's law when the mesh is finite.
Functions may contain singularities.

It might be inferred from the study by Walton et al(14) that the manner in
which the structure is articulated can destroy the adequacy of an operator.
The reader could infer that if difference equations characteristic of a point
in a triangulated mesh are typical, the Turner triangle in the limit, does
not solve the differential equations of elastic equilibrium. This is false.
The proof given by Synge(15) of the adequacy of the triangular interpolating
function is sufficient to insure convergence to the elastic solution regardless
of the mesh model.

Assuming the solution to the problem of interest is unknown, and restricting
selection to ones with mesh-size dependent error terms, there are still many
possibilities. The most attra.,tive from an efficiency standpoint will -

1. have invariance of strains with translations and rotations of
coordinates. This property will improve efficiency by permitting
reuse of operators for similar geometries, by permitting
macroscopic equilibrium checks on the solution,( 10 )and by (16)
improving accuracy for a given number of generalized coordinates

2. insure monotonic convergence with mesh refinement. Use of operators
with this property will admit solution extrapolation with a minimum
number of solutions. It will guarantee that refined mesh models
will yield improved answers.

3. be easy to differentiate and integrate. This will minimize the
need for numerical differentiation and integration, thus
eliminating calculations and a potential source of error.

4. depend only on elementary operations. This will avoid
relatively costly series evaluations.

As in interpolation, polynomials provide the most popular basls for assumed
functions. Harmonic functions are used when response must be periodic.
Particular forms of these functions can easily be chosen to meet the completeness
requirement and satisfy the desirability requirements listed above.

Thus, intersecting operators are more efficient than disjoint. Subject to
the requirement that operators have error terms that vanish as mesh points
become Infinite, all operators can be included in the operator collection.

4
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Articulation

To suggest guidelines for articulation, consider the 14 articulations of
the membrane cited in Table V. Seven of these use a triangulated mesh so are
given code names containing the letter "T". They are based on a linear
displacement field over the triangle of the form of Eq. (3). The last seven
use a rectangular mesh.

The articulation details for the first seven are represented schematically
by the drawings in Fig. 2. The first three use the Turner stiffness matrix for
a triangular membrane. They differ only in the manner in which tne fictitious
cuts are made The first uses parallel diagonal cuts (Fig. 2a) reccmmended by
Walton et al 14. The second uses alternating diagonals (Fig. 2d). The third
uses crossed diagonals, (Fig. 2f) resulting in an added mesh point at the center
of each square. Number 4 and 5 use the laminated model described in discussing
behavior models. These two articulations differ only in the mesh refinement.
Analysis 4 uses the least order mesh (Fig. 2a), analysis 5, a mesh with four
times as many mesh points (Fig. 2i). The mid-side model (Fig. 2h) is the mesh
for the complementary energy articulation. The boundary (Fig. 2a) models have
been described in comparing formulations.

The last seven articulations are all based on a square module mesh. Numbers
8, 13, and 14 assume a hyperbolic displacement field (Eq. 3) over the square
but evaluate generalized coordinates using different error measures. Number 8
is a potential energy model. Number 13 and 14 are differential equation models:
13 using collocation points at element and free edge boundaries, 14 collocating
at the midpoint of each square and at the free edge boundaries. Number 9 uses
the rectangular panel stiffness matrix liven by Turner . Number 10 (Fig. 2f)

uses the analog operator of Hrennikoff('7). This replaces each square panel
by six rods. The area of the rods are selected so that the truss model will
have the correct stiffness when the membrane is under a uniform stress state.
Number 11 is also an analog model. It replaces each square module by a shear
panel bounded by four rods. Number 12, the finite differenrc articulation,
(Fig. 2c), uses point operators based on second order polynorials. Operators
for free edge boundary points use backward differences.

Results of analyses using these articulations are summarized in Table VI.
This table cites the number of equations and unknowns. The "trend" notes
whether predicted deflections tend to be less (stiff) or greater (soft) than
the exact values. None of the analyses were too stiff or too soft everywhere.

Figure 7 is a bar chart of the mean component error for the 14 analyses.
The error has been plotted on a log scale to compress data. Thes- data show
error predictions span two orders of magnitude. The results fall roughtly into
three groups: good, fair,and poor. Good results have relative mean component
errors ranging from .0059 to .0085; fair, frum .0130 to .0175; and poor. from
.0413 to .1620. The relative error is defined &s the absolute divided by the
largest deflection, .001. In the figure, the ones in each region are keyed
differently.

The good results are associated with the square module and refined triangular
meshes. Fair results arise from the simple triangular meshes and the finite
difference square mesh model. All the poor results arise in collocation analyses.
Thus, these results confirm the desirability of using an integral approacli.
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Table V

Membrane Analysis Articulations

Articulation Code Mesh
No. Name Name Model Operator and Basis

1 Parallel diagonal PT a Triangle - linear displacement field
2 Alternating diagonal AT d Triangle - linear displacement field
3 Crossed diagonal CT f of
4 Laminated square LT g ,,

5 Refined laminated RT i
6 Mid-side MT h
7 Boundaries BT a
8 Hyperbolic HR b Rectangle-hyperbolic displacement

field
9 Moment MR b Rectangle-limited linear stress

field
10 Truss analog TR f Rectangle-Hrennikoff analogy
it Shear panel SR e Rectangle-panel stringer analog
12 Finite difference DR c Point-quadratic polynomials
13 Boundaries BR b Square and line-hyperbolic displacement

field14 Panel-edge ER b Square and line-hyperbolic displacement
field

Table VI

Membrane Analysis Results

Analysis Code No. of No. of Trend in
No. Name Equations Unknowns Results exlO

1 PT 64 64 Stiff 0.138
2 AT 64 64 Stiff 0.130
3 CT 134 134 Stiff 0.071
4 LT 64 64 Stiff 0.136
5 RT 270 270 Stiff 0 050
6 MT 206 206 Soft 0.131
7 BT 206 64 Mixed 1.620
8 HR 64 64 Stiff 0.068
9 MR 64 64 Mixed 0.059

10 TR 64 64 Stiff 0.085
i1 SR 64 64 Mixed 0.081
12 DR 64 64 Mixed 0.175
13 BR 136 64 Mixed 0.413
14 ER 90 64 Mixed 1.050
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Articulation Order

The decision on the order of articulation is solely an accuracy decision.
The choice of idealization defines the mesh points. The choice of behavior
states identifies the least number of oX, to be evaluated. Fewer, an equal
number or more generalized coordinates dhould be used in each region as required
to attain the accuracy needed by the analyst. Thus, this is a decision that
must be made adaptively, i.e., to suit the problem at hand.

Experience with the displacement methoc suggests that the number of points
required for describing the structural geometry is less than that required for
the desired accuracy. Thus extra order arciculation is the mode.

The membrane problem illustrates tlis condition, Table VII lists the
strain in the y direction at point 1, 4s shown in Fig. la. Data are given for
analyses 3 through 5. These data can be compared with the exact estimate of
strain given, based on the 1050 deg'ree of freedom finite difference analysis.

These data show that the Peror with the least order models is excessive.
The accuracy of the extra order models improves as more coordinates are added,
but -till is not withip dngineering requirements, five percent, for the finest (RT)
articulatioit.

Operator Degree

These analyses show that the efficiency of operators for triangles is low
compared with rectangular. The accuracy of the crossed diagonal model (CT) is
comparable to the square models (HR, MR, TR, and SR). The CT analyses, however,
incurs more calculations because it involves more equations and more generation
arithmetic. Conversely, when the number of calculations is comparable for the
triangle (PT, AT, and LT analyses) and square, the accuracy _)f the triangle
models is worse. The data in Ref. 18 illustr.tes that this conclusion extends
to three dimensional analyses. Here prisms are more efficient than tetrahedra.

Table VIII lists data for comparing calculations in least and higher degree
membrane models. The first four columns summarize problem calculation data for
five levels of mesh refinement. For each, each square in the mesh of Fig. 2b
is replaced by the square module shown in Table VIII. Similar data is given
in the lnst four columns for increasingly higher degree modules.

These data exhibit the calculation penalty due to the increased wavefront
associated with the higher degree operators. The higher degree operators involve
no generation calculation penalty, but all required more calculations than use
of a comparable least degree operator. Moreover, this calculation penalty is
incurred eve-. though the higher degree models have fewer degrees of freedom.

With respect to accuracy, there is no reason to believe the higher degree
operators have higher accuracy than corresponding leest order. Comparisons
based on -n equal number of degrees of freedom are discounted because the least
degree operators can be applied with much finer meshes for a given number of
calculations.
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Table VII

Strain Estimates from Various Analyses

Analysis: LT cr RT Exact

No. of Equations: 64 134 270 1050

Strain: 1.8293 1.0741 0.9629 0.7354

Error: 149% 46% 31% 0%

Table VIII

Least and Higher Degree Membrane Calculations

Least Higher
Set Module N W Calca. Module N W Calcs.

1 F1 96 16 560( + .05 6 96 16 560 + .05 6

2 LM 33 26 22400 + .484 260 34 2240~ + .636

3 704 36 5040 ý+ 1.9 6 412 56 5040~ + 3.56

4 TF 2046 8960e + 5.46 588 80 8960~ + 7.76

6 t ±65 1360 56 13,900 + 12.3 L 752 104 13,900e + 16.7
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Comparison of results for the set two modules of Table VIII could illustrate
that no apcuracy advantages lie with higher degree models. Analyses PT and CT
provide similar results for a triangular module. These data show that increasing
the number of cuts does not, per se, result in reduced accuracy.

Higher degree operators are desirable when it means replacing rectangles
with triangles. However, higher degree operators are undesirable if they result
in increased wavefronts.

Operator Basis

These anal:'ses suggest that analysis efficiency is not sensitive to the
operator basis ,sed. Effectiveness of the four square mesh operators are
comparable though they involve two different analogs, a potential energy, and
a non-conforming rectangle. Efficiercy nf using the laminated (averaged) and
parallel diagonal triangul3r based operators are comparable.

Comparing results of the triangular mesh patterns provides no justification
for selecting one over the other. Parallel, and alternating, models yield
results with similar accuracy. Since ttey require the same number of calculations,
they are equally efficient.

These analyses give significantly different distributions of the error
* componcnts, however. The bias introduced by the irregularity of the mesh

results in a lack of the v deflection asymmetry about the y centerline and
u symmetry about the x. Though these dissymmetries can be avoided using the
laminated model, a more efficient approach is to analyze only ý of the membrane
and superimpose symmetric and asymmetric solutions.

Thus extra degree articulations can be expected. Refined but not high
degree operators should be used. The criterion of maximum accuracy per
calculation leads to no preference for one articulation over another.
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Total Error Criterfon

To examine the significance of the choice of the weighting of errors,
consider a general analysis based on Eqs. (4). In this general analysis
expressions for error are written at the panel central points, and at the
midpoints of each side. Since there are more error equations than unknowns,
the variables are assigned to minimize the sum of the errors squared.

The mean component error in these analyses varies as a function of the
ratio of weighting between the panel and midside points. As the relative
weighting of panel equilibrium error varies from zero (non-uniform) to 1.0
(uniform) the error increases by more than twenty-five percent and then
diminishes to nine percent. Not surprisingly, lower error is associated with
non-uniform weighting.

Adding the panel equilibrium equations to the HR model and using a least
squares analysis provides a similar test of Galerkin weighting. In this case,
the mean component error is reduced by about four percent by introducing the
panel equtilibrium conditions. This confirms that Galerkin weighting is not
the most efficient weighting.

Thus the weighting involving the most accuracy per calculation is a non-
uniform positive weighting. Both uniform and Galerkin weighting can be
considered special cases of the non-uniform, but neither offers special
advantages. (Even the bounding capability identified with Galerkin weighting
can be disassociated from it). Thus mixed uniform and Galerkin weighting is
excluded.

Unfortunately there is ho best way known to choose the weighting if the
solution is unknown. The analyst may require that peak stresses be predicted
with less than five percent error, or he may be Interested in accurate deflection
distributions. The analysis, however, only directly controls the error in
satisfying equilibrium, compatibility and/or Hooket law. This inconsistency
between error that is controlled and the analyst's requirements make comparisons
of experimental results and exact solutions speculative. A statement that
operator A is better than B because it gets better results for a particular
problem is largely meaningless.

If the analyst desires to bound his solution, weightings can be selected
adaptively. The weighting which provides the narrowest solution range must be
the most accurate. The analysis problem becomes then an optimization problem,
viz: select the positive weighting which will result in the minimum bounds on
predicted behavior.

If the analyst's objective is to obtain the best possible answers then the
analysis can still be viewed as an optimization problem; viz: select the positive
weighting which results in the minimum error from a statistical viewpoint.

Thus, selection of weighting can transform the analysis problem into an
optimization. Whether this will produce a more efficient analysis approach
tequires study.
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Even if the weighting can be selected, what measure of all the errors to
minimize is still a question for the problem with an overdetermined equation
set. Of the norm measures, the least square measure is most efficient because
it permits selection of the generalized coordinates by solving linear simultaneous
equations. The maximum component and absolute error sum methods require iterative
solution algorithms and can involve non-unique solutions.

The inefficiency of the least square error approach is illustrated by
reconsidering the finite difference analysis, DR. Consider two new variants
of the DR analysis. In the first, the panel equilibrium equations supplement
the finite difference equations. Thus, it is required that equiliarium be
satisfied at the panel central points and the mesh points of the basic grid,
Fig. 2c. Then there are 134 equations and 64 unknown displacements. Solving
these equations using least squares produces a solution with e = 0.0080.

In the second variant,an additional mesh point is taken at the center of
each panel. Writing equilibrium equations at these and the basic mesh points,
Fig. 2c, results in 134 equations in 134 unknowns. Solution of these equations
produces answers with e = 0.0123.

The accuracy of these two solutions is comp- able. In addition, both
problems involve the same number of calculations. The reduced order of the
least square analysis is balanced by the increased calculations in generation
as long as the known symmetry of the final matrix is exploited. Thus, the
choice between minimizing the sum of the squares of the error components so all
will be made zero is not one of efficiency.

The least square approach can be rejected because it introducez a supernumary
error control. In the limit this control is immaterial. For approximate
analysis, however, this control complicates the interpretation of solution
accuracy and may introduce an analysis inconsistency.

To maximize efficiency, a general positive weighting should be selected.
Overdetermined sets of equations should be avoided.

893.



EXISTING ANALYSIS APPROACHES

The most efficient analysis has been one identified by an integral equation
approach, displacement variables, intersecting operators, and low degree low
order articulation. In the paragraphs that follow, some current issues of analysis
will be resolved in this context.

Force or lsplacement method?

Two features distinguish force method analysis from displacement: choice of
behavior states and the sequence in which variables of the structural equations
are evaluated. The force method uses stress or generalized forces as independent
variables and writes microscopic equations of equilibrium across element
boundaries. The displacements and dependent forces are eliminated from the
structural equations first and then redundant forces evaluated.

In the displacement method, approximate equilibrium equations are expressed
in terms of the assumed displacement states by eliminating all force unknowns
from the structural equations. The reduced equations are solved for displacements.

Compared with the ideal, both methods have the disadvantage of using
disjoint operators. Compared with each other, the force method, as previously
discussed, involves large calculation penalties with no concomitant accuracy
advantage.

Finite Differences or Finite Elements?

The finite difference method uses the D. E. approach, intersecting operators
and low degree, low order operators. The finite element approach, however, is
only distinguished by use of disjoint operators. As such, a finite elem(.nt
analysis of a regular structure can become a finite difference analysis. Thus,
without defining other decisions, finite difference analysis and finite element
approaches cannot be compared since finite difference analysis can be a subset
of finite element.

As most commonly practised, the finite element method uses the I. E.
approach, disjoint operators and low degree low order operators. As such its
formulation is superior to the finite difference, but its operator basis less
efficient. The membrane analyses suggest that the efficiency advantages of
the I. E. approach outweigh the disadvantages of disjoint operators. Therefore
the finite element method is better than the finite difference.

Should Reanalysis use the Best Analysis Method?

The simulation environmental conditions for reanalysis are different from
the analysis environment. Thus, the reanalysis methc.d can be expected to take
a different form. In particular, each reancl ; sis is one of a series of analyses
of a group of closely related configurations. Moreover, reanalysis need not be
as accurate as the usual analysis. It need only be as accurate as the accuracy
of current estimates of the design variables. The first condition admits special
initializing calculations to accelerate the multiple configuration analysis,
since these calculations will be amortized over a number of reanalyses. The
second condition suggesti the use of fewer degrees of freedom in reanalysis
than in a baseline analysis of the system.
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The analysis decision vulnerable to this environment is selection of
assumea behavior states. For all structures for which St. Venant's principle
applies, use of stress states offers large savings in reanalysis costs. This
is, in fact, the basis for the efficient fully-stressed and uniform-strain-
energy-density optimization approaches. (19), (20).
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CONCLUSIONS

This review of analysis decisions leads to the following conclusions:

1. Published analysis methods are but a small sampling of the possible
analysis methods that can be defined based on the basic analysis
decisions: formulation, behavior states, operators, articulation,
and error criterion.

2. To maximize analysis accuracy per calculation, the integral equation
formulation, displacement behavior states, intersecting operators,
and low degree-low order articulation should be selected.

3. Neither uniform nor Galerkin error weighting is optimum. The most
efficient approach involves non-uniform (positive) weighting.

4. Overdetermined sets of error equations should be avoided. Their use
may obscure analysis predictions and complicate interpretation of
results.

5. The displacement method is better than the force method, not because
of accuracy differences, but due to calculation penalties in the
force method.

6. The popular version of the finite element method is better than the
finite difference method.
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QUESTIONS AND COMMENTS FOLLOWING MEL(IH'S PAPER

COMMENT: You start out with what looked like an exact and

invariant study of a very difficult problem and end up with the demonstra-

tion of a numerical example. It's neither exact nor invariant and I believe

the conclusions you drew are only valid for that example.

MELOSH: I tried to point out that you can't prove very much

but negative hypotheses by examples. This game can be played in many ways;

however, there's no way to prove that one method is better with respect to

efficiency than another. If we choose to prove which is th.. best method, we

need to do an infinite number of problems to guarantee the right conclusion.

COMMENT: On the chart that you have there showing the Lagrange

and the Hermite comparisons, it looked like the particular function involved

was approaching a slope singularity at the left which is part of the reason why

the Hermite function, using slope variables, was poor. I think that the deci-

sion between lower order and higher order operators generally depends a great

deal upon the smoothness of the function and the presence of singularities or

near singularities. The lower order operators will look very good to you

when you have a stress gradient that gets very large or near singularity.

MELOSH: Well, there's no question about it. If you know how

your structure behaves, you ought to assume functions that will simulate that

behavior. However, there's no way to argue which function is better than

another without some kind of an evaluation of the problems that people solve

on the average or problems that occupy people's minds most of the time.
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That's the way you want to address the selection of the operators.

QUESTION: In your conclusion you said that displacements as the

primary variables are better than stresses. Do you mean that if you assume

a stress hybrid model, it would not be as good as the displacement model?

MELOSH: What I meant by hybrid was the Reissner formulation.

In the case of the Reissner formulation, there's no doubt in my mind that it

costs you more to get good answers than using a potential or compitnentary

energy strategy.

898



DESIGN OF OPTIMUM STRUCTURES

V. B. VENKAYYA

FLIGHT DYNA1IICS LABORATORY, WRIGHT-PATTERSON AFB, OHIO

ABSTRACT

A method for optimal design of structures is presented.

It is based on an energy criteria and a search procedure for design

of structures subjected to static loading. The method can handle very

efficiently, (a) design for multiple loading conditions, (b) stress

constraints, (c) constraincs on displacements, (d) constraints on sizes

of the elements. Examples of bar and beam structures are presented to

illustrate the effectiveness of the method. Some of these examples are

compared with the designs obtained by linear and nonlinear prograr•iing

methods. The method is extri'ely efficient in obtaining minimum weight

* structures and in a small fraction of the computer time required by

linear and nonlinear programming methods.
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DESIGN Oi OPTIMUM STRUCTURES

V. It. VENKAYYA

FLIGHT DYNAMICS LABORATORY, WRIGHT-PATTERSON AFB, OHIO

1. INTRODUCTION

The development of efficient structural analysis and design

methods in the last decade is unprecedented ani gratifying. Much of

this progress was made possible by even more impressive developments

in the field of digital computer technology. The result of this

progress is the proliferation of large sczle structural analysis

computer programs such as "FORMAT", "MAGIC", "NASTRAN" and a host of

others developed by industry. Many of these are finite element based

but there are others which use finite differences, Raleigh-Ritz,

Galerkin methods, etc. These programs can analyze structures with

6-veral thousand legrees of freedom and structural elements. The

advantage of discrete modelling approaches lies in their ability to

handle complex situations arising from discontinuities in structure

as well as the loading conditions. However, this increased capability

Is iavariably accompanied by the need for analysing problems with large

number of variables and degrees of freedom.

With the aid of these large computer programs it is possible to

analyze, as single units with all their discontinuities, an entire

wing or fuselage and be able to predict quite accurately the displace-

ments, stresses, frequencies and other information necessary to
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understand the behavior of the structure. The development of design

methods that can efficLntly utilize the full capability of the

analysis methods is only at an infant stage. This lag is expected

because the design problem is several orders of magnitude more

complex than analysis. The vast number of papers published in recent

years on structural optimization underscore the need for an

optimization algorithm that can handle efficiently design problems

with large number of variables. The efficiency of the algorithm

should be measured by its ability to arrive at an optimum design

with least amount of computational effort.

Numerous review papers on the subject of optimization have been

published in recent years assessing the state of the art. The papers

by Wasiutynski and Brandt [12 and Sheu and Prager [2] made a

comprehensive survey of the state of the art up . 1968. A more

recent paper by Schmit [3) makes an assessment of the value of nonlinear

programming methods to structural optimization.

Structural optimization problems are generally characterized by

a) a large number of design variables, b) a simple objective function

and c) an indirect but well behaved constraint functions. The

constraint functions are indirect in the sense that they cannot be

expressed explicitly as functions of the design variables. Attempts

to optimize structures by nonlinear programming methods have met with

varying degree of success. These methods are extremely useful in

defining the design problem in proper mathematical terms. When the

design variables are few (say less than 50) the non-linear programming
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methods can be used quite effectively for optimization. However, in

the presence of a large number of variables these methods are pain-

fully slow and erratic in obtaining a solution. The examples presented

in sections 7 and 8 substantiate this conclusion. The situation can

be ftproved to some extent by introducing such emperical procedures

as linking the variables and extrapolation techniques. The successful

application of the modified stress ratio methoi for the design of

practical aerospace structures is presented in [4-6]. This approach

has the advantage of simplicity and computational efficiency over

mathematical programming approaches.

The present effort is a continuation of the work started in

1968 with the object of developing design methods that can efficiently

cptimize structures with a large number of variables. An optimization

procedure based on an energy criterion and a search procedure based

on constraint gradient values was presented in [7]. The reference

contains a large number of bar structures designed by this approach.

This design procedure considered such practical design requirements

as:

1. Design for multiple loading conditions

2. Stress-constraints

3. Displacement Constraints

4. Limits on sizes of the elements

In a subsequent paper [8) the author considered design examples with

local instability considerations.

This report contains the detailed study of the method presented
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in [7), extension to structures with beam and plate elements and

modifications to the search algorithm for improved convergence.

Experience with the iterative algorithms derived in this paper

indicate the following beneficial trends when used for the design of

indeterminate bar structures under single loading condition.

a) When the indeterminate structure degenerates to a determinate

structure it goes to the one with the lowest weight.

b) If an indeterminate structure which satisfies the optiw'llity

criteria exists then it will have the same weight as the lowest of

the determinate structures.

2. STRAIN ENERGY CRITERION FOR AN OPTIMUM DESIGN

An optimality condition based on a strain energy criterion is

mathematically established here for the case of a design for a single

loading condition. This criterion with some modifications will be

used later for constructing an efficient path for the optimum design

of more complex cases.

A structure with m structural elements and specified

configuration is subjected to a generalized force vector R . The

problem is to obtain optimum sizes for the elements such that the

weight of the structure is a minimum. To simplify the derivation of

the criteria the following restrictions are imposed:

a) The structure is subjected to a single load vector

b) The load vector does not change during design

c) The structure is made of the same material

d) No restrictions on the sizes of the elements

e) No limits on displacements
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Suppose A and A' are two designs in the neighborhood of

the minimum weight design. Since the density of the material is

assumed to be the same, the weights of the structure corresponding

to the two designs are proporticaal to W and W' which are

defined as

m

Y. A11 (1

Jul

W CA, 1 ,1  (2)

J=1

For beams and bars A and 1 are areas and lengths, respectively.

For plate elements these parameters will be defined in Section 3.

-If the geometrical configuration is fixed, the parameter 1 is

same in both designs.

The strain energies of the ith element corresponding to the

two designs are given by

U 1/2 I (3)

U; = 1/2 Si v' (4)

* and ji are the internal force and displacement vectors of the

ith element in the first design. Similarly 9'1 and v' are the

corresponding vectors of the second design.



The average strain energy density of the ith element in the two

designs is defined as

qO(U) = U V(5)

P(U) = U1 fV (6)

V, and V1, are the volumes of the ith element in the two designs.

P( and are strain energy densities of the element in two

cases. The difference in the total strain energies of the two designs

may be written as

m M

A i I (uu)- L A AP (7)

vhere A P is the difference in the potential of the external forces

in the two cases. Since both designs are assumed to be in the neighbor-

hood of the optimum, in the limiting case equation (7) may be written

as

m m

1m A 1 1t R(u) - E A 11P(u)] lm AP a 0 (8)

i=1 W=1

,A is the difference vector in the sizes of the elements in the

two cases.

Let r and r' be the actual generalized displacement vectors

corresponding to the first and second designs, respectively. Since the

905



geometric configuration of the structure is the same in both cases the

displacement vector r is kinematically admissible for the second design

and vice-versa. If the second design is forced to have the displace-

ment configuration of the first design, then from the principle of minimum

potential energy the following inequality can be written,

AIA q(U) A;I U (9)

The use of AM(u) on the left side of the inequality is valid for the

following reasons. In the case of bar structures the strain energy density

depends on the displacement configuration only and not on the sizes of the

elements. In the case of beam elements the strain energy density is again

independent of the areas of the elements provided the radius of gyration

of each element in the first design is the same as in the second design.

One should not confuse this assumption with the condition of having the

same radius of gyration for all elements. It simply means an ith

element has the same radius of gyration both in the first and in the

second design. Since the two designs are szsrned to be in the neighbor-

hood of each other this assumption is not unreasonable.

Invoking the limiting condition stated in equation (8) the inequality

(9) may be written as

The same inequality may be written also as

(Ai A"i•jP:(u) 0 0 (11)
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It should be remembered that i(u) is the average strain energy

density and A is the area of the ith element in the first design.

If all the elements in the first design have same average strain

enerky dniy i.e. A(u) P m(tOi
then inequality (11) may be written asSIn InM M

A- iit > A i 11 (12)

From equations (l) and (2) and inequality (12) it is evident that

I

W W (13)

This means, the design that has the same average strain energy

density in all its elements is a lower weight design than the one in

which this condition is not satisfied. Now the statement of the

optimality criteria is as follows:

"The optimum structure is the one in which tha average strain

energy density is the same in all its elements."

If the change in potential of the applied forces is considered

as a measure of the stiffness of the structure then it can be shown

that the structure that satisfies Lhe above strain energy criteria

will also be the stiffest structure for that loading condition.

In the case of determinate structures the above optimality

criteria is both a necessary and a sufficient condition for global

minimum provided the stress constraints on the elements arc fixed. In

the case of indeterminate structures it is possible to have more than
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one design that satisfies the optimality criteria. This indicates

the existence of multiple minima. The validity of these statements

can be examined with the aid of a two variable design space (Fig. 1).

Suppose point A in the design space represents a design that

satisfies the optimality criteria. In case of bar structures then

every design on line OA and its extension satisfies the optimalicy

criteria. In case of beam structures with the radius of gyration of

each element fixed, all designs on line OA would satisfy the optimality

criteria. Some of the designs on line OA are feasible and others are

not in view of the stress constraints. The point on line OA that

separates feasible and non-feasible designs is the desired optimum.

If OA is defined as the optimality criteria line (all the designs

on line OA satisfy the optimality criteria) two cases can arise.

1) If the line OA is unique (i.e. no other lines satisfy the

optimality criteria) then the lowest feasible design that satisfies

the optimality criteria is the global minimum.

2) If more than one optimality criteria line OB exists then

corresponding to each line there %.l be a design which will be a

relative optimum.

In case of determinate structures it is shown that the optimality

criteria line is unique [9) and the optimum obtained is a global

optimum. In general this is not true for indeterminate structures.

This can be shown with the aid of a four bar truss (Fig. 2).

This three dimensional truss is statically indeterminate to the
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first degree. By removing one member at a time one can obtain four

kinematically stable determinate structures. If removing a member

is interpreted as assigning a zero area, in the limiting sense, then

the four determinate structures are a subset of the original indeter-

minate structure. In addition a fifth case, in which all the areas

greater than zero can also exist. In each of the four determinate

cases it is possible to obtain a design that satisfies the optimality

criteria. In the fifth case two possibilities exist:

a) No design with all areas greater than zero satisfies the

"optimality criteria i.e., the indeterminate structurc degenerates tc

one of the determinate cases when the optimality criteria is enforced.

b) An indeterminate structure satisfyi.ng the optimality

criteria can be found.

Which one of these two cases is valid for a given indeterminate

structure appears to depend on the nature of the loading on the structure.

The above discussion shows at least four or more optimality

criteria lines exist for the four bar truss in question. Corresponding

to each of these lines there will be one relative minimum. Of all

these minimums the design that has the lowest strain energy will be the

global minimum [9]. However, this statement is not of much help in

locating the global minimum since it involves investigation of all the

possible minimums which is not practical in a large structure.

Additional discussion of this problem can be found in Section 7.
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3. RECURSION RELATION BASED ON STRAIN ENERGY CRITERIA

In an indeterminate system, statement of the optimality criteria

does not complete the task of obtaining an optimum design. An

effective iterative algorithm is necessary for achieving the optimality

condition. This section contains the derivation of such an algorithm.

It is intended for design under more general conditions than the

restricted case considered in the previous section and as such

contains certain terms and definitions which are not essential for

that case. Justification of this extension to a more general case

will be discussed later with the aid of a two variable design space.

The optimality criteria modified for the general case is as

follows:

"The optimum design is the one in which the strain energy of

each element bears a constant ratio to its energy capacity."

The energy capacity is defined as total strain energy stored if

the entire element is stressed to its limiting normal stress. The

limiting normal stress can be different from the actual stress limit

as long as it does not exceed it. The step size in iteration, based

on energy criteria, can be altered by varying the magnitudq of the

�--limiting normal stress. It should be pointed out that the definition

of energy capacity is independent of the actual state of stress in the

element and depends only on the volume and on the limniting normal

stress of the elements. It is determined from the same basis for

bars, beams, plates and every other structural element. When the
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design conditions are the same, the modified optimality criteria

differs from the one stated in the last section only by a scaling

factor.

The expression for the energy capacity of the ith element is

given by 1 (U) (.V) V(14)

CU) W~)
where and 6. are the limiting normal stress and strain

respect:ively, and Vi is the volume of the element. Assuming the

material to be linearly elastic the relation between limiting normal

stress and strewn is written as

(U) E E ()(15)
Ii

Substitution of equation (15) in (14) gives the express:ton for energy

capacity in the form

1 (U) 2*; ( 6, ) Ac 0( 1(6
2

The quantity li is defined as
i•Vi Ei (7___jE (17)

AC i
The scalar A is the base parameter for all the elements and M.

is the relative value of the ith design variable. In the case of bar

elemente li is simply the length of the element and A .is the product

of the area and the modulus of elasticity of the element. In the case
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of elements in bending, torsion, etc. appropriate variable definitions

are given in Section 6. The actual design variable vector may be

written as A oC. The vector OC alone will be referred to as the

relative design variable vector or normalized vector. The scalar

Ais then the normalizing factor.

The relative response of the structure depends on the vector

Cc and the absolute response can be manipulated by simply changing

the scalar A . In a two variable design space (see Fig. 1) the

normalized vector O represents a line (such as OA) and the value of

Afixes the point on the line. Movement on the line OA may be

considered as scaling. The implications of scaling in case of multi-

variable elements is discussed in section 6.

The strain energy in the element is written in terms of its

internal forces and displacements as
I t I

-- s V (18)
2A-i

where.! is the generalized force vectcr of the ith element and

...i is tlhe corresponding relative displacement vector. It is related

to the actual displacement vector y by

Av (19)

According to the rodified optimality criteria the strain energy of

each elemert should bear a constant ratio to its energy capacity.
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Equations (16), (18) :ind the optimality criteria yield
tA2 2 1

A2  c (20)

where C is the constant of propor;ionality and Uj. and are

given by

1 t
,- k (21)

1 (U)2
(T,( )22 CC (22)

Multiplying both sides of equation (20) by CC and taking the square

root yields

1

uit 
2

C0i A - cc - (23)

where CCi A is the ith design variable which is expressed as a

function of 0: . The form of Equation (23) suggests the following

recursion relation for determining the design variable in each cycle.

V~j r i

4. c
(•iA)• - c(24

Where the subscripts V, and 21+1 refer to the cycles of iteration.

When the design conditions include m-!'-.ple loading case equation

(24) will be modified to tead

i

( iA) - Xj [urnx] (25)
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Where U'imax is a measurt of the maximum strain energy of the ith

element due to any of the loading conditions.

The usefulness of the recursion relation (25) and its limitations

can be explained with the aid of a two variable design space, Fig. 3,

where X, and X2 are the two design variables. Every point in this

space represents a design. The line c-c is the boundary between the

feasible and nonfeasible regions and is referred to as the constraint

surface. Tbe straight lines w-w represent the constant weight planes.

All designs in the region R and its boundary are feasible designs.

Suppose the point OP represents the optimum design. Tha function of

a design algorithm is to chart a path from an arbitrary point A1 to

the optimum point OP.

The point A, (Fig. 3) represents a preliminary or a starting

design. The line joining point A iand the origin 0 (line OA1 ) will be

called the design line. In the case of bar structures every point on

line OA Iwill have the same normalized design variable iector. In such

a case movement on line CA1 simply involves changing the value of the

scalar A . The movement on line CA1 will be referred to as scaling

the design. Similarly every line passing through the origin is a design

line ý ,A the movement on each of these lines can be accomplished in a

single stcp (one analysis). On a given design line, such as OAf, the

point B1, which is at the Intersection of OA1 and the constraint

surface, is the lowest weight feasible design. The procedure for

locating this point is as follows:

The structure i& first analyzed with the relative design variable
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a

vector corresponding to the line OA1 . From the relative response the

active constraints can be identified. From this information the

magnitude of the scalar A corresponding to the point B1 can be

determined.

In case of elements in bending and torsion a similar procedure

can be used but not necessarily in a single step. This problem and

the necessary modifications are discussed in detail in section 6.

By Iteration using equation (25) in conjunction with the scaling

procedure discussed in this section an efficient path to the optimum

can be constructed. In the case of a single loading condition with

stress constraints only, the design that satisfies the optimality

criteria is the lowest weight design. Iteration using equation (25)

produces such a design. When there are constraints on the sizes of

the elements and multiple loading conditions the design satisfying the

optimality criteria may not be the lowest weight design. In sich

cases equation (25) will be used to simply generate design lines and

in conjunction with the scaling procedure a directed search for the

lowest weight design can be made. This procedure was successfully

used for the design of a number of bar structures in [7). Some

additional examples of bar structures are presented in Section 7.

It shculd be recognized at the outset that the objective is to

obtain the lowest weight design and not just satisfying the optimality

criteria and as such one should not force the design to satisfy the

criteria, whe, the design conditions include constraints on sizes and

multiple loading conditions. The optimum design and a design that
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satisfies the optimality criteria are synonymous only in the cas' ,f a

single loading condition and no constraints on member sizes. .lJvre

to recognize this fact has led to various misinterpretations and

premature rejection of the optimality criteria approaches to minimum

weight design of structures. The optimum design usually lies on the

path to the design satisfying the optimality criteria. As a result

the optimum design is reached before the optimality criteria is

satisfied. When there are constraints on displacements in addition to

stress constraints the recursion relation based on energy criteria

is used in the initial stages and the design is further improved with

the aid of an iterative algorithm based constraint gradient information.

The next two sections contain the derivation of such an algorithm.

4. GRADIENT CALCULATIONS USING BANDED MATRIX SOLUTION SCHEME

An approximate procedure for calculating the displacement

gradients was presented in [7]. The procedure is equivalent to taking

the first two terms of the Taylor's Series expansion of the original

displacement vector. The gradients are expressed in terms of the

inverse of the stiffness matrix. Stiffness matrices of structures are

in general sparsely populated and in such cases finding an inverse is

uneconomical in terms of computer time as well as storage requirements.

To take advantage of the sparsity, a procedure for calculating

gradients using a banded matrix solution scheme is presented in this

section.

If r is the actual displacement vector due to the applied
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forces and dri is the change in r due to a change in the variable

X then the Taylor's series for dr is given by

dr _ rdx + rdx2  +-(26)

Premultiplying both sides of equation (26) by the stiffness matrix

and neglecting the terms beyond the first yields

K dr 1  K rdx (27)

The relation between the applied force vector R and the displacement

vector r is given by

R • K r(28)

Differentiation of equation (28) with respect to the variable Xi

yields

SR = (- K ) r+K -- r (29)

bxI bXi - --bxi

If the applied forces are assumed to be constant during the design, the

left side of eouation (29) will be zero and thus it can be written as

• r K -( K)• r(30)

- Zx --

Substitution of equation (30) in (27) yields

K dr1  = -6K r (31)

Where AK. is given by

AK1  - K dx (32)

Equations (28) and (31) are similar in form when-dKiris considered
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as a load vector.

Analysis of the structure requires solution of equation (28).

This solution is obtained by decomposition using standard Gauss

eleminition. This scheme consists of decomposition of the stiffness

matrix by using the relation

K LDLt (33)

where L is the unit lower triangular matrix and D is a diagonal

matrix. Substitution of equation (33) into equation (28) gives

L Y = R (34)

where the vector Y is given by

t
Y D I. r (35)

Now the solution of load deflection equations (28) is accomplished in

three stages:

1. Decomposition of the stiffness matrix. This involves

determination of the elements of the matrices L and D and it can be

accomplished by equation (33).

2. Forward substitution: In this step the elements of the

vector Y are determined by equation (34).

3. Back substitution: From Equation (35) the elements of the

displacement vector r are determined.

When a structure is subjected to more than one load vector, only

the last two steps have to be repeated. The decomposed matrices L

and D would be the same in all cases. If the quantity A i
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is treated as an additional load vector in equation (31), only the

last two steps have to be repeated for determining the vector dri.

Using this procedure the change in the displacement vectors

corresponding to the change in each design variable can be determined.

The vectors dri will be referred to as displacement gradients. The

purpose of dri calculations will be explained in the next section.

The advantage of the solution scheme is that the decomposed

matrix L retains some of the sparseness characteristics of the

original stiffness matrix and many arithmetic operations involving

zero elements can be eliminated [5, 10).

The procedure presented here for gradient calculations differs

from the one presented in [7) in the following respects:

a) In [7) the expression for di contains an additional term

which is equivalent to the second term in Taylor's series expansion.

The effect of this term was evaluated by an iterative procedure and was

found to be insignificant.

b) The change in the stiffness matrix AK was assumed to be due

to unit change in the size of the element in [7]. This was found to

have the disadvantage of exaggerating the effect of elements with small

sizes. In the present work the change in size of the element is

assumed to be proportional to its actual size in that cycle in

calculating the vector d. This has produced improvement in some

designs and a discussion of this can be found in section 7.

c) The need for finding the inverse of the stiffness matrix is

eliminated.
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STRESS GRADIENTS:

The changes in the displacement vector due to changes in the sizes

of the elements can be determined by equation (31). This displacement

vector dri can be ,sed to determine the changes in the stresses of

the elements due to a change in size of one element at a time. The

necessary stress-gradient relations are as follows [7):

dv1• = ,a,dr (36)
-Ii z J-j

where cL .Is the ith element displacement vector due to change in

the size of the element J and a is a kinematic matrix which relates

the structure and element generalized displacements.

From the force displacement relations of the element

ds = k.dv (37)

o-ij .;4- i j

where the vector dsii is the change in ith element generalized forces.

Correiponding changes in element stresses are given by

ddO =C Q s (38)

The changes in structure displacements (31) and stresses (38) due to

a change in size of each element provide information regarding the

influence of each element on the total response of the structure.

Using this Information a recursion relation is derived for the

resizing of the elements in the next section.
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5. RECURSION RELATION BASED ON CONSTRAINT MK!,.)IENTS

In section 3 a recursion relation based on stra:.n energy

criterion was derived for the generation of design lines. This

relation in conjunction with the scaling procedure presented is

sufficient to design minimum weight structures with constraints on

stresses and sizes. When there are constraints on displacements in

addition, the design obtained by equation (25) can be further improved

by an iterative algorithm based on constraint gradients which is

derived in this section.

The algorithm is of the following form

+ A D (39)

Where V and v+i refer to the cycles of iteration and C is the

normalized design variable vector. A is the step size which

determines the rate of approach to the optimum. If A equal to 1.0

is considered as the normal step size, then the value greater than

1.0 increases the rate of approach to the optimum while a value less

than 1.0 slows the iteration. However, a larger step size increases

the possibility of missing the optimum between two steps. The vector

D represents the departure of the new design from the present

design. The elements of D are determined by the influence of each

variable on the active constraints. The procedure for determining

the elements of D is presented first in case of active displacement

constraints.
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When the design is at the boundary of tha feasible and non-

feasible regions, the generalized displacements that are at their

limIting values are called active displacement constraints (see

Fig. 4). The influence of each element on all the generalized

displacements can be determined by equation (31). If "j" is the

direction corresponding to the active displacement constraint then

only the jth elements of dr! are of interest and need to be stored.

Depending on their influence on the active constraints, the elements

of the structure are grouped into those having negative and positive

influence. If an increase in the size of the element increases the

displacement in the constraint direction, then it is called negative

influence and vice versa. The sizes of the elements that have

negative effect, or zero effect, on active constraints car be reduced.

This is only a qualitative description of the procedure. it does not

specify the magnitude of the change nor does it assure that the

constraints at other locations are not activated by this change. The

following procedure is adopted to overcome this problem.

The displacements are allowed to increase arbitrarily by a

certain percentage (say 10% to 20%). This can be accomplished by

simple scaling on the design line. This means movement from point

C1  to B1 on line OA in Fig. 4. From point B1 the design is moved

to point E1 by changing the normalized design variable vector by

equation (39) with the elements of D given by

dr.
D = C --. (40)
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I

where C is the constant of proportionality, "J" is the direction

of the active displacement constraint and dr is the influence of

the ith variablP on the active constraint displacement r This

influence can be determined by equation (31). In determining d the

change in size of the element is assumed to be proportional to its

actual size. T'he change in r due to D is Srj(i) and is given

by

(i)

(1.) dr
8r = -J D (41)

Subsuitution of equation (40) in (41) gives

(1)
M1 C (dr. )
"r , - .J(42)

The constant of proportionality C may be determined from the

condition that the displacement rj should be brought to its limiting

value by changing the sizes of the elements according to equation (40).

This condition is equivalent to

I IT(1) ••)1
br C (43)

In the summation only the elements that have positive influence on
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the constraints ate included. From equation (43), C is given by

C d 2(44)

PS P 1

Then Di Is given by

(1)
Dr 

(45)Di M (P))2!

( dr.

When the value of Di is negative it is assumed to be zero. If more

than •ne displacement exce-ded the limit, the- the necessary change in

each element size is detrimined separately for each constraint using

equation (45). The largest D, was used in [71 for the actual change

in the size of the ith element. However: sligltly lighter weight

designs, and in a fewer number of iycles, are obtained, in some cases,

by using sum of all the changes for each element.

The procedure consists of the following three steps:

1. The first step involves movement from point C1  to B1

(Fig. 4). This movement can be accomplished by scaling.

2. Then movement from B1 to E is achieed by equations

(39) and (4O),

3. Then E1 is joined to che origin and the movement to i2 is

a omplished by scaling. By repeating this procedure an efficient
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path to the optimum is charted. This combined procedure is used to

solve the examples in sections 7 and 8.

6. MULTIVARIABLE STRUCTURAL ET 'MENTS

So far the design procedure is explained in the context of

structural elements possessing one variable such as area of the

element. In such cases, the scaling procedure and the recursion

relations can be used as th.;, are explained in the foregoing sections.

However, most structural elements have more than one variable. For

E;ýample, in case of a beam element, the response of the structure is

dependenr both on the area and the moment of inertia of the element.

These two variables are semi-dependent in the sense that for the same

area there can be elements with different values of moment of inertia.

At the same time they cannot be treated as completely independent

variables, because it may not be possible to construct a practical

elemen: with two arbitrary values of area and moment of inertia. Also

the effect of these two variables is not of the same order of magnitude

on the response.

It is convenient to introduce the idea of primary and secondary

variables. The variable that has the largest effect on the response

of the structure will be considered as a primary variable. All of-hers

"vill be treated as secondary variables. The design variable vector

will contain only the primary variables aed t*"e secondary variables

will be handled by implicit or Lmpirical relations. Fig 5 lists

six ccmmonly used structural eleei .s and the associated variables.
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The necessary modifications and the implications of the scaling

procedure in case of multivariable elements is discussed next.

1. BAR ELEMENTS:

The area of the element is the only variable in this case.

If the members are braced against local instabilities, the scaling

procedure and the recursion relations can be used as they are without

any modifications. When this is not the case the scaling procedure

can be handled by implicit relations between buckling stresses and

the areas of the elements [8]. Recursion relations, however, need no

modifications.

2. BEAM ELEMENTS IN PLANE FRAMES:

The cross-sectional areas and the moments of inertia are the two

variables for a beam element in a plane frame, Box-beams, I-beams

and sandwich beams are some of the examples of plane frame elements.

Since the response is primarily governed by moment of inertia, it will

be considered as the primary variable and area as the secondary

variable. In this case both the scaling procedure and the recursion

relations need modifications.

When the ratio of area to moment of inertia (A/I) is the same for

all the elements (the depth of the elements is the same for all elements),

then scaling can be do,,e in a single step. When this is not the case,

large changes in the scaling parameter A produce deviations during

movement on the intended straight line. This may also be viewed as a

problem of a non-stationary constraint surface. This means thrt when

the design is moved from an arbitrary point on the design line to the
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constraint surface by simply changing the scalar parameter A

the constraint surface has moved from its assumed position and needs

correction to locate its new position. This correction may need one

or more analysis steps. However, in a practical structure the response

is insensitive to the changes in A/I ratio and the scaling can be

accomplished in a single step.

When the primary variable is moment of inertia, the quantity AiA

would give the moment of inertia times the modulous of elasticity of

the element, EiIi. In that case the expression for energy capacity,

equation (16) becomes

I (U) 2 A.,
)(o ( 2)1 ](46)

Then Ti. in equation (22) becomes

I (U) - A
2= - (C )'Ya i ( ) 1 (47)

Except for this change the form and use of the recursion relation

based on the strain energy criteria remains the same as before.

The recursion relation based on constraint gradients (equation 40)

retains Its original form except the expression for the elements of

becomes

D T (..LQ x. dr2)d (48)
m(P) 2

~j' (dr 4  )ix)L7

.- I P 3p
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where and Q are the radius of gyration of the ith elementj max

and the element that has the maximum moment of inertia. It is

assumed that the design variable vector was normalized by dividing

the vector by its largest element.

3. THREE DIMENSIONAL FRAME ELEMENT:

In the case of the three-dimensional frame element modifications

to the scaling procedure and the recursion relations are similar to

those indicated for the plane frame element. The primary variable in

this case would be the moment of inertia about the strong axis of

the element. In addition to the above modifications a failure

criteria has to be defined to determine the stress constraints. The

axial force, bending, shear and torsion in a three-dimensional element

produce more than one stress component at every point of the section.

To determine the effective stress constraint in the section, the

distortion energy criterion (or Von Mises criterion) will be used.

According to this criterion the effective stress 'EiF. of an element

in a general state of stress is given by

EFF. 1 [2.)2 + 0 + (a-~- )]c-(49)EFF.2

where 15 , Z and 63 are the principal stresses at the point

of ititerest in the element and iA is the stress constraint in simple

tension or compression.
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4. SANDWICH PLATE ELEMENTS IN BENDING:

The depth and the thickness of the skin are two variables

in this case. These two variables can be replaced by area and moment

of inertia of the element. The modifications to the scaling and

recursion relations are similar to that of the plane frame element.

5. ME4BRANE ELFEMNTS:

In this case only the thickness of the element is variable and it

can be replaced by an equivalent area in which case the recursion

relations can be used as they are given in section 3 and 5.

6. PLATE BENDING ELEMENT:

Area and the moment of inertia are the two variables and the

modifications indicated for plane frame element are applicable to this

case.

7. PROBLEMS OF MULTIPLE MINIMA AND COMPARISON OF DESIGNS

Based on the behavioral constraints the design problems are

categorized into two types, a) Problems with stress constraints only,

b) Problems with stress and displacement constraints. Constraints on

sizes can be present in both cases. In the first case the design is

completed by iteration using equation (25). There is no need for the

calculation of constraint gradients and equation (39) need not be used.

When there are constraints on both stresses and displacements, however,

iteration is carried out, by equation (25) as long as it improves the

design. Then this design becomes a starting design for iteration using

equation (39). This two stage; approach has a better chance of
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converging to an absolute minimum when there are stress and displace-

ment constraints.

The rationale in using iterative algorithms based on strain

energy cric:eria, equation (25) can be explained with the ald of

Fig. 6. A distinction between an optimum design and a design that

satisfies the optimality criteria is essentia7l for understanding the

mechanics of the algorithm. When a structure is subjected to a single

loading condition and there are only constraints on stresses, the

optimum design and the design that satisfies the optimality criteria

are synonymous. In Fig. 6 the point Cn represents the design that

satisfies the optimality criteria. Assuming that the iterative algorithm

started from the point C1I ,it reached the point Cn in "n" steps

(represented by the radial lines). In an ideal case, when to inter-

ference from disturbing constraints are encountered, the optimum

design and the design that satisfies the optimality criteria are both

represented by the same point Cn . In a more practical case this

path is interrupted at point I by some additional constraints and

the constraint surface is shifted to the dotted line. In this case

iteration using equation (25) moves the designs on the dotted line

after the point I. If there are no other interruptions the design

ends at C' n ' -e the optimality criteria is satisfied. Herae I

represents the optimum design while C n represents the design

satisfying the optimality criteria. Since the object is to find the

optimum and not satisfaction of the optimality criteria the design
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should be terminated at I and should not be forced to C I Then

validity of the optImality criteria approach to optimum design is due

to the fact that, in general, the optimum point lies on the path to

the optimality criteria. As stated before failure to recognize this

distinction has uften led to a misunderstanding of optimality criteria

approaches to the design of optimum structures.

Another important point to be recognized is that iteration using

equation (25) proceeds in finite steps and it is possible to miss the

point I between two steps Cr and Cr+1 (Fig. 6). There are two ways

to avoid this situation.

ay" A line between the lowest and the next design can be drawn

hy averaging the two relative design vectors. Then the scaling

procedure gives a point nearer the optimum. Repetition of this

procedure will lead to as close to the optimum as one wishes.

b) A better approach is to adjust the step size in the iteration.

The step size can be altered by adjusting the magnitude of the

limiting normal stress in the expression for the energy capacity of the

elements. This adjustment can be done effectively on the elements

whose actual stresses are below the stress limits. This does not

imply a change in the actual stress limits. As long as the limiting

normal stress in the energy capacity is lower than the stress limit,

it is acceptable. The latter procedure is used in Example 2,

(Three Bar Truss) for reducing the step size.

When there are both stress and displacement constraints the
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optimum design, in general, lies beyond the range of the recursion

relation based on the energy criteria. In such cases equation (39)

extends the range of investigation to include the optimum. This

combined approach was used for the design of a large number of bar

and beam structures. The results of five of these bar structures

are presented in this Section. The first example was used to study

the problerm of multiple minima in structural design. The designs of

examples two and four were compared with those obtained by the

mathematical programming approach.

All problems reported in this paper were designed using computer

programs written in FORTRAN IV and ran on IBM 7094-II-7044-DCS.

Example 1: Four Bar Pyramid Truss

Fig. 2 gives the geometry and dimensions of the truss. Eight

differentr design conditions were considered for this truss. The

details of the loading and other design information are givonf in

Table I for all these cases.

Case 1: Four Bar Truss - Single Loading - Stress Constraints

Since there are only stress constraints, the design can be

completed using the recursion relation based on the strain energy

criteria (equation (25)). The results of this iteration are given

in Table 1 under Case 1. The optimum design weighing 65.76 lbs was

obtained in two steps. In this case the optimuai design is also the

design satisfying the optimality criteria. it Goes not degenerate to

any determinate structure.
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TABLE I

EXAMPLE 1: Four Bar Truss

Design Information

Material: Aluminum

Stress Limits: 25,000 psi

Modulus of Elasticity: E = 10 7 psi

Specific Weight: 0.1 lbs/cubic inch

Lower Limits: None

Upper Limits: None

Displacement Limits

Direction

Case Node x y z

5 and 6 5 None None ±0.3"

7 and 8 5 t0.3" ±0.5" ±0.4"

Number of Loading Zonditions: Single loading (in pounds)

Loading Information:

Load Condition Node Direction of Load

x y z
Cases 5 10,000 20,000 -60,000
1, 2, 5 and 6

Cases 5 40,000 100,000 -30,000 o

3, 4, 7 and 8
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Example 1

Case 1. Four Bar Truss - Single Loading - SLress Constraitits

Areas of Members in Sq. In. Weight
Cycle No. in

1 2 3 4 Pounds

1 1.755 1.755 1.755 1.755 122.35

2 0.430 1.755 1.258 0.-'.# 65.76

Case 2. Four Bar Truss - Single Loading - Stress Constraints
Multiple Minima

Member Areas of Members in Sq. In. Final Weight

Removed 1 2 3 4--- in Pounds

1 0 2.105 0.770 1.097 65.76

2 2.588 0 3.710 2.207 158.70

3 0.677 2.655 0 1.961 88.11

4 0.859 1.406 1.746 0 65.76

None 0.430 1.755 1.258 0.548 65.76
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Case 2: Four Bar Truss - Single Loading - Stress Constraints -

Multiple Minima

The loading condition on the structure is the same as in Case 1.

The four bar truss is indeterminate to one degree. Since there are

no limits on the sizes of the element, all the stable determinate

stractures are subsets of the original truss in the limiting sense. In

this case four such determinate structures are possible, each derived

by removfing one member at a time. The fifth case is the original

structure with all members present. The optimum designs for all the

five cases are given in Table 1, Case 2. Interestingly, the designs

one, four and five have the same weight even though they are distinctly

different designs. The design weight of 65.76 appearsito be the

absolute minimum for this structure and there are three designs having

the absolute minimum weight. The other two may be considered as

relative minimums. It should be noted that the design of the

indeterminate structure using Equation 25 converged to the absolute

minimum without degenerating to any of the determinate structures.

This is a simple cxamle of a structural design problem with multiple

minimums.

Case 3: Four Bar Truss - Single Loading - Stress Constraints

The same four bar truss is designed, but for a different loading

condi'ion. The details of this loading condition are given in

Table 1. By iteration, using equation (25), the design converged to

115.27 lbs in seven steps. The details are given in Table 1, Case 3.

941



Example 1

Case 3. Four Bar Truss - Single Loading - Stress Constraints

Cycle No. Relative Areas of Members Scalar Weight
Multiplier Pounds

1 2 3 4

1 1.0000 1.0000 1,0000 1.0000 2.4711 172.28
2 0.9668 0.8395 1.0000 0.1418 2.6518 129.79
3 1.0000 0.8646 0.8864 0.0497 2.6353 120.59
4 1.0000 0.8632 0.8316 0.0137 2.6r,67 116.77
5 1.0000 0.8628 0.8157 0.0033 2.6620 115.62
6 1.0000 0.8627 0.8118 0.0008 2.6633 115.33

*7 1.0000 0.8626 0.8109 0.0004 2.6634 115.27

* There was minimum size limit of 0.001 sq. in. If this is removed, the
structure degenerates to a determinate structure with member four removed.

Case 4. Four Bar Truss - Single Loading - Stress Constraints -

Multiple Minima

Member Areas of Members in sq. in. Final
Removed Weight

1 2 3 4 ibs.

1 0 0.132 5.186 3.400 170.58

2 0.162 C 5.370 3.607 179.28
3 4.564 3.843 0 2.426 177.95
4 2.664 2.298 2.159 0 115.25
NONE 2.663 2.298 2.160 0.001 115.27
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If there was no limit on the size of the fourth member it would have

degenerated to the determinate structure with member four removed.

Case 4: Four Bar Truss - Single Loading - Stress Constraints -

Multiple Minima

The truss and the loading condition are the same as '.i Case 3.

To study the multiple minima problem, four determinate structures and

the original indeterminate structure are considered. Table 1, Case 4

gives the details of the minimum weight designs obtained in each of

these cases. In this case the fourth determinate structure (member

four removed) has the lowest design weight of 115.25 lbs. It is

interesting t,; ncte that iteration on the original indeterminate

structure using equation (25) degenerated to the determinate structure

that has the lowest weight.

Case 5: Four Bar Truss - Single Loading - Stress and Displacement

Constraints

This is the same as Case 1 except the vertical displacement of

node five is limited to 0.3 inches. Tae details of the design in each

cycle are given in Table 1, Case 5. Since there are both stress and

displacement constraints, the combiied approach was used for design.

From the initial design to the next design the elements were resized

by equation (25). Further iteration was carried out by equation (39).

In the first five cycles the reduction in weight was quite significant.

Then In the subsequent cycles the design creeps along slowly until it

reaches 137 lbs., a reduction of about 7 lbs in more than 20 cycles.
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Example 1

Case 5. Four Bar Truss - Single Loading - Stress & Displacement Constraints

Relative Areas of MembersI

Cycle Scalar Weight in
No. 1234 Multiplier Pounds

1 1.0000 1.0000 1.000 1.0000 2.4166 168.48
*2 0.2449 1.0000 0.7168 0.3123 4.0364 151L25

3 0.3137 1.0000 0.6596 0.3464 3.8016 145.41
4 0.3456 1.0000 0.6253 0.3628 3.7423 144.00
5 0.3600 1.0000 0.6029 0.3732 3.7271 143.55
6 0.3651 1.0000 0.5867 0.3809 3.7272 143.35
7 0.3652 1.0000 0.5740 0.3873 3.7340 143.23
8 0.3622 1.0000 0.5631 0.3931 3.7442 143.12
9 0.3576 1.000 0.5531 0.3985 3.7563 14-.03
10 0.3518 1.0000 j 0.5437 0.4038 3.7696 142.93
11 0.3454 1.0000 0.5344 0.4090 3.7838 142.82
12 0.3384 1.0000 0.5252 0.4143 3.7986 142.71
13 0.3312 1.0000 0.5158 0.4196 3.8141 142.59
14 0.3236 1.0000 0.5064 0.4250 3.8300 342.46
15 0.3158 1.0000 0.4967 0.4304 3.8464 142.33
16 0.3078 1.0000 0.4869 .0.4360 3.8633 142.18
17 0.2996 1.0000 0.4768 0.4417 3.8807 142.03
18 0.2911 1.0000 0.4664 0.4476 3.8985 141.86
19 Q.2824 1.0000 0.4558 0.4536 3.9167 141.67
20 0.2735 1.0000 0.4449 0.4597 3.9354 141.48
21 0.2643 1.0000 0.4337 0.4660 3.9546 141.26
22 0.2549 1.0000 0.4222 0.4724 3.9743 141.02
23 0.2452 1.0000 0.410" 0.4790 3.9943 140.76
24 0.2352 1.0000 0.3981 0.4858 4.0148 140.47
25 0.2249 1.0000 0.3855 0.4928 4.0357 140.15
26 0.2142 1.0000 0.3724 0.4999 4.0568 139.80
27 0.2032 1.0000 0.3589 0.5073 4.0782 139.39
28 0.1918 1.000 0.3449 0.5149 4.0956 138.93
29 0.1799 1.0000 0.3303 0.5228 4.1209 138.40
30 0.1676 1.0000 0.3151 0.5309 4.1417 137.78
31 0.1548 1.0000 0.2991 0.5392 4.1615 137.06
32 0.1414 1.0000 0.2824 0.5479 4.1796 136.18
33 0.1274 1.0000 0.2647 0.5569 4.1947 135.11
34 0.1127 1.0000 0.2460 0.5662 4.2047 133.75
35 0.00 1.0000 0.2258 0.5759 4.2059 131.98
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Example 1 - Case 5 (cont'd)

Relative Areas of Members

Cycle No.

Scalar Weight in
1 2 3 4 Multiplier Pounds

36 0.0807 1.0000 0.2039 0.5860 4.1911 129.55
37 0.0668 1.0000 0.1797 0.5964 4.1527 126.43
** 0.01 3.8960 0.7700 2.443 1.0000 118.91

* This is the last cycle using equation(25). The rezaining designs are
obtained by eqadtions(39) and (45).

** This design was not obtained by continuation of the above iteration, but
nevertheless, a feasible design. It was one of the dete.minate cases with
0.Cl sq. inches added to the first member and scaled to satisfy the constraints.

Case 6. Four Bar Truss - Single Loading - Stress and Displacement Limits
Multiple Minima

Areas of Members In Sq. In.
_ Final

Member Weight
Removed 1 2 3 4 lbs.

1 0 3.894 0.770 2.443 118.13
2 14.138 0 16.981 10.100 764.27
3 0.755 4.781 0 3.532 150.98
4 2.596 2.813 3.493 0 146.04
NONE 0.01 3.896 0.770 2.443 118.91
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Then in the next five cycles the weight reduces to 126.43 lbs. At

this point stress in one of the members and the node displacement

become active at the same time. Stress gradient calculations

(equation (38)) are not incorporated inte the present program and the

design could not proceed further. If this capability is inc~uded, it

is anticipated that the design would degenerate to the determinate

structure with member one removed. The last line of the table gives

such a design.

Case 6: Four Bar truss - Single Loading - Stress and Displacement

Limits - Multiple Minima

The truss, loading condition and the displacement limits are the

same as in Case 5. To study the multiple minima problem, four

determinate structures and the original indeterminate structure are

considered. Table 1, Case 6 gives the details of the optimum designs

obtained in each case. In this case the first determinate structure

Ofimber one removed) has the lowest weight design of 118.13 lbs. The

indeterminate structure with 126.4 lbs has a tendency to degenerate

to this design.

Case 7: Four Bar Truss - Single Loading - Stress and Displacement

Limits,

This is the same as Case 3 except the displacements of node 5 are

limited in all three directions. The details of the displacement limits

are given in Table 1. The same table ondAr Case 7 gives the Jetails of

the designs In each cycle.
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Case 7 - Four Bar Truss - Single Loading - Stress & Displacement
Constraints

Cycle Relative Areas of Members Scalar Weight
No Multiplier in Pounds

1 2 3 4

1 1.0000 1.0000 1.000 1.000 2.6658 185.85
2 0.9668 0.8395 1.000 0.1417 3.1171 152.56
3 1.0000 0.8646 0.8864 0.0497 3.1011 141.90
4 1.0000 0.8632 0.8316 0.0137 3.1277 137.47
5 1.0000 0.8628 0.8157 0.0033 3.1343 136.13
6 1.0000 0.8627 0.8118 0.0008 3.1360 135.80
7 1.0000 0.8626 0.8109 0.0003 3.1362 135.73
8 3.147 2.691 2.163 0.001 1.000 128.59

Case 8. Four Bar Truss - Single Loading - Stress and
Displacement Constraints - Multiple Minima

Member Area of Members i Sq. In. Final
Removed 1 2 3 4 Weight

1 0 0.132 9.581 7.781 345.219
2 2.486 0 14.291 9.035 499.143
3 10.382 3.844 0 8.597 403.906
4 3.147 2.691 2.162 0 128.561
NONE 3.147 2.691 2.163 0.001 128.594
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Case 8; Four Bar Truss - Single LoadSin Stress and Disp':acement

Limits - Multiple Minima.

The truss, loAdlng ccnzItlon and the displacement limits are the

same as in Case 7. The optimum designs of the four determinate

structures and the original indeterminate structure are given in

Table 1, Case 8. The fourth determinate structure (member four

removed) has the lowest weight design of 128.56 lbs. The original

indeterminate structure, on iteration using equations (25) and (39),

degenerates to the determinate structure with lowest weight design.

Example 2: Three Bar Truss - Three Loadings - Stress Constraints

The design of this truss (Fig. 5) was first reported by

Schmit in 1960 [11). The conclusions drawn in this reference had a

significant impact on the research on structural optimization in

subsequent years. The second case, in which the method of alternate

steps gave an 8% lighter design than the one obtained by the stress

ratio design, was selected to test the algorithm based on the strain

energy criteria (equation (25)).

The truss is subjected to three independent loading conditions and

the details of the loading are given iii Table 2. The stress limits are

5000 psi on members 1 and 3 and 20,000 psi on member 2. When this

information was submitted to the algorithm based on the strain energy

criteria (equation (25)), a design weighing 16.7 lbs was obtained in

two steps. This design was about 4.5% heavier than the design

reported in Il1]. An examination of the stresses in the members
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TABLE 2

EXAMPLE 2: Three Bar Truss - Comparison

Design Information

Material: Aluminum

Stress Limits: See the Table

Modulus of Elasticity: E - 1.0 x 1O7

Specific Weight: 0.1 lbs/cu. inch

Lower Limits: None

Up er Limits: None

Displacement Limits; None

Number of Loading Conditions: Three

Loadi:.g Information:

Direction of Load
Load Condition Node

x y

4 28,284 -28,284

4 40,000

"7 4 -30,000

130,000

4 -14,142 -14,142

20,000
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Three Bar Truss (Cont'd)

Stress Limits.

Member 1 2 3

Stress Limits 5,000 20,000 5,000

Design Obtained by Iteration Using Equation_(25)

Cycle Areas of Members in Sq. In. Weight in

0No 1 2 3 Pounds

1 5.6568 5.6568 5.6568 21.6567

2 6.7917 2.6523 3.3959 17.0597

3 7.1164 1.7903 2.9252 15.9912

Comparison

Source Areas of Members Final Weight No. of
in Pounds Steps

1 2 3

Design Given 7.0990 1.8490 2.8970 15,986 13
in Ref. *1
By Eq. (2b) 7.116 1.790 2.925 15.991 3
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revealed that the stress In member 2 is less than 7000 psi, while

the other two members are close to their limits. For some obscure

reason a disproportionately large stress limit (20,000 psi) was

specified tor member 2 in this problem. The large stress limit on

member 2 has the effect of increasing the step size in the optimality

criteria approach. The increase step size has the beneficial effect

of arriving at the near optimum very rapidly (only two steps). This

benefit is accompanied by the possibility of missing the optimum

between two steps (See Fig. 6).

To reduce the step size, the same problem was submitted with the

limiting normal stress values of 5000 psi for members 1 and 3 and 8000

psi for member 2. Iteration using equation (25) gave a design weighing

16.0 lbs in three steps. It should be noted that the limiting normal

stress of 8000 psi was used to evaluate the energy capacity out the

stress limit was left at 20,000 psi. When the energy capacity of

member 2 was evaluated by using 7955 psi as the limiting normal stress,

a design weight of 15.991 lbs was obtained again in three steps. The

details of the design in each step is given in Table 2. The method of

alternate steps gave the optimum design in 13 steps [11). This

comparisin wae made just to show the relevance or the energy criteria

approach in the design of optimum structures.

'Example 3: Cantilever Truss

The cantilever truss shown in Fig. 8 was designed for rour

different cases. The details of the loading and other information

are given in Table 3. This truss exhibits interesting behavior which

952

t~'4'4 ~ - A



is pointed out while discussing each case.

Case 1: Cantilever Truss - Single Loading - Stress Constraints

This problem has stress limits and a limit on the sizes of the

members. The optimum design weighing 1593.2 lbs was obtained in 17

steps using equation (25). Four members were at the minimum size

limit of 0.1 square inches. All members except the ones governed by

the minimum size have satisfied the optimality criteria. The large

proportion of members at the minimunm size appears to contribute to the

slow convergence. The details of the optimum design are given in

Table 3, Case 1.

Case 2: Cantilever Truss - Single Loading - Stress and Displacement
I

Limits

The geometry and loading were the same as in Case 1. In addition

to stress constraints, a displacement limit of ±2.0" was imposed on

all nodes in the vertical direction. An optimum design weighing

5084.9 lbs was obtained in 25 steps. twenty of these steps were

based on the energy criteria (equation (25)) and the remaining steps

used equation (39). The details of the design are given in Table 3.

Case 3: Cantilever truss - Single loading - Stress limits

The truss is the same as in the last two cases but the loading at

the bottom nodes was increased to 150,000 lbs., and on the top nodes

50,000 lbs was placed in the opposite direction. The net downward

load is still 200,000 ILs as in Case 1. An optimum design weighing

1664.6 lbs was obtained in 11 steps. In this case three members were
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TABLE 3

EXAMPLE 3: Cantilever Truss - Single Loading

Design Information

Material: Aluminum

Stress Limits: 25,000 psi

Modulus of Elasticity: E - 1.0 x 107 psi

Specific Weight: 0.1 lbs/cu. inch

Lower Limits: 0.1 Sq. Inches on all Members

Upper Limits: None

Displacement Limits: ±2.0" in y-direction Cases 2 & 4
None in Cases 1 & 3

Number of Loading Conditions- Single Loading

Loading %nformation:

Direction of Le-ad
Load Condition Node x y z

Cases 1 & 2 2 -100,000

's In

x ;4-100,000

Cases 3 & 4 l 1 +50,000

2s 3 2 -150,000

S3 +50,000

fod 10S 4 1 -15,00
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Example 3

Case 1. Cantilever Truss - Single Loading - Stress Constraints

Cycle 1 2 3 5 6 7

Weight 3435.0 1969.2 1821.8 1721.5 1680.2 1664.1 1650.9

Cycle 8 9 10 11 12 13 14

Weight 1639.0 1628.9 1620.3 1613.3 1607.6 1603.1 1598.9

Cycle 15 16 17
Computer Time (7094) 2 sec.

Weight 1595.9 1593.6 1593.2 2

Final Design

Member 1 2 3 4 5

Area 7.938 0.100 8.062 3.938 0.100

Member 6 7 8 9 10

Area 0.100 5.745 5.569 1 5.569 0.100

Case 2. Cantilever Truss -Single Loading - Stress & Displacement Limits

Cycle 1 2 3 4 5 6 7

Weight 8266.1 6281.7 6065.2 5984.5 5963.1 5920.1 5881.6

Cycle 8 9 10 11 12 13 14

Weight 5848.1 5819.7 5795.9 5776.4 5760.7 5748.2 5738.3

ICycle 15 16 17 18 19 20 *21

Weight 5730.7 5724.7 5720.2 5716.7 5713.7 5712.2 5502.9

Cycle 22 23 24 25 Computer Time 3 seconds.

Weight 5343.8 5221.5 5127.0 5084.9

* First Cycle in Search
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Example 3 - Case 2 (Cont'd)

Final Design

Member 1 2 3 4 5

Area 30.416 0.128 23.408 14.904 0.101

Member 6 7 8 9 10

Area 0.101 8.696 21.084 21.077 0.186

4• 956
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Example 3

Case 3. Cantilevcr Truss - Single Loading - Stress Constraints

Cycle 1 2 3 4 5 6 7

Weight 3512.8 2079.6 1920.6 1828.8 1758.2 1699.8 1677.3

Cycle 8 9 10 11 Computer Time 2 Seconds

Weight 1675.3 1666.8 1664.7 1664.6

Final Design

Member 1 2 3 4 5

Area 5.948 0.100 10.053 3.948 0.100

Member 6 7 8 9 10

Area 2.052 8.559 2.755 5.583 0.100

Case 4. Cantilever Truss - Single Loading - Stress and

Displacement Constraints

Cycle 1 2 3 4 5 *6 7

Weight 8417.7 6565.2 6242.8 6031.6 5935.4 5686.3 5505.2

Cycle 8 9 10 11 12 13 Time

Weight 5354.9 5220.0 5099.0 4991.4 5099.0 4895.6 2 Sec

* First Cycle in Search

Final Design

Member 1 2 3 4 5

Area 25.190 0.363 25.419 14.327 0.417

Member 6 7 8 9 10

Area 3.144 12.083 14.612 20.261 0.513
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at the minimum size and this may have partly contributed to the re-

duction in the number of steps. Except for these three members all

others satisfied the optimality criteria. The design weight of 1664.6

lbs appears to be reasonable compared with 1.593.2 lbe in Case 1. The

details of the design are given in Table 3, Case 3.

Case 4: Centilever Truss - Single Loading - Stress and Displacement

Limits.

The truss and the loading condition are the same as in Case 3.

In addition to the stress limits, a displacement limit of ±2.0" is on

all nodes. This limit is the same as in Case 2. An optimum design

weighing 4895.6 lbs aas obtained in 13 steps. Six of these were

based on the energy criteria). This design is about 200 lbs lighter

than the design obtained in Case 2 and it was obtained in about half

the number of cycles. None of the members were governed by the minimum

size in this case. The design weight in Case 3 is heavier than Case 1

while this case is lighter than Case 2. The design obtained in Case 4

is not acceptable for Case 2.

These four cases conclude the discussion of Example 3.

Example 4: Transmission Tower

The design of this tower was first rep. (Ad by Fox and Schmit

i, r",2J. Later the same tower was designed by Gellatly [13), ZMarcal

and Gellatly [14), Venkayya, Khot and Reddy [7), Dwyer, Emerton and

Ojalvo [15). In the first three references mathematical programming

methods were used and in [15] a combined approach based on modified

fully stressed design and a search prncedure were used. This problem
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was selected in order to make an exact comparison of the designs

obtained by the mathematical programming method and the combined

approach presented in this paper. The deEign conditions, as reported

in [12), were reproduced in Table 4. Two cases were considered. In

the first case the design conditionb were strictly those given in [12).

In the second case the design conditions are still the same except the

lower and upper limits on the diameter of the tube were relaxed.

Case 1: Transmisslon Tower - Stress and Displacement Constraints

Under the design conditions specified in [12), the combined

approach gave an optimum design weighing 553.4 lbs in 6 cycles. Two

of these cycles used the recursion relation based on the energy

criteria and the remaining four cycles used equation (39). The total

computational time fc- this design on the IBM-7094-11-7044-DCS was

20 seconds.

Fox and Schmit reported [12) as an optimum, a design weighing

570.4 lbs. This design was obtained in 360 seconds on the Univac 1107,

using a variable metric minimizer (Fletcher-Powell method). Table 4

contains the details of the designs obtained by the combined approach

and the one reported in [12).

It Is significant to note that the combined approach arrived at

a lighter de'ign In a small fraction of the computer time required by

the mathematical programming approach. The difference between the two

designs is about 17 lbs. However, in the case of the design reported

in [12), the displacements exceed the specified limits by 1.5% while
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Table 4

Example 4 - Transmission Tower

Design Information

Material: Aluminum

Stress Limits: 40,000 psi in Tension Buckling Stress in Comp

ModulV3 of Elasticity: 10 7 psi

Specific Weight: 0.1 lbs/cubic inch

Lower Limits: Area 0.01 sq. in. for additional limits see
after loading table

Upper Limits: On Diameters and Thickness see after load

Displacement Limits: 0.35" on all nodes and all directions

Number of Loading Conditions: 6 (All loads are in lbs.)

Load Condition Node Direction of Load

x y z

1 1,000 10,000 -5,000

2 0 10,000 -5,000
1

3 500 0 0

6 500 0 0

1 0 10,000 -5,000

2 -1,000 10,000 -5,000

2
4 - 500 0 0

5 - 500 0 0

1 1,000 -10,000 -5.000

2 0 -10,000 -5,000
3

S500 0 0

6 500 0 0
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Table 4 (Cont'd)

Loading Direction of Load
Condition Node x y z

4 1 0 -10,000 -5,000

2 -1,000 -10,000 -5,000

4 - 500 0 0

5 - 500 0 0

5 1 0 20,000 -5,000

2 0 -20,000 -5,000

6 1 0 -20,000 -5,000

2 0 20,000 -5,000

Additional Limits on Sizes of Elements

Members are all made of circular tubes, subject to the
following limitations:

1. Mean Diameter D 0.5"e. D 4.0"

2. Thickness t 0O t ( 1.0

3. D/t 10.05D /t- 100.0

Case 1: Transmission Tower - Six Loadings - Stress
and Displacement Limits - Comparison

Design conditions are as given in [12)

Cycle 1 2 *3 4 5 6 Time

Weight 734.4 670.8 613.1 584.1 566.0 553.4 20 Sec.

Case 2: Same as in Case 1, except upper and lower limits
on diameter of the tubes are relaxed

Cycle 1 2 3 4 *5 6 Time

Weight 734.4 589.2 578.3 577.3 555.6 545.5 13 sec.

* First cycle in Search, Equation (39)
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the author's design adheres strictly to the specified limits.

Ref.[123takes advantage of the symmetry of the tower and designs only

for two loading conditions. The author's design was obtained by

considering six independent loading conditions. These differences,

particularly computer times, become even more significant as the

number of variables increase.

Case 2: Transmission Tower - Stress and Displacement Limits

The geometry of the structure and the loading conditions were the

same as in Case 1. The lower and upper limits on the diameter of the

tubes were relaxed in this case. A minimum size limit of 0.01 so. in.

was placed on all members. Under these conditions the combined

approach gave an optimum design weighing 545.5 lbs. in six cycles.

Four of these cycles used the recursion relation based on the energy

criteria and two were in the search (equation (39)). The computer

time was 15 sec.ads in this case. The details of this design are

given in Table 4, Case 2.

Example 5: 72 Bar Truss - Stress and Displacement Limits

The design of this truss was first reported by Venkayya, Khot and

Reddy in [7]. The design conditions are given in Table 5. An optimum

design weighing 381.2 lbs was obtained in 15 cycles. The details of

the design are given in Table 5. The weight of the design presented

in Reference[7]was 425.8 lbs. The improvement in the design was due

to two reasons. In Referencet7Jiteration using optimality criteria

was terminated too soon. The second reason was due to the modifications
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Table 5

Example 5 - 72 Bar Truss

Design Information

Material: Aluminum

Stress - Limits: 25,000 psi

Modulus of Elasticity: E . 107 psi

Specific Weightý 0.1 lb/cu in.

Lower Limit: 0.1 square inch

Upper Limits: None

Displacement Limits: 0.25 on all nodes and all directions

NUMBER OF LOADING CONDITIONS 5

Load Condition Node Direction of Load

x 15y z
2 17 5,000 5,000 -5,000

2 18 -5,000 5,000 -5,000

3 19 -5,000 -5,000 -5,000

4 20 5,000 -5,000 ;-5,000

17 0 0 -5,000

is 0 0 -5,000

5 S19 0 0 -5,000

20 0 0 -5,000
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f Example 5 - 72 Bar Truss

Cycle 1 2 3 4 5 6 *7

Weight 656.8 478.6 455.0 446.9 445.5 445.4 401.7

Cycle 8 9 10 11 Computer Time 240 Sec.

Weight 391.5 383.6 381.6 381.2

* First cycle in search, equation (39).

Details of Final Design:i

El. Nos 1,2,3,4 5,6,7,8 15,J6,17,18 19,20,21,22 29,30,31,32

Area Sq. In. 1.818 0.523 1.246 0.524 0.611

El. Nos 33,34,35,36 43,44,45,46 47,4 ,49,50 51,52,53,54 55,56

Area Sq. In. 0.532 0.161 0.557 0.377 0.506

El. No3 57,61,65,69 5S,62,66,70 59,63,67,71 60,64,68,72 Remaining

Area Sq. In. 0.523 0.524 0...32 0.557 0.100
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discussed in section 5.and 6. It is interesting to note that a cycle

using equation (25) took 2 seconds of computer time while a cylce in

search took at-out 37 seconds, The number of cycles in search can be

reduced to half by increasing the step size A to 2.0 in Eq. (39).

This 72 bar truss was also designed by Dwyer, Emerton and Ojplvo

[15].weighed 384.9 lbs. Except for this small difference (3.7 lbs),

their design is similar to the one presented in table 5.

8. DESIGN OF PLANE FRAMES

The energy criterion method estimates the participation of

each element more realistically than an approach like the stress

ratio design. For example, the four elements shown in Figure 11 are

Lubjected to different states of bending, but they all have the same

maximum bending moment and cross-sectional dimensions. The stress

ratio design treats them alike while the energy criteria method

distinguishes them by evaluating the total energy and not just the

maximum stress point. However, the stress-ratio method can be improved

by averaging the stresses along the element.

Three structures were selected to illustrate the method. In all

cases box sections were used for members. The design started with

elements having the same relative moment of inertia (1.0). Analysis

in the first cycle started with the assumption of constant depth for

all the elements. The actual depth for each element was determined

prior to the determination of weight in this cycle. The compatibility
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between the primary (moment of inertia in this case) ind the secondary

variable was established by the implicit relations and iteration.

This iteration involved more than one analysis in some cycles. The

design obtained at the end of each cycle is a feasible design and

does not violate any design conditions.

Example 6: Rig Frame - Four Loadings - Stress Constraints

Figure 12 shows the schematic diagram and the Idealization of

the ring frame. It is a circular ring with a mean diameter of 360

inches. It has two floors along the chord lines, at 40 and 30

degrees from the horizontal line passing through the center. The

frame was divided into 58 elements. The 36 elements along the

circumference were at 10 degree intervals. The top floor is divided

into 10 equal elements and the bottom floor into 12 equal elements,

Thn curved elements along the circumference were approximated by

straight line elements. This idealization gave a structure with 168

degrees of freedom and 58 structural elements. The frame is subjected

to four independent loading conditions. The loading and other design

information are given in Table 6.

The optimum design weighing 830 lbs was obtained in two cycles

using Equation(25)with the modifications indicated in Section 6. The

computer time was 59 seconds for the complete design. The structure

was analyzed four times to complete the design. The node numbering

scheme, shown in Figure 12, gave a stiffness matrix with a very

favorable distribution on non-zero elements for the solution scheme
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Table 6

Example 6: Ring Frame

Design Information

Material: Aluminum

Stress Limits: 25,000 psi

Modulus of Elasticity: 107 psi

Specific Weight: 0.1 lbs/cubic inch

Lower Limits: See after loading information

Upper Limits:

Displacement Limits: None

Number of Loading Conditions: Four

Loading Information

Loading Condition 1:
Outer ring is subjected to uniform internal pressure of 1440 lbs/ft

Loading Condition 2:
The space bounded by the two floors and the ring is subjected to

internal pressure of 1440 lbs/ft

Loading Condition 3:
Floors are subjected to 100 lbs/ft acting vertically downwards.

Loading Condition 4:
Loading Conditions 2 and 3 are combined

Limits on Box Beam

D Mesn Depth, B = Mean Width

4"1 D < 12"

* 0.023 < tp/D . 0.034

t r/ - 0.009

* Allowed to exceed when the depth is at limit
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Example 6

Ring Frame - Four Loadings - Stress Limits

Final Design Weight 829.5 lbs

Desigh Weight in First Cycle 1380.4 lbs

Total Number of Cycles 2

Computer Time (IBM 7094) 59 Sec

Final Design

Members Area I Depth Members Area Depth

Inches Inches

1,58 3.598 50.258 8.395 20,49 4.373 74.197 9.496

2,57 3.021 31.176 7.213 21,48 4.640 85.006 9.912

3,56 2.918 28.689 7.024 22,47 4.979 99.898 10.428

4,55 4.594 83.096 9.841 23,34 8.701 251.132 12.00

5,54 6.246 162.678 12.00 24,33 4.860 94.534 10.249

6,15 6.400 168.198 12.00 25,32 3.847 55.109 8.644

7.14 3.475 43.431 8.015 26,31 5.835 142.921 11.661

8,13 4.504 79.390 9.701 27,30 7.447 205.930 12.00

9,12 5.858 144.154 11.692 28,29 8.329 237.727 12.00

10,11 6.656 177.424 12.00 35,46 7.022 190.622 12.00

16,53 3.598 46.937 8.215 36,45 5.269 113.594 10.858

17,52 3.780 52.915 8.533 37,44 3.695 50.146 8.389

18,51 3.979 59.623 8.862 38,43 2.925 28.842 7.036

19,50 4.179 66.810 9.187 39,42 3.403 41.342 7.890

40,41 3.928 57.874 8.779
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used in the computer program (see the authors discusfion of Reference

The small computer time was partly due to the favorable distribution

of non-zero elements.

The design weight in the first cycle was 1380 lbs and it was

reduced to 830 ibs, a weight saving of 40%. It involved resizing only

once. This rapid reduction, in the initial stages, is characteristic

of most optimality criteria approaches. This property makes them very

attractive for the optimization of practical structures with a large

number of variables.

Example 7: Symmetrical Rectangular Frame

The details of this frame are given in Figure 13. The design of

this frame was reported in References [6]and 171,using Rosen's

gradient projection method. Reference[171contains an excellent

discussion and interpretation of the gradient projection method for

structural optimization problems.

This frame was optimized by the combined approach presented in

this paper with the following modifications: a) Each horizontal

member was divided into four equal Darts and the distributed forces

were replaced by equivalent concentrated forces. b) The design

conditions were not exactly those given by the AISC Code. c) The

analysis scheme in References(16]and[17Jdid not consider the defor-

mations in the axial direction. These modifications were necessitated

by the limitations of the computer program. Because of these differences

it is difficult to compare the designs exactly.
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Table 7

Example 7: 12 Element Plane Frame

Design Information

Material: Steel

Stress Limits: 29,000 psi

Modulus of Elasticity: 29.0 x 106 psi

Specific Weight: 0.283 lbs/cu inch

Lowier Limits: Depth 8", Additional Info, see after loading

Upper Limits: Depth 21" (Case i) 36" (Case 2)

Displacement Limits: Case 1: None; Case 2: 0.3" x-direction

Number of Loading Conditions: Three

Loading Information: Same for Cases 1 and 2

Direction of Load lbs

Load Condition Node x y Moment

1,5 -5,000

1 2,3,4 -10,000

6,10

7,8,9 -20,000

Vertical Load Same as above in addition

1 3,570

6 8,920

Vertical Load Same as above in addition

5 -3670

10 -8920
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Example 7

Limits on Box Beam

D - Mean Depth; B = Aean Width

B 10"

Case 1. 8'<D<21"

Case 2. 8".,<D 30"

0.023 • tF/DO.034 *

tw/ID - 0.009

* Allowed to exceed when the depth is at limit

Case 1: 12 Element Plane Frame - Three Loadings - Stress Limits

Final Desigh Weight 6268 lbs

Desigh Weight in First Cycle 8083 lbs

Total Number of Cycles (Eq. (25)) 6

Computer Time (IBM 7094) 8 Sec.

Final Design

Members 1,4 2,3 5,6 7,10 8,9 11,12

Area Sq. In. 11.781 10.106 12.038 20.440 16.804 14.076

I (in 4 ) 524.0 365.9 550.9 1626.4 1169.4 790.0

Depth in 15.27 13.63 15.51 20.57 19.57 17.38

tF/D 0.0248 0.0248 0.0248 0.0312 0.0253 0.0248

Sec. Mod 66.96 52.40 69.30 153.36 116.58 88.69
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Example 7

Case 2: 12 Element Plane Frame - Three Loadings - Stress & Disp. Limits

Final Design Weight 10,638 lbs

Design Weight in First Cycle 13,328 lbs

Design Weight Entering Search 11,386 lbs

Total Number of Cycles 12

Number of Cycles Using Eq. (25) 5

Computer Time (IBM 7094) 29 Seconds

Final Design:

Members 1,4 2,3 5,6 7,10 8,9 11,12

Area (Sq. In.) 19.362 10.640 17.441 41.280 22.883 30.016

I (in 4 ) 1611.3 413.1 1282.5 6878.0 2347.0 3786.0

Depth (in) 21.63 14.15 20.20 30.00 24.39 26.42

tF/D 0.0253 0.0249 0.0250 0.0418 0.0250 0.0330

Sec. Mod 145.35 56.99 123.91 440.10 187.76 277.46
I91
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Case 1: Symmetrical Frame - Three Loadings - Stress Constraints:

An optimum design weighing 6268 lbs was obtained in 4 cycles. The

details of the design are given in Table 7, Case 1. The computer

time for this design was 8 seconds.

Case 2: Symmetrical Frame - Three Loadings - Stress and Displacement

.Constraints:

An optimum design weighing 10,638 lbs was obtained in 12 cycles.

Five of these cycle; were based on the energy criteria and the remain-

der of the cycles used Equation 39 with the modifications given in

Section 6. The computer time was 29 seconds. The details of the de-

sign are given in Table 7, Case 2.

Example 8: Unsymmetrical Frame - Three Loadings - Stress Constraints:

The schematic diagram of this frame and its dimensions are given

in Figure 14. The design of this frame was also reported in Reference

(16]. Because of the differences in the design conditions (as mentioned

In the previous example) an accurate comparison with the design

presented in Reference[16Jis not possible. The distributed loads were

replaced by equivalent concentrated forces. The frame u.s designed

as an eighteen variable problem. An optimum design weighing 26,873

lbs was obtained in 6 cycles. The computer time was 17 seconds. The

details of the design are given in Table 8. Referencefl61reports 6

minutes as the computer time required by the gradient projection

method.
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Table 8

Example 8: 18 Element Plane Frame

Design Information

Material: Steel

Stress Limits: 29,000 psi

Modulus of Elasticity: 29.0 x 106

Specific Weight: 0.283 lbs/cubic inch

Lower Limits: Depth 8" Additional Info see after loading

Upper Limits: Depth 36"

Displacement Limits: None

Number of Loading Conditions: Three

Loading Information:

Direction of Load

Load Condition Nodes x y Moment

1,15 -10,000

2,4,6

1 9,11,13 -20,000

16

5,7,10 -40,000

12,14

Vertical Loads Same as above. In addition

2 1 3,570

2 8,920

Vertical Loads Same &s above. In addition

3 15 -3,570

16 -8,920
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Example 8

18 Element Plane Frame - Three Loadings - Stress Limits

Limits on Box Beams

D - Mean Depth; B = Mean Width

B l o0"

8"4 D 36"

0.023< tF/D< 0.034*

t /D = 0.009

*Allowed to exceed when depth is at limit

Final Design Weight 26,873 lbs

Design Weight in First Cycle 45,289 lbs

Total Number of Cycles (Eq. 25) 6

Computer Time (IBM 7094) 17 Seconds

Final Design

Member 1 2 3 4 5 6

Area 9.373 11.862 31.086 22.553 23.969 26.219

I 298.5 515.5 4461.8 2267.8 2592.2 ,152.8

Depth 12.66 15.00 29.30 24.15 25.17 26.73

Member 7 8 9 10 11 12

Area 7.482 27.265 29.001 13.509 20.578 46.913

I 177.0 3432.7 3923.4 716.1 1816.3 10166.5

Depth 10.79 27.44 28.60 16.83 22.30 36.00

Member 13 14 15 16 17 18

Area 37.688 39.988 38.355 7.451 24.662 23.472

I 6874.8 7793.7 7135.3 175.4 2758.6 2475.8

Depth 33.94 35.26 34.33 10.76 25.65 24.81
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9. SU14MARY AND' CONCLUSIONS

The combined method discussed in this paper was first presented

in Reference(72. A more detailed proof of the energy criteria was

presented in Section 2. A brief discussion of the problem of multiple

minima in structural design was also included in that section. The

derivation and interpretation of the recursion relation based on the

energy cr~teria was given in Section 3. A method for the stress and

displacement gradient calculations was presented in Section 4 in the

context of the symmetrical Gaussian elimination scheme for the

solution of equations. A semi-sparse matrix scheme (Reference[10))

was used for the elimination of many of the arithmetic operations

involving zero elements.

A recursion relation based on constraint gradients was derived

in S - )n 5. This relation is similar to the one derived in Reference(7J

exccp, zhat the change in variable was assumed to be proportional to

its actual value instead of a unit value. This modification has

produced 2 to 3% lower weight designs in some cases. Section 5 also

contains additional discussion and interpretation of the search algorithm.

The necessary modifications to the recursion relations in the

case of multivariable elements were discussed in Section 6. The

problems of multiple minima in structural design were discussed in

Section 7. That section also contains designs of some interesting

bar structures. Some of these designs were compared with the designs

982



obtained by the mathematical programming methods. The design of plane

frames with beam elements was presented in Section 8.

The iterative algorithms derived in this paper indicate the

following beneficial trends when uned for the design of indeterminate

bar structures under a single loading condition.

a) When the indeterminate structure degenerates to a determinate

structure, it goes to the one with the lowest weight.

b) If an indeterminate structure that satisfies the optimality

criteria exists, then •c will have the same weight as the lowest of

the determinate ,..ructures.

*rhe above conclusions were based on the tests of a large number

of bar structures. If these conclusions are valid, the need for

investigating a large number of determinate structures for finding

the absolute minimum can be eliminated.

The combined approach, presented in this paper, charts an

efficient path to the optimum and this makes it attractive for the

optimization of structures with a large number of variables. Dwyer

Emerton and Ojalvo have developed a combined approach based on the

modified stress ratio design and a search algorithm for the optimi-

zation of practical aerospace structures in Reference[151.

The algorithm based on the energy criteria is far more Efficient,

when it is applicable, than the search algorithm (See the discussion

after example 3).

Barnett aad Hermann (18) have derived an optinmality condition for
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minimum weight design of statically determinate trusses subjected to

single loading co.idition and specified nodal displacement. Berke (19)

has suggested the possibility of extending this approach, in an

iterative fashion, for the design of indeterminate structures subjected

to multiple loading conditioni, and displacement constraints. Following

this suggestion, Gellatly [20] has successfully applied this approach

for the design of Cantilever Truss, Transmission Tower and the 72

Bar Truss and obtained the designs similar to the ones presented in

Section 7. Reference [20) also contains examples of plate structures.

Algorithms based on optimality criteria are much more attractive,

from the point of computational efficiency, than the search techniques,

However, the validity of the optimaliry criteria approaches have been

established only for restrictive cases and need to be extended to more

general design conditions.
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QUESTIONS AND DISCUSSION FOLLOWING VENKAYYA'S PAPER

QUESTION: What you've shown us today has been limited to

minimum weight design. I think it was you yourself the other day that

brought up the need for introducing more realistic and complicated cost

functions in our optimization efforts. The math programming approach

has its drawbacks, of course, but an arbitrary cost function can be handled

without any particular difficulty. Would you comment on determining some

optimality criterions for arbitrary cost functions.

VENKAYYA: You don't have to make a new optimality criterion

for cost functions. It's simple to include it in the present analysis. You

can use the same iterative procedure given by Eq. 25 in the paper. I

didn't do it because nobody has defined a proper cost function. If you

give me one, I don't see any problems putting in my analysis.

COMMENT: I'd like to make a few comments with respect to the

mathematical programming approach. I'd like to point out here that the

comparisons in the paper with mathematical programming approaches are

made with rather primitive methods; in one instance, a method that was

employed in 1965, reported in 1966. 1 think that before one draws any

eweeping conclusions about the potential of the mathematical programming

method, whetber you talk cost or weight or other objective functions, it is

important to consider the more mod'ern algorithms which were alluded to

in your paper, such as the feasible direction methods and penalty function

methods using approximation schemes. I would like to bring out a point
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that Dr. Venkayya and I have discussed previously and that is there are

two ways to play the approximations game. He, in this paper, has pre-

sented the use of the optimality criteria, which is in general an approxima-

tion, although in some cases does give the optimum design. So you can use

optimality criteria by way of an approximation to the basic optimization

problem and seek designs which satisfy the optimality criterion. Alterna-

tively you can formulate the problem as a mathematical programming prob-

lem and introduce approx -nations in the analysis. Very little work has

been done in using rather radical and drastic approximations in the analysis

which would speed up the math programming approach tremendously. The

point I wish to make is that to draw a general conclusion with respect to

the efficiency of the mathematical programming method based on a com-

parison with two rather primitive and ancient papers with which I had

something to do is dangerous at this time because I iink mathematical

programming still has a future.

VENKAYYA: Since Professors Fox and Schmit presented the

tower design in 1965, five or six other solutions appeared for the same

problem. The methods used in obtaining these solutions include all the

old and modern methods Professor Schmit alluded to. For example, Dr.

Tocher at Boeing has obtained a solution using the method of feasible

directions which Professor Schmit considers as being modern. Mr. Echleman

at Douglas solved the same problem in 1969. He appeared to have used an

approximate procedure based on optimality criteria. Dr. Gellatly at Bell

Aerosystems used three methods to solve 'he same problem: First he ob-

tained a solution using steepest descent and side step method in 1965. Then

he obtained a solution by unconstrained minimization with a penalty fi.nction.
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Most recently he obtained an extremely efficient solution by optimality

criteria approach. This problem has six loading conditions. By taking

advantage of symmetry one can consider it as having two loading conditions

and treat it as a smaller eight variable problem. However, we treated it

as a problem with twenty-five independent variables. The design reported

by Professors Fox and Schmit weighs 570 pounds and required 360 seconds

on Univac 1107. We obtained a design weighing 553 pounds L., "!- - is on

IBM 7094. Dr. Tocher reported a design weighing 552 poundb ar x it was

obtained in 30 seconds of CPU time on CDC 6600.

I would like to make a second comment. Professor Schmit mentioned

approximate analysis and approximate design. If I had a choice I would keep

the exact analysis because using an approximate analysis one can get a com-

pletely irrelevant optimum. Here, in every cycle, we are examining the

behavior of the structure exactly. But if a structure is optimized by

using approximate analysis, there is no evidence to show that that structure

actually conforms to the constraints imposed. Mathematical programming

should be used when ti~ere is no other alternative; otherwise, I think the

optimality criteria is far superior in obtaining solutions ecoriomically.

One can handle very large numbers of variables without any linking and do

it with reasonable computer time. This is very difficult to do in the case of

mathematical programming except in specific problems where one can use a

linking procedure or something similar to reduce the number of variables.

COMMENT: I'd like to identify one thing that I think is important

that you didn't bring out strongly enough in your paper. That was that a

device used in this optimization procedure is to perform analysis by scaling.
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We know when a structure is changed in size- -the whole structure is s .aled

so that the generalized forces don't change a bit and that can accelerate the

analysis process very greatly. This procedure is not incorporated in non-

linear programming techniques. The second point I'd like to make is that

the number of cycles that you have to do in an optimization process is very

critical in problems for which members disappear on your criteria for

cutoff, and I'd like to ask you what your cutoff criterion was?

VENKAYYA: Thus far, we have solved problems including a three

bar truss to trusses having 300 variables and beams having about 60 varia-

bles and 168 degrees of freedom. In a well behaved structure we normally

end up with anywhere from 6 to 15 cycles regardless of the number of varia-

bles. Tne worst case is the single loading case where a tremendous amount

of readjustment of the structure takes place. Such cases take a larger num-

ber of cycles where this readjustment is not limited by the conflicting loads

as it is in the single loading case and we generally get a design in about 6 to

12 cycles. It doesn't seem to depend on the number of variables. There are

pathological cases where the namber of cycles is higher. For example, a

four bar truss with displacement limits required 35 cycles.

MCINTOSH: In summary, I want to say that progress in the field

is extremely rapid and that what was a good method yesterday may not be

a good method tomorrow. We have to be very careful about making too

broad projections in the particular method that you have used and the parti-

cular problem you have solved. I think may people are finding that you are

going to need a number of different techniques in your arsenal and further-

more that each one of these techniques may have to be tailored very care-
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fully to the specific problem at hand to produce really efficient optimum

computation for that particular problem.
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by
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and
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I. Introduction

The structural analyst can choose among a number

of alternatives when making transient response cai-ulations.

If the dynamical system is linear and has small dimension,

a proper choice might be to find the undamped natural fre-

quencies and mode shapes; then, to compute the forced response

for each mode by way of the Duhamel integral, or any equivalent

method, and use superposition to obtain the total response.

This approach would be especially attractive if low frequency

bands of excitation, which such a truncated system might repre-

sent adequately, dominate the applied loading. Even for
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systems of large dimension, condensation or component modal

reduction schemes can reduce the problem to manageable size,

without significant loss in accuracy, provided the applied

loading has this low frequency domination.

When high frequency excitation is significant,

however, the analyst might choose to solve the coupled equa-

tions of motion of the system by direct integration, regard-

less of the number of degrees of freedom. Such a decision is

dependent upon many factors - chiefly, the relative cost of

direct integration and mode superposition, and the numerical

characteristics of the integration operators to be used to

implement either procedure. It should be kept in mind that

there is no truncation advantage in using one procedure over

the other; the number of degrees of freedom is the same, and,

therefore, the cut-off frequency is the same. For the sake

of completeness, we note that truncation error is the dif-

ference between the exact solution of the governing partial

differential equation for the continuous system and the exact

solution of the governing equations for the discretized system.

The cut-off frequency represents the highest frequency to

which the discretized system is able to respond. Excitation

at frequencies higher than the cut-off frequency is manifested

by noise in the discretized system response.
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As an example of such a decision-making process,

consider the structural system of Figure 1. Suppose that

the masses A and B represent complex electronic packages

with far too many components for any practical, economic

mathematical modeling exercise. Then, if the structure is

excited by motion of the embedment region C or is acoustically

driven by the gas D, the best that can be done is to model

the inertia of the masses and to examine the load transmission

characteristics of the primary structural members. If thc

integrity of the system requires that the e3ectronics function

continuously in these dynamic environments, qualification

tests based on such analyses will be required. Interpreta-

tion of the results of the analyses and the development of

the test program will be meaningless: (a) if the integration

operator generates excessive noise in frequency bands of

interest; (b) if the cut-off frequency of the mathematical

model of the primary structure is below excitation frequency

bands of interest; or (c) if the integration operator has

excessive artificial damping (due to what could be called

approximation viscosity) such that signal amplitudes are

heavily attenuated and vibrational periods are distorted.

During the rest of the discussion emphasi- will be

placed on resolving these issues and putting the alternatives

of action for the analyst on a more rational footing.
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iI. Integration Opeý,ators

For this discussion, the governing equations of

the discretized system will be taken to be

[K]{u(t)} + [C]{u(t)} + EM]{U(t)} = {F(t)}, (II.l)

where EK], ' C] and EM] are the stiffness, damping and mass

matrices, respectively; {u(t)}, fa(t)} and ({(t)} are the

displacement, velocity and acceleration vectors, respectively;

and {F(t)) i- the force vector. These equations can be de-

rived in a number of ways. such as by a finite-difference or

a finite element formulation, but the mass matrix will be

assumed to be positive definite.

An integration opeT'tor will be defined as a trans-

formation on the displacement, velocity and acceleration

•ectors at time tn (and, possibly, at time tn-1 , tn- 2 ,...)

to th. displacement, velocity and acceleration vectors at time

tn+I. If the mass, damping and stiffness matrices do not

depend on the displacements, or their space and time deriva-

tives, the transformation will be linear. An integration

operator will, in general, depend on the time step size,

At = tn+l - tn, the :..atrices [K], [C] and [M], and the inverse

of the mass matrix.
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Approximate integration operators for (II.]) can

be derived in many different ways. Generalization, therefore,

is virtually impossible. Typically, however, approximate

expressions for two of the three kinematic variables (e.g.,

the displacement and velocity vectors) at time tn+1 are

derived and used, in conjunction with (II.1), to form a deter-

minate system. This ensemble can be written in the form

K, = F + K u(tn tnl, (11.2)
nl(+1) no nnl-

where

u (tn+) = (t+I):u(t+l ):(tn+) ,(II3a)

S(tn~n~l, ) 11(tn)"ý(tn M•tn (II 3b)

and the superscript T indicates the transpose of a vector or

matrix.

If the matrix •l can be put in upper or lower tri-

angular form, (11.2) is referred to as an explicit integration

operator; otherwise, it is implicit. The amplification matrix

of the approximate integration operator is seen to be

A = K1  (11.4)
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where the superscript indicates the matrix inverse, assuming

that the inverse exists. Then

•(tn+l) =G +A(t,t l,...), (11.5)

where

G = K-1 F. (11.6)

As an example, consider the central difference

approximation for the acceleration and velocity vectors.

This operator is obtained by writing an expression for the

velocity vector in forward difference form:

j(tn) = u ( UAtn) (11.7)n A-t •(n+l) A - n-t

an expression for the acceleration vector in backward difference

form:

1 a + 1 (tn)-; (11.8)
(n+l) = -t(tn! ) - -

and using (II.1) at time t It can easily be verified thatn+lV

the substitution of (11.7) into (11.8) will yield the con-

ventional central difference operator. If the vectors
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and

UT~t (II.9b)
n

then

-----------------------..... .---1 I

I t

------

KI = 0 0 0 (II.lOb)

r------ -----
I Io

where and i are the identity matrix and the null matrix,

respectively. Note that the damping matrix has been neglected

and that the partitioned matrix 41 would be in lower triangular
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form if the mass matrix is diagonal. To find •. requires

only that the mass matrix have an inverse; the amplification

matrix is thus seen to be

1 0 AtIg-

A -D 0 -AtD (II.11)
7S M

L-AtD 0 I-(At)2

I where

D K. (11.12)

The spectrum of the amplification matrix can easily be shown

to be identical to that deduced in Reference 1, where the

central-difference operator was found to be conditionally stable;

i.e., for a step size At larger than 47r times the shortest

natural period of the structure, the method is unstable.

Several other approximate integratior operators were

examine-i in References 2 and 3 with regard to stability limita-

tions and other characteristics, such as artificial attenuation

and vibration periodicity error as a function of fraquency,

using the Lax-Richtmyer procedure described here4 or the

Lvon Neuman procedure5. The Houbolt backward difference operator6
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is implicit and has been found to be unconditionally stable. 2

Qualitative discussions of the attenuation characteristics

have been given in References 7, 8 and 9. The Newmark gen-

eralized acceleration operator10 has been extensively studied3

and has been found to be unconditionally stable for values of

the parameters Y = 1/2 and 8 > 1/4. For these values the

operator is implicit; a recent study indicates an explicit

unconditionally stable form (8 = y = 0) which uses compensatory

damping. 1 1  The Wilson averaging operator,12 apparently derived

independently in Reference 13 and cited in Reference l4 , is

also implicit and was found to be unconditionally stable. 3

This operator and a similar method called the Gui'tin averaging

operator15, have been found to exhibit substantial artificial

damping and vibrational period error for higher modes of

excitation. 3 The Gurtin averaging operator is also implicit

and unconditionally stable.

III. A Precise Integration Operator

For linear problems, a significant improvement in

the accuracy of integration operators has been noted.16  In

an analogous manner, an integration operator has been derived

which is numerically precise in three important ways: (a)

there is no artificial attenuation for any excited frequency

up to, and including, the cut-off frequency; (b) there is no
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artificial growth in the vibrational periods of these fre-

"quencies; and (c) the operator is unconditionally stable.

This combination of properties insures that numerical errors

are propagated harmonically with a mean value of zero.

The operator is derived by first solving the free vibration

eigenvalue problem for equation (II.1). The undamped equa-

tions of motion are

[K]{u(t)} + [M]{U(t)i= {F(t)}, (III.1)

where, in general, [K] and [M] are large (pxp), banded,

symmetric matrices; [M] need not be diagonal. Let {w'} be

the vector of natural, undamped frequencies of the homogeneous
!2

system and [Z] the corresponding mode shape matrix; N 2 I is of

dimension lxq, where 1 < q < p, and [Z] is of dimension qxp.

Then, define

{u(t)} = [Z]{v(t)}, (111.2)

so that

[* {v(t)l + rMt1{•(t)} ; {F*(.t)}, (IrI.3)

1002



where

j ZE [K][Z], [M*l [z1T[M]EZ],

and (111.4)

{F*(t)) = [Z)T{F(t))

are the generalized stiffnesses, masses, and forces of the

evstem. Therefore, the multiple-degree-of-freedom problem

(second-order, coupled, ordinary differential equations) is

reduced to q second-order, uncoupled ordinary differential

equations, each of which has the form

W2vi(t) + vi(t) = fi(t), i = 1,2,...q. (111.5)

These simple equations can be solved by a variety of methods,

either by the formal integral representation of Duhamel or by

an approximate integration operator. Many of these operators

can be represented by the recursion formula

v (t vi(tn)

Ci(tn+l) [A] vi(tn) + {G) fi(tn+l). (111.6)

vi~tn+l) vi n)
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The usual technique is to subdivide the time domain

into segments over which the loading can be approximated by

piecewise linear functions and then proceed with the march-

ing recipe (111.6). With such approximation of the load,

an amplification matrix [A] which matches the desired response

precisely should be derivable. Consider the parametric repre-

sentation of the integration operator:

a a 2 a3 91

[A] = a4 a5 a6 ; {G} = g2 . (111.7)

a7 a 8  a9 93

The t requirement for the integration operator

is that harmon.. li-.on must be matched; i.e.,

vi(t) = sin wit

and

viWt) = cos W i t,

or

vi(o) 0 v i(At) sin(wi At)

i(O) ) i , vi(At) W i cos( iAt) , (111.8)

I (0) 0 Ii(At) 1-w2sin(wiAt)

100o 4



and

v i(o) 1 vi(At) cos(WiAt)

1 (o) 0 v(At) -w isin(wi At)

•i(o) _ 2 2I(At) I2cos(WiAt)

This requires that

sin(w iAt) a - cos(WiAt)

CAw cos(W At) aa4 + sin(wiAt)

[A] 4[A(1At)] .a4oi i Wi

-alm -2 _ isinw (•At ) -al+cos( (i At)

(111.9)

The second requirement is that the solution of

(111.5) to a linearized forcing function with homogeneous

initial conditions be satisfied identically; i.e.,
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which implies that

vCt [ . (1+t) -cos(wiit) - ± n(wit),(1.)
W j

or

1 221
wW.

0) 0 ; r(t 2. + W sin(w At) -COS(W 1 t)] (111 .12)

Wi

~~0) ~(At -~-[w~cos(y.t) + sin(wjAt)]

This requires that

sin(w At) sin(w At) 1 ________

wi w 2o~wA
Wi AtWI

COS(Wi inw t) + cos (W ýIt) -

[A(w1,,t)] At COS(W coswAt) W i S itW + A

At) sin(w At)W isi~n(w 1  -t) in(w At) COS(W At) -

S At i iiWiA
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and

F, sin(wAt)]

2 W At

The spectral characteristics of the precise ampli-

fication matrix are round to be

sin±w AttWJ At~

S= cos(WiAt) J J sin(w iAt) = e

and (III.14)

X= 03

where j = /ZT. The operator is therefore seen to be uncon-

ditionally stable with no artificial damping or error in

vibrational period.
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As a consequence of the foregoing, the amplification

matrix depends on the natural frequency wi and a linearized

modal participation forcing function f (t). However, since

the amplificaticn matrix was deduced directly, the K and Kl

matrices are undefined; therefore, the precise marching

algorithm is su'table for moiaa.L.y uncoupled systems only.

Through equations (111.13), the time marching

algorithm is carried out precisely. In fact, during the

verification process, the procedure was found to be more

accurate than an evaluation of the trigonometric functions with

large argument (see the discussion by Bellman [17J). The pre-

cise amplification matrix can also be derived directly from

the Duhamel integral; however, the marching algorithm should

be considered as a computationally advantageous representation

of the formal solution.

iV. Numerical Results

An example problem was chosen in order to illustrate

the arguments presented here. The requisite features of the

problem were: (a) simplicity; (b) the ease with which the

exact solution could be found; and (c) convenient representa-

tion as a multiple-degree-of-freedom system. A uniform free-

free beam, suddenly loaded at midspan, meets a!: the criteria.
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The exact solution for the displacement of the

free-free beam was calculated by usIng a conventional eigen-

function expansion for the spatial displacement function.

The differential equation, boundary conditions. and initial

-inditions are given by

a4w 14 2 w = P 6
a + w 4 Ea w(x)s(t), -k < x < 2, (IV.l)
ax 2

0 < t;

a a2w a
S= = 0" x = t2; (IV.2)

ax ax3

and

w(x,0) = •- ,0) = 0; (IV.3)at

14
where X = m/EI, w(x,t) is the displacement as a function of

space x and time t, 6(x) is the Dirac delta function, s(t)

is the Heaviside step fuwition, and k is the half-length of

the beam.

Since the load is appliedI at the center (x = 0),

only the even spatial eigenfunctions are needed; these are

given by
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Wn(X) An [sh( + coS(njcoshun X ()V.4)

where the

An [os2(n co2( )]-1/2

= osh (P + Cos P(IV.5)

are chosen so that

SW(x)dx 1, n = 1,2,... (IV.6)
-£

The eigenvalues are given by the approximate expression

n= 8n + Cni (IV.7)

where

8n = (n-l)T T (I

1nd
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h2Sý2- tanh (On) - 1
n 1 + tanl.(n) (n).9)

which was derived from the characteristic equation

tan(in) + tanh(in) =0 (IV.10)

by assuming en to be small.

Computer calculations show that, for all n, Eq. (IV.7)

yields accurate eigenvalues with the accuracy increasing with

increasing n. Using the eigenfunctions (IV.4), the displace-

ment is found to be

w(xv) = 2PE sin 2(j P2 T), (IV.ll)ElI Fa P4 ~ 2 n
n=l n

where

T t (IV.12)

A plot of (IV.II) as a function of the dimensionless

time is shown in Figure 2. Nearly three cycles of the funda-

mental period are included, and response corresponding to
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frequencies higher than the fundamental is clearly noticeable

near the peaks and troughs of the plot.

For the comparison studies using approximate inte-

gration operators, the beam was modeled with six and twelve

finite elements (fourteen and twenty-six degrees of freedom,

respectively) in order to assess the truncation accuracy; in

this way, primary concern could then be focused on the time

integration and the spatial discretization could be assumed

to be practically exact. Consistent mass matrices were used

throughout to remove this point as a source of contention.

The characteristic frequencies and mode shapes for the

symmetrically deformed beam were found by using successive

Householder transformations on the consistent mass and reduced

stiffness matrices. A comparison of the exact and approximate

frequencies is given below:

Mode Exact 6-Elem. Approx. 12-Elem. Approx.

1 31.29 31.30 31.29

3 913.6 924.1 914.4

5 5571. 5700. 5600.

7 19263. 24700. 19580.

Since the beam stiffness is e;tact, the only approximation
here is the spatial distribution of the inertial forces.
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From this table it can be deduced that noticeable

error in periodicity of response is not apparent for the

first three harmonics. Some slight error might possibly be

noticeable in second-.overtone response for the coarser model.

In order to ch-cK this point, the Newmark Method,

with 8 = 0.2; and AT = 0.05, was exercised for both models

and any difference in the two calculations is not discernible

within plotting accuracy. Such agreement indicated that

essentially all of the response is contained in the first

three harmonics. The comparison between the Newmark results

and the exact solution is shown in Figure 3. Areas of sub-

stantial agreement can be seen, primarily in the first harmonic

response, but some behavioral differences can be seen in the

higher order response. To examine these differences we

recall some results from Reference 3 - namely, that the

modulus of Newmark spectrum is unity (no attenuation for any

mode of response) and that the incremental phase is given by

= tan , (IV.12)

where w is the "i thu, structural frequency. We are concerned

with making the comparison, at time T= nAT, betweenn

sin (wiTn), -from equation (IV.11), and sin(nei). If we look

at T60 - 3.0,"then, for the first mode,
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.. . _7 7

81 = 0.2787 radians; 60 e = 16.722 radians;

(iV.13)

i a 5.60 rad/sec; T60 wI = 16.80 radians.

The error is seen to be less than 0.1 radians after nearly

three periods of vibration for the first mode. For the

second mode,

e2 - 1.295 radians; 60 82 = 77.7 radians;

(iV.14)

w2 - 30.23 rad/sec; T6 0 w2 = 90.69 radians.

The error here is substantial, nearly •4 radians, indicating

that the response in mode two has been steadily going in and

out of phase with the first mode, compared to the exact solu-

tion. This explains the anomalous b3havior in the peaks and

valleys of Figure 3.

Another comparison, this time between the Wilson

averaging operator, with AT = 0.01, and the exact solution,

is shown in Figure 4. The smaller time step was required In

order to get any meaningful response definition in the modes

higher than the first. Substantial attenuation in modal

amplitude is evident, but, since the characteristic equation

for the Wilson operator has three non-trivial eigenvalues
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that are functions of the time step and the structur . fre-

quencies, no attempt was made to correlate the re c: in

Figure 4 with modal data.

The Gurtin averaging operator, with AT = 0.01, is

compared to the exact solution in Figure 5. Once again, the

attenuation in the operator dominates the comparison. From

Reference 3 we note that the modulus of the approximate modal

response in the Gurtin operator is

1+1 ()2 W2
2R i (IV.15)1 1 + -L (A T )2 w2

and that the phase increment is

e= tan-1  / (IV.16)1- (AT) 2 2

Going through the calculations for mode one, we find that

(RI1 )300 = 0.922, (IV.17)
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which indicates the attenuation in the first mode response,

while the error in phase is negligible. Clearly, the attenua-

tion is a first order effect and the phase error a second

order effect. For mode two,

(R2 )300 = 0.106 (IV.18)

and the error in phase is 0.66 radians L 380 out-of-

phase). For higher modes the response n 3.0 has essen-

tially vanished. These calculations confirm the increasing

harmonic purity of the approximate response obtained via the

Gurtin averaging operator.

The last comparison shows the results obtained with

the precise marching algorithm ana the exact solution in

Figure 6. This comparison is demonstrable proof of the

accuracy inherent in this operator.

V. Conclusions

As stated in the beginning, the object of this In-

vestigation I1- to provide guidance to the analyst concerned

with specifying qualification tests for sensitive internal

components of dynamically loaded structures. In order for

an analyst to plan such tests in a mieaningful way, using a

combination of e;,vironmental sampling (if such sampling is

feasible) and results from numerical simulation studies, the
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digital filtering characteristics of the analytical tools

must be understood.

The general behavior common to all finite-degree-

of-freedom mathematical models that are consistently derived

is: (a) the cut-off frequency - that frequency which repre-

sents the upper excitation limit of the structure; excitation

at frequencies higher than this result in noisy response;

and (b) a tendency for the accuracy of the response to

deter-!orate as the excitation frequencies tend toward the cut-

off frequency. The fundamental cause of the deterioration is

the monotonic increase of error in the calculation of mode

shapes and frequencies (as a function of increasing frequency).

Very little can be done by the analyst to improve on the gen-

eral situation except to model the structure carefully in

critical regions so as to widen The bandwidth of accurate

frequency response.

Particular behavior of the integration operator

used by the analyst to obtain the frrced structu.ral response

is another matter. The majo., concerns are: (a) signal atten-

uation and (b) error in vibrational period as a functiou of

(the approximate) structural frequency; (c) instability in

the computational algorithm triggered by noise and round-off;

and (d) the cost of using the algorithm. These factors form

the necessary ingredients for a choice of an integration operator.

1017



For the example used here, which is typical of the problems

encountered in practice (though not nearly as complex), the

clear choice would be the precise marching algorithm, espe-

cially if the analyst is concerned about broad-band excita-

tion. When the system becomes too large for modal decoupling

to be economical, or when nonlinear behavior is introduced,

the choice would seem to be the Newmark operator with

-1/4 and y = 1/2. (Other possibilities might be to use

the precise marching algorithm in conjunction with condensa-

tion or component mode synthesis techniques). When the

structure to be analyzed clearly overdamps higher modes of

excitation, such as the case when soil or fluid interacts with

a structure, then the Wilson or Gurtin averaging operators are

strong candidates. The Houbolt operator also fits into this

category. Other special needs might require the analyst to

use a combination of methods, such as the precise marching

algorithm for the first few response cycles and the Wilson

averaging operator for the long-time response.

There seems to be little question that explicit

operators are more economical than implicit operators; there

also seems to be strong evidence indicating the desirability

of an unconditionally stable operator - such as the implicit

methods described herein. Needless to say, the search for
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the unconditionally stable explicit operator goes on. A

better investment of effort might be to investigate iteration

scnemes based on implicit, unconditionally stable operators.

At any given time tn+l, the values of the dependent variables

at the previous time tn ought to be a good prediction for

the beginning of the iteration cycle.

For nonlinear problems, the most promising approach

has been described in Reference 18. The method, called

"piecewise linearization," would use the values of the

dependent variables at time tn to describe the behavior of

the structure during the interval (tntn+l); then a high-

accuracy algorithm, such as the precise marching algorithm,

based on modal decomposition would be used to find the solu-

tion at tn+I. With these new values of the dependent variables,

the behavior of the structure during the interval (tn+ltn+2)

would be describe, and the process repeated. The experse

might be prohibitive, but the accuracy might justify the

expense.
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QUESTIONS AND COMMENTS FOLLOWING NICKELL'S PAPER

QUESTION: You t;.lked about exciting a structure with loads that

contain high frequencies. In the example, you indicated that even though

it was subjected to a point load or point velocity the response really is

contained in the fundamental modes of the structure and then you did all

your comparisons of all your integration operators based on these very

fundamental modes. Now what's going to happen when you hit the structure

with a signal or the respunse that does involve the higher modes?

NICKELL: The loading for the problem was a suddenly applied

load, i. e., a step load at mid-span tha4 excited all the structural frequen-

cies up to the cutoff frequency. The fact that most of the response is con-

tained in the first four modes may be significant; e. g., the conclusion might

be that the first few modes always dominate the response unless there are

wide differences in flexibility between parts of the structure.

COMMENT: Okay, but you could have, for example, struck the

beam on the end and the response should have be%.n a sharp wave front going

down it.

NICKELL: (author misunderstood question and assumed that

question referred to flexural waves excited by striking the beam transversely

on the end) Bernoulli-Euler beam theory ts being used here so that the

governing equation is elliptic, rather than hyperbolic, in the transient

response regime. Timoshenko beam theory would have to be used to get

wave propagation effects.
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QUESTION: Okay, would your results still hold if you did have

a wave propagation problem?

NICKELL: My opinion would be that the results are still valid;

i. e., one would still do a frequency scan and find out that all structural

modes are being excited and that extreme deterioration of the higher fre-

quency response would occur for integration operators other than the mode

superposition approach.

COMMENT: We did an experiment using a beam ten inches long

and one eighth inch thick loaded by sheet explosive over the central two

inches and we got excellent correlation with results obtained using the one

dimensional shell code, UNIVALVE. We made movies of it and the dis-

placement as a function of time looked nice but the moment distribution

as a function of position exhibited sharp fronts. We were using a central

difference operator. There were sharp spikes that propagated to the

boundary, bounced off and as I recall they made it back to the inside and

interfered with each other and were eventually damped by dispersion

effects and, of course, some plasticity. When we changed the mesh size,

we got higher frequencies which, of course, traveled to the edge, bounced

off and came back. I thirk those things were physically meaningful; we saw

transient noise in our strain gages along the beam. I think the response

was really there and if we had used an integration operator which had

damping onIt, I think we wouldn't have seen those things which I think

are part of the physical problem.

NICKELL: I agree. If your operator had contained artificial damp-

ing, you would not likely have seen these effects at all.
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QUESTION: You identified two types of error- -one is truncation

and one is roundoff. You said you eliminated truncation error by choosing

two different meshes which produced the same results. Did you discuss

the influence of roundoff error in your analysis? How do you avoid that?

NICKEL: The assumption made here is that the roundoff error

present would have caused instability in a conditionally stable integration

operator unless the step size had been choser. extremely small.

QUESTION: Doev it have any significance? Did you try two differ-

ent precision arithmetics, for example, to isolate and investigate the effect?

NICKELL: No. I think that such a comparison would be interesting

but we did not do it.

COMMENT: Since my algorithm looked rather bad up there, I

thought I'd better comment that it has been improved considerably and much

of the damping has been reduced. The algorithm that Prof. Clough and I

presented at this conference is a much better operator. I think, "iowever,

that when you have an arbitrary structure, one for which you really don't

know much about the frequency content, you need an unconditionally stable

integration scheme. Then you can actually plot up a damping ratio as a

function of your time step and look at the components of your load, decide

what you're interested in, then determine the time step you must choose i.-

order to have an acceptable level of damping. So, from an engineering

standpoi, I think you can very successfully use these algorithms which

contain damping.
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NICKELL: We concur on that point. When waves are being pro-

pagated in media, such as soils, where damping effects are large buL not

well understood, the Wilson Averaging Operator has some advantages.

COMMENT: The examples you have presented seems to indicate

that by including damping you eliminate parts of the solution that you don't

want or at least you don't believe are very important and you kutp the lion's

share of the things you do want. But sometimes whz'• I really want to keep

in the solution is the sharpne!ss itself as in the case of a pul .e problem in

longitudinal waves.

NICKELL: I think that any of these methods that conit:ain artifi-

cial damping are going to be undesirable when the primary interest is in

shock strength and pulse shape. A great deal of care must be taken for

these cases.
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Intruiuctlon

The component modes method provides a ayatematlc and oider.; rj:•fni c;.*

setting up generalized functions for analysis of a complex Gtructure by

means of a generalized Rayleigh-Ritz or energy approach. If only a few

functions are used, the solution may be highly approxizmte. Hoiever, it

is possible using functions carefully chosen from a complete set of func-

tions for the problem at hand to obtain any desired degree of accuracy in

the solution. In its essence the method can be considered a dic-tillation

process whereby the moot essential information concernl.g behavlor of the

structure for the problem at hand is obtained and used in the analysis. The

critical questions are thoýe of rate of convergence to the desired accuracy

of the solution and of the computer time required to obtain the.;e solutions.

With ever larger computers and general purpose finite element programs

available, the question arises: What advantages if any are to be gained by

using component modes analysis instead of making direct calc.dlation of modal

behavior of the multicomponent structure with a finite element program?

Although the component modes method has b..r neither fully evaluated

nor exploited, several potentially potent advantages exist. Banically,

there 're always benefits to reducing computer time for solution of a given

p.-cblem. In the final eztimate the useful engineering informsticm obtained

per dollar spent is, or should be, the controlling factor. The component

modes method offers the possibility of greatly reduc'-d computer run times

through the reduction of coordinates. A possible secondary benefit of the

method, whinh should not be minimized, is the potential Cor better physical

insi&ht into the dynamic behavior of t.he structure.

Thiis paper outlines some extensions to the standard method of component

modes and describes some investigations performed in this area. Some opinions

of the authors are also expressed concerning the role of this method I.n en-

gineering structural analysis.

2. Component Modes - Standard TheorZ

The original theory of component modes as expounded by Hurty and by Craig

and Bampton (Refs. 1, 2, 3) maY be summarized as follows: To determine the

dynamic behavior (usually modal behavior) of a linearly-behaving structure
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composed of two or more components (Fig. la) each component is first trnated

separate3y. The component is constrained at the connection boundarlýs, in

addition to any constraints applicable to the structure as a whole (Fig. ib).

A representative set of normal modes of the component under these cc.straints

is thet, determined. Additionally, a series of static solutions called con-

straint modes or boundary functions are calculated. These functione are

created by freeing one degree of boundary cctistraint at a time and g~iving

that degree of freedom a unit deflection with no other applied loads present.

The result is a set of :unctions equal to the number of boundary degrees of

freedom.

The combined set of normal modes and boundary functions constitute a

set of generalized functions adequate for representing any arbitrary dis-

placement configuration of the component with external losds app.ied at the

connection boundary. As shown 'n Fig. 2, a transformation to gc:.eralized

coordinates can be set up using these functions. The calculation of the

reduced mass and stiffness matrices In generalized coordinates is facilitated

by the orthogonality of the normal modes and by the lack of stiffness couplrng

between the boundary functions an,l normal modes.

The several components are then combined to form the complete structure

by directly associating corresponding boundary functions in the different

components.,- Fig. 3 shows the connection process (in generalized coordinates)

which can be expressed in transformation form and Involves a reduction of

coordinates through application of the connection constraint equtitions.

The resulting transformation for the displacements is displayed in Fig. 4,

which illustrates the relation of the component displacements to the gen-

eralized coordinates of the connected structure. The functions q are

the desired generalized fanctions for the entire structure. These fiUctions

are of two types:

(1) a nomal mode in one coct.>ouent with the remainder of the structure

at rest,

(2) a connection boundary displacement function consisting of displace-

ments in the two components adjacent to that boundary with the

other components at rest.
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This set of generalized functions for the complete structure cczstl,ýutes a

subset of an ordered complete set of functions for describing arbitrary dis-

placements of the structure.

A standard Rayleigh-RJtz analysis of the structure can now be rade to

determine its modal behavior. The elgenvalue problem is set up in tcrrns cf

the generalized coordinates of the ,onnected structue. Once the mcdes ht.v

been determined in terms of the generalized coordinates, the mr"la displace-

ment vectors can be obtained by lirear combination cf the generalized fu.ncticnz.

For details of the method the reader is referred to the paper by Craie and

Bampton (Ref. 3).

3. Component Modes - Modifications to the Theory

The standard theory allows use only of component modes with the cor.nectl•c
boundary constrained and with the same other constraints on the compornent as

it experiences as a part of the complete structure. Furthermore, the ortho-
gonality of the modes is assumed and utilized in forming the reduced mass

and stiffness matrices in terms of generalized coordinates. Both of these

requirements can be relieved.

If the orthogonality of the component internal functions is not assumed,
the calculation of the entire reduced stiffness and mass matrices must be
made with the formulas of Fig. 2 (which may be somewhat more costly for large

problems). It then becomes possible to use generalized functions other than
modes to describe behavior of the component.

It is still desirable, however, to retain the ordered character and the

completeness characteristics provided by a set of normal modes.

With orthogonality of the component internal functions no longer assumed.
the other requirement mentioned above can be bypassed in the following way.

Consider any set of modes of the component under specified arbitrary con-
straints. By linear combination with suitable boundary functions these

modes can be transformed to non-orthogonal generalized functions clamped

at the connection boundary and satisfying any other component constraints
(Fig. 5). The component modes method Is then pursued as usual, excepting

that Orthgonllity of tLc Component internal functions Is not assumed.
These ccaponent generalized functions, because they are derived from a set
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of =odes of the component still retain an ordered and comp1ctPr.es: hracterL;;c.

Another extension of the component modes method which can be madt.- ic .%4t

of utilizing symmetries of the component which art: not symmetries of the en-

tire structure. (If a symmetry of the component were u 7.vyetry of "rc c>-

plete structure then the standard method would be applicable t- a h-ll! body

model of the structure.) If a component symmetry Is present then a half Dc-iy
model of the component can be analyzed, first witii symmetric boundary ccndt.. c'.n

on the plane nf symmetry and then with antisymmetric condi.ions. The resuit.rE

modes and boundary functions can then be used to form the same reduced mass and
stiffness matrices in terms of gcneralized coordinates as would hav'e been gen-
erated if the full component had been analy7ed ignoring the plane of sy--_etry

( .6).

These extensions while not major in nature greatly expand trh ajpllcab!!ý.ty

.nd usefulness of the component modes method.

4. Ccmauter Programs

For initial implementation of the component modes method, the CCM.1PCS pro-
gram (Ref. 4) has been developed at Lockheed's Palo Alto Research Laborato-y.
This program is designed to join two components to form a larger structure.

The connection can involve .any degree of redundancy. CCI4POS incorporates the
features of the standard component modes method as well as the exten::ions
described in this paper, namely, half body component capability and the abilt:y
to utilize non-orthogonal internal functions. The program is desi~niv to
operate both accurately and efficiently on the Univac 1108 system cu rentl"

o-,erational at Lockheed Missiles & Space Company. The program can bundlc
components having any number of degrees of freedom, but for most efficitnt

operation 'he comronent mass, stiffness, and two copies of the model data

should fit on drum storage or other suitable peripheral storage dev!,'e' which
permit random access to this information. The sum of the number of on:.ect.

degrees of freedom and of the component modes used cannot presently exceed
200. This limitation is imposed by the eigenvalue solver used with t.e prc-
gram. The solver must be able to handle full moss and stiffness mt'ice.
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Although the CCOPOS p'-oram is designed to ue &general in form so a to
accept data from any source (finite element, finite difference, analytical,
cx-erimentall) it has been used in practice only with the REXBAT finite
element program (Ref. 5). The REXBAT program uses s finite element approach

based or the direct displacement (stiffness) method of matrix structural

analysis for-linear static and dynamic analyses of complex general structural

configurations and has been tailored to handle the class of structures most
often encountered in the aerospace industry -- i.e., aircraft, booster vehicles,

spacecraft, etc. RM0BAT has a large library of useful diccrete elements and

currently treats structural sjstems having up to 6000 simultaneous equations
with virtualy unlimited bandwidth restrictions. (The program is limited to

3500 degrees of freedom for eigensolution analyses.)

As is probably typical the interfacing of these two programs rcquired
both some modifications to the REXBAT program and an intermediate processor

program. Modifications to REXBAT consisted of providing for automatic gen-
erction of a series of static boundary functions. Without this feature the

input data requirements for generation of bour.dary functions were at least

tedious and for larger problems, stifling. The intermediate process c- pro-
vides for sorting and selection of both boundar-y functions and modes, 1cr

forming linear combinations of these functions, and for storage of component

information on tape for introduction to COMP(S.

5. Structural Studies

The REXBTA-CCGPOS program set has been and is being used to analyze

several configurations, both simple and complex. Discussions of nome of

these studies follow.

Rectangular Plate

In the paper published in 1968 (Ref. 3) Craig and Rampton applied the

component mods method to a cant--levered rectangular plate (Fig. -).

To check out the IEXA-CC4PO6 computer program combination and to e.a.i-

uate its capabilities, several plate problems have been solved using this

same configuration. The plate chosen is shtvn in Fig. Ta. It consists of
a rectangular plate of aspect ratio 2 which is clamped along one of the
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longer sides. A finite element model of the plate (identical with that of

Ref. 3) was set up as shown in Fig. Tb. This model has 78 free nodal points

and 234 degrees of freedom. At each nodal point transverse displacement

and rotation about two orthogonal axes in the plane of the plate can occur

No inplane displacements are considered. Using REXBAT, the frequencies and

mode shapes for the lowest ten modes were determined. Following the example

of Ref. 3, the plate was then cut along an asymmetric line perpendicular to

the clamped edge (Fig. 8a) thus dividing the plate into two unequal com-

ponents (Fig. 8b). Using corresponding finit" element models, REXBAT was

applied to each component to find and store (,) fifteen normal modes with

two edges clamped (the originally constrained edge plus the connection

boundary), and (2) eighteen boundary functions obtained byv releasing one

boundary degree of freedom at a time and giving that degree of freedom a

unit displacement.

The CC•4POS program vas then fed the stored information, proceeded to

rejoin the two components to form the full plate, and find modal frequencies

and displacements. The generalized degrees of freedom in this modal analy-

sis consisted of 18 boundary function coordinates, 15 modal coordinates for

component 1, and 15 modal coordinates for component 2. The frequency re-

sults of both the direct PEXBAT and the REXBAT-COMPOS analyses are given

below:

Modal Frequencies - Cantilevered Rectangular Plate

Mode Direct Component Mode Analysis
Number Finite Element Analysis REXBAT-COMPOS

REXBAT 15 modes per component
234 variables 48 variables

1 29.14 cps 29.14 cps
2 44.10 4.10
3 83.01 83.01
4 153.2 153.2
5 176.9 176.9
6 198.9 199.0
7 248.1 248.2
8 272.7 272.7
9 336.5 337.0

10 415.4 416.1
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The mode shapes of the plate obtained by both methods were also compared and

showed close agrement. The results are also in fairly close agreement with

those obtained by Craig and Bampton. Differences can be traced primarily

to the different plate element formulations used in the two studies.

A second solution of the plate problem was obtained by using the two

components shown in Fig. 9a. Here c.mponent 2 is the same as previously,

while component 1 is clamped on three edges. In this problem n set of nor-

mal modes and 36 boundary functions are determined for component 1.

Eighteen of the boundary functions are employed In the connection to

component 2. The remaining eighteen boundary functions are left as free

functions together with the normal modes. Again extremely good agreement

in both frequency and mode shape was obtained.

The third problem which was solved illustrates the half body feature

of the CCMPOS program. In this problem component 2 was again treated in

the same manner. However only half of component 1 was analyzed by the

REXBAT4 program (Fig. 9b). Normal modes and boundary functions were ob-

tained for each of two boundary conditions on the plane of. symmetry of the

component. This half body data was fed to OOMPOS. In COMPOS the required

matrices for component 1 were generated from the half body data and joined

to component 2 to form the full plate. The results were identical with

those of the previous case where the full component 1 with three edges

clamped was utilized.

Space Shuttle

As part of space shuttle preliminary design work performed this year

at UASC, three-dimensional models of several space shuttle vehicles were

developed. Figure 10 shows one of these models - a half body model of a

symmetric delta-wing orbiter vehicle. A number of free body modes such as

the one shown in this figure were obtained. For development and demonstra-

tion of the ability to join two vehicles to form a combined vehicle, a model

was needed. In the absence of a three-dimensibnal model of the booster, a

double orbiter model was used, as shown in Figure 11. This model has no

significance except for demonstration and evaluation purposes. A static-

ally determinate connection was used which preserves the symmetry present
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in each of the two vehicles (Fig. 12). Using the ItEXBaT-CCKP&3 programs.

this structure was analyzed both directly with HMMAT and also with B9EXBAf-

C0KP0C. The results obtained in this case show the same close agreement

obtaint.d ir the pr,:!vious study.

Modal Frequencies - Double Orbiter - Symmetric Modes

Direct Finite Element Analysis Component Modes Analysis
PJEXBAT REXBAT-CC*POS
1149 variables 10 modeo/component

23 variables

3.137 cps 3.141 cps
3.630 3.632
4.355 4.365
4.9o8 4.916
5.366 5.367
5.4152 5.452

The m=Ye shapes have been spot checked and appear to be closely similar

(ont c,. thiv modc shapes obtained is shown In Fig. 13). An even more

significant check would be a comparison of internal forces (e.g., the

conne.tion f)rces), but this capability Is not presently available in

the CLPW program.

Spnce Vehicle Shroud

In an investigation underway at the present time, on aerospace structure

which must be designed to operate properly and without structural failure in

a dynamic response environment, is being used to further demonstrate and

evaluate the utilization of component modal techniques. The structure under

consideration is a space vehicle shroud. This in a light shell structure

which in fitted onto the forward end of a booster launch vehicle to encnse

and protect a space vehicle from air flow and aerodynamic heating during

ascer.t through the. atmosphereý (Fig. i4s). After the vehicle leaven the

atcosphere the shroud is split into two halves by a pyrotechnic separat. r

SOil , rotated on hinges and thruster springs away from the siace vehicle,

and d'scarded (Fig. L4b).
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As can be seen in Fig. 15 the shroud has a fairly regular structure

consisting of orthotropic shell construction with equally spaced reinforc-

ing rings. The construction becomes progressively lighter (through use of

thinner shell gauges) in progressing from the base of the shroud toward the

nose. The longitudinal separation joints including stiffening stringers

are located 180 apart. These joints destroy the axisymmetry of the struc-

ture both because of the mass and stiffness of the stringers and because

the separation joint is for all practical purposes a hinged joint. Thus

we have two longitudinally hinged half shells rather than a single shell.

At the base the shroud is clamped to the launch vehicle through a circum-

ferent.al separation joint.

This shroud is of particular interest for several reasons. First, it

is a specific engineering structure for which dynamic analysis is required.

Second, it is regular enough in configuration and conbtruction to allow

rapid evaluation of solutions obtained. Finally, for nnalysis of shroud

behavior both before and after separation5 modal behavior of the shroud under

several highly different boundary conditions is required.

Although the preseparated shroud is not axisymmetric it retains two

planes of symmetry - the separation plane and the plane at 900 to the sepa-

ration plane. Thus either a half-body model or a quarter-body model can be

used for analysis of shroud behavior.

Some of the configurations for which modal sets are required are shown

in Fig. 16. It is of considerable advantage to analyze the preseparated

shroud as a separate structure with a constrained base, as shown in Fig. 16a.

After verification of the model and evaluation of behavior of the shroud as

a separate structure, it can be incorporated into the entire launch vehicle

for modal analysis (Fig. 16b).

Ideally, upon separation the ,hicud halves separate cleanly and become
independent structures (Fig. 16c). However because of aerodynamic heating,
internal thermal stresses build up during ascent. This prestressing can

cause the shroud to remain in contact at the tips for a short time after

separation For analysis of the separation, modes of the structure in this

condition are needed.

1041SlIl

I.



There are various possible applications of component modes techniques
in this problem:

(1) The most cbvious application perhaps is the use of modes of the

preseparated shroud in modal analysis of the entire launch vehicle. If

the joint between shroud and vehicle can be considered rigid the problem

is simplified and engineering computer programs are available for this

purpose. If, however, the joint is flexible a full component modes analysis

is required.

(2) A common problem which arises in engineering structural dynamic

analysis is the following. A model of the struct'are is formulated, checked

out, and used to find a set of modes for use in forced response calculations.

This modal analysis can require a significant amount of computer time. At

this point the designers make some changes in the mass, stiffness, or con-

figuration of the structure. Often the significance of the changes in

structural dynamic behavtor is uncertain so a new modal analysis is made.

If the structural model has a large number of degrees of freedom and design

changes occur frequently, the computer costs skyrocket. The use of compon-

ent modes analysis in this situation is twofold. If the changes to the

structure are not too widespread, the modes of the 9tructure already

available 2an be used in a rough comporint modal analysis to evaluate the

influence of the changes on modal behavior of the structure. If the changes

are significant, accurate new modes can be generated using the same analysis.

(3) Finally when several modal s-ts for the same structure under

different constraints are required, as in Fig. 16, it is theoretically

possible to calculate one set with a bE sic structural analysis program

using a large degree of freedom model ana then to determine all of the

other modal sets by component modal analysis. The practicality of this

concept is being evaluated in the present investigation.

The investigation has proceeded to the point where both half and

quarter body models of the complete shroud have been set up, checked out,

and rather thoroughly evaluated. These same models represent full and

half body models of the independent post-separated shroud halves. Modes

of the shroud under several of the bcundary conditions of Fig. 16 have

been cbtained with the REXBAT program and are stored cn tape. Plots of
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two of the modes of the post separated shroud on hinges and springs are shown

in Fig. 17. The various modes exhibit symmetric beam and ring behavior

(or alternatively symmetric half-shell behavior) as well as antisymmetric

torsion and sidesway.

Work is being conducted at present using the REXBAT-CCMPOS program to

detcermine one set of shrouid modes making use of another set (e.g., determin-

ing the modes of Fig. 16 c using the modes of 16b). It is hoped that several

results of this type will be availublc at an early date.

6. Comments on Component Modal Techniques

At the present state of evaluation of the method of component modes the

following comments appear to be in order. Some of these statements will

require further verification for full acceptance.

(1) The component modes method has a definite role to play as a basic

tool of the engineering anelyst in the area of structural dynamtcs.

It provides a flexibility in analysis not otherwise oLtainable.

(2) The method is best employed as a companion to a basic structural

analysis program (such as a large-scale, finite element program).

This program must be operational and accurate and the analyst

must have knowledge of how to , it efficiently. The program

must include a good eigenvalue solver and boundary function

generator.

(3) The component modes method requires considerable engineering judg-

ment for skillful use. This is not particularly unique - so do

all complex multipurpose methods and programs.

(4) The method is not always better than d rect analysis for a given

problem to which both are applicable. The criteria for making a

decision as to which path to follow are the engineering time re-

quired and the computer time required.

(5) There is more to component modes than meets the eye. It has

many uses that appear only with experience.
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(6) There is a basic need for a means of generat~hg functional

boundary functions to supplement the point boundary functions.

At present, although the internal behavior of the component

can be and is approximated to whatever degree of accuracy is

desired, the point boundary runctions cannot be truncatcd.

Thus no approximation is possible. Functional boundary func-

tions should be truncatable, ordered: and have the complete-

riess feature of normal modes.

(7) The key to accurate use of the component modes method in any

application is consideration of the internal forces which

occur in the component acting as part of the larger structure.
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Fig. 1. Multicomponent Structure - Component Modes Analysis
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78 Nodes - 234 DOF

(a) (b)

Fig. 7. Cantilevered Rectangular Plate

I -

(a) (b)

Fig. 8. Two Components - Cantilevered Rectangular Plate

A 
I

(a) (b)

Fig. 9. Alternate Plate Components for Component Mode Analysis
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Reflected Orbiter Orbiter
Full Empty

Half-Body Model Half-Body Model

96 Nodes 96 Nodes
5T6 DOF 5T6 DOF

Half -Body
Connection

2 Nodes
3 ,OF

Fig. 11. Space Shuttle - Double Orbiter Configuration

tx~ 39 X

Full Body Half-Body
(Symmetric B.C.)

Connection Displacements Shown
Fig. 12. Connection Conditicns - Double Orbiter
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Fig. 14. Space Vehicle with Separable Shroud

IA~

FIg. 15. Space, Vehicle Shroud - CoraltruS •ro
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II

(a)

Preseparated Shroud Clamped

Base, Hinged Longitudinal Joints

(b)

Launch Vehicle with Space Vehicle
and Preseparated Shroud

(c) (d)

Post Separated Shroud with Independent Shroud Halves
Tip Contact Base Hinges and Springs
Base Hinges and Springs

Fig. 16. Shroud Modes Required for Analysis
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QUESTIONS AND COMMENTS FOLLOWING COALE'S PAPER

QUESTION: You compare the frequencies on these test cases

involving plates; did you also compare the mode shapes in these cases to

the exact mode shapes?

COALE: Yes, we have gotten very good comparisons with the

mode shapes. The ultimate way of comparing would be to compare the ir-

ternal forces since they, of course, diverge more quickly than either the

mode shape, the modal displacements, or certainly the modal frequencies.

I believe that good internal force agreement would be obtained with the

method but I don't have figures to verify that.

QUESTION: In some cases you have some of these component

modes unrestrained. What are the specific steps that you take to account

for possible rigid body motion?

COALE: This is included. If you take a body that is completely

unconstrained except on a connection boundary, then you release each degree

of freedom of the connection boundary separately so no rigid body modes

occur. The rigid body motions of the components turn out to be a linear

combination of the boundary deformatiori functions. As a matter of fact,

Hurty pulled rigid body motions out and used them separately. You can do

this and in some cases it's a good idea,

QUESTION: What if your boundary or connecting points would only

consist of the constraints required for rigid body motion?

.057
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COALE: Even then you can include the rigid body motions

or equivalent motion of one constraint at a time and it still works. The

double orbiter example was a case of that. That was a statically deter-

minate constraint.

COMMENT: The problem of having an excessive nur.mber of degrees

of freedom along the boundary between these substructures is indeed a

problem but this is something that's readily handled by the so-called Guyan

reduction. Let's suppose, for example, that you had initially cast your sub-

surfaces for stress analysis. You may well want to use the Guyan reduction

before you take the modes of the individual substructures. Then, after you've

assembled the individual substructures and have this excess number of inter-

face degrees of freedom, they are really rather handily removed by Guyan

reduction applied again at that level.

COALE: In some cases, that's a good idea. However, there

are cases where we do not wish to remove the excess degrees of freedom

but we wish to describe them by functions. When you reduce in the com-

ponent as you're talking about, you no longer are able to connect those

degrees of freedom to the other structure. Is that right?

COMMENT: Perhaps I shouldn't have mentioned this first stage

that one person can do. But at the second stage, the problem is that you

have an excess of degrees of freedom and certainly you don't want at that

level to try to eliminate all of these interface degrees of freedom. If, for

example, you have a linear point alone which two substructures are stitched

together you might keep as your undetermined coefficients every tenth one

or something like that.
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COALE: Yes, you're talking about this reduction after connec-

tion ra'he- than before.

COMMENT: I was trying to address the problem of having an

excess number of physical degrees of freedom left on the boundp-y after

having assembled the substructures.

COMMENT: I agree completely with those last comments about

reduction. You have the appropriate back substitution matrices on hand

presurmably to calculate the so-called slave displacements in that method.

I also want to ask about terminology. You kept saying standard approach

and I think you meant the Craig and Bampton approach, which does bypass

the complexity that is usually incorporated in Hurty's original component

load method. In fact, I think that's one of the things that has prevented it

from becoming very popular, up until Craig and Bampton did their work.

But I myself would say that Hurty's method is the standard and Craig andI

Bampton would be a modification of the standard.

COALE: The only modification that I recall is the elimination

of the rigid body modes and merely using boundary functions.

COMMENT: Yes, the rigid modes are still there, but they're

incorporated within all the degrees of freedom that you have in your connec-

j tions. I also wanted to say that I think this method has a very good future

and it does help to answer the question of how do you determine what

i degrees of freedom to retain in a reduced system. The answer here is

to retain the connecting degrees between the substructuies and the lower

normal modes as generalized displacements in each of the substructures.
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2 Since the decision is automatically made about what is to be retained, the

important question then is how do you cut your strunture up into parts?

• .... ything, of coarse, hinges on that decision!

QUESTION: My question concerns efficiency. In the selection

of the modes for the element, it seems unreal to consider idealized boundary

conditions like clamped conditions when we know that in reality the structure

will have some spring effect on the support. It seems to me that rather

than choose idealized conditions, we ought to make some wild guess as to

what the restraint conditions will be. Even though it's wild, it winl be

better than assuming clamped conditions. So that when we truncate the

modes, the lower modes will more naturally represent how the structure

wants to behave and hence we'll get better accuracy with fewer modes.

COALE: I agree with you; but there are two possible cases.

One is where you know much about the problem ahead of time and therefore

can make estimates. You would like to build into the program the ability

to take into account these estimates. There are other cases, however, where

you don't know to what other structure the structure is going to be joined. It

may be joined to several things and you don't know enough about the charac-

teristics of them to make that prediction ahead of time. Then I think you

have to go to something like this. You can't make estimates if you don't

know the characteristics of the structure or of the boundary or the structure

you're joining it to.

COMMENT: I think there is a place for component mode synthesis

in the situation which you described in these practical structures where the
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design process actually was based on substructuring principles. In other

words, different people probably design different components and you

assemble the components in the development of the actual structure. But

I think there is no benefit in applying the component mode approach to a

structure which in itself is a single unit. All you're using is a standard

Rayleigh-Ritz analysis procedure. You're using the component modes as

a means of defining a set of shapes and the particular set of shapes that

you're using is not a particularly well adapted one. In one case you men-

tioned getting 14 modes from 15 shapes but you had an additional 18 boundary

conditions so you had 33 Rayleigh Ritz inputs and this should obviously be very good

for dalculating 14 modes if you've any kind of intuition. I think the opera-

tion of calculating a bunch of component modes as a means of choosing

appropriate input functions for your complete structure is a point that I

Swould definitely question.

COALE: Well, the question that I mlist bring up then is what

method would you advocate for getting these functions in a very complex

structure?

COMMENT: That's where the real ingenuity lies. We generally

use unit loads applied to various nodes to define a mode shape.

COALE: They're not very good in general either.

COMMENT: It depends on the problem.

COMMENT: I'd like to caution against the idea of always being

able to get away with putting in the lower modes of a structure. It's been

our experience with shells which exhibit three classes of modes (extensional,
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* bending and torsional) that you can't just put in lower frequency modes. You

may have to put in a lower frequency bending and then perhaps one or two

membrane modes. If you really got nasty, you might have to put in a

torsional mode too. It depends on how the structure is behaving. You may

have to look through the spectrum and not just pick the lower modes.

COALE: Let me make one final comment and that is that I

like to use engineering judgment as well as anybody and I believe it should

be used wherever it can be. I'm interested, however, in a method that will

work for a structure where engineering judgment is difficult to apply.
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PANEL DISCUSSION C

THE LARGE GENERAL PURPOSE CODE

Chairman: D. Warren, Douglas Aircraft Company,
Long Beach, California

C. W. McCormick, MacNeal-Schwendler Corp.,
Los Angeles, California

Y. Rashid, General Electric Company,
San Jose, California

R. Melosh, Philco-l'ord Western Development
Laboratory, Palo Alto, California

S. Jordan, Bell Aerosysteins,
Buffalo, New York

WARREN: Our objective is to discuss large general purpose

computer programs in terms of the 4r advantages and disadvantages and to

describe sonme features of several of tne well known programs. Four of

our panelists have been involved in the development of large programs:

McCormick with NASTRAN, Jordan with MAGIC, Melosh with SAMIS, and

Warren with FORMAT. Our fifth panelist, Rashid, represents the single

purpose computer program as opposed to the large general purpose program.

The discussion will begin with a brief introduction oy me followed by opening

remarks by each of the other panelists. We will then open the discussion to

questions from the audience.

I'd like to kick off the discussion with a slide (see Figure 1) that describes my

idea of a complex problem in shell analysis. This is a Douglas DC-10 and is

somewhat different than the shells we have been hearing about for the last

few days. It is a fantastically large structure. Probably one of the most

astounding things about it is that only 18 months elapsed from ."he decision

to build to thf first flight. This schedule put a tremendous burden on the

anialysts because the first airplane had to be right. It is a $15, 000, 000 item
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and it can't be rebuilt or scrapped because of crude assumptions made in

the analysis. Another significant point is that the airframe has a warranty

for fatigue life. This also implies a very severe demand on the structural

analysis used to design the airplane.

This type of shell problem is not easily attacked with anything but a general

purpose computer program and in this case a very large one. One of the

more sophisticated elements of the structure is the aft-fuselage/empennage

assembly with the third engine supported by a pylon cantilevered from the

base of the vertical fin. The loads fr-3m the engine go through the pylon

and are added to the loads from the vertical fin, then through a system of

rings around the inlet duct for the third engine and down into the shell.

Loads are t.ransferred into the fuselage shell by frames rather than bulk-

heads. This aft fuselage structure is complicated further by a thruway

access for the movable horizontal stabilizer. The decision to have a straight-

through air inlet duct with ring frames rather than a bifurcated duct with

straight-through structure was made at an early stage of deAign based on

elaborate analyses including fail-safe studies. There are similar systems

of very complicated mechanisms elsewhere: large storage compartments

under the floor for the landing gear, large doors for access to the lower

level and the passenger level, and some trickery in the struct.aral design in

the side of the fuselage aft of the wing root to more evenly distribute the

loads of the wing into the fuselage shell structure. Such configurations are

very difficult to handle with any computer code specialized for partic'ilar

structural geometry.

Finally, I'd like to offer a few remarks to help clarify what we mean when

we speak of a large general purpose computer program. McCormick pro-

vided an excellent definition earlier today: "A large computer program is

one whose capacity is limited by the user's pocketbook and not the program."

If that definition proves to be too vague, we can resort to the following. A

large program is one which requires at least five boxes of cards for the

source deck, at least three levels in the overlay structure, at least two

levels of storage throughout the program, and coding that provides automatic

piecewise segmentation of data. For example, in matrix operations, a com-
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plete matrix need not fit into core at one time. Also, by general purpose we

mean without restriction as to geometry.

RASHID: A single special purpose computer program and a

general purpose program are difficult to compare directly. In those cases

where the special purpose program can be used, it often has decided advan-

tages over the general purpose code. For cases where the specific purpose

program can't be used, there is nothing to compare. Thus, I think that we

must consider that the alternative to the general purpose program is not a

single special purpose program, but a library of them. I propose then that

we compare the general purpose program with a library of special purpose

programs. There are seven advantages I have listed that accrue to such a

library and I'd like to mention these briefly.

1. First of all, as individual programs they offer great flexibility to a

large number of users. As a collective system they can be assembled in

such a way as to produce an analysis capability -Nf a size tailored to the

problem at hand.

2. They are readily made user oriented. Graphics capabilities are

easily incorporated and user instructions are generally quite simple com-

pared with a general purpose program. It's hard for me to believe that

the general purpose program could be made more user oriented than the

special purpose program.

3. Efficiency and economy are important advantages. Special purpose

programs are tailored for a single class of programs and therefore they

utilize the computer hardware in a most efficient way. This provides for

short running time, of course, minimum storage requirements and a

greater overall economy. There is not a great deal of bookkeeping neces-

sary a(, is required to bring the large general purpose program in and out

of the computer. Furthermore, we see computer data centers around the

country are each utilizing their own bookkeeping systems and accounting

procedures. It is possible that a short running program -nay cost more

than a long running program since the charges are a function of the special
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accounting systems of data centers.

4. Reliability is another important consideration. A library of special

purpose programs are separate systems internally. Thus, one does not

mix, for example, the coding for a complex inelastic, finite displacement

nonlinear analysis with simple linear dynamic analysis in the same pro-

gram. This helps to reduce the chance of misapplication by an inexperienced

user and therefore maintains reliability and confidence in the results. Further-

more, the fact that the relatively large size of general purpose programs leads

to the concentration of skills for operating the programs in only a few indivi-

duals.

5. They are more convenient that general purpose programs. For example,

different coordinate systems may be required to specify different shell prob-

lems conveniently. A global system might be fine in one case but a local

coordinate system is useful when one tries to interpret results or input bound-

ary conditions, I know of some general purpose computer programs which

utilize only on a global coordinate system, thus making them inconvenient to

use for boundary conditions which are naturally expressed in local coordinates.

If the general purpose progra n provides options for using several schemes,

then it clutters the program for those users who don't need such options.

Furthermore, from the computational point of view, different theories re-
quire different computational schemes. Take, for example, the memory

theory in creep versus the equation of state .heory. If we try to build both

into the same computer program, it getb very clumsy and inconvenient to

use.

6. The sixth point concerns accessability of special or general purpose

programs. A large general purpose program may be too complex and ex-

pensive to be acquired and operated by many concerns which need computer-
ized structural analysis capability. They are forced to do without it or turn

to someone else to perform the'r analysis. However, these same firms can

compile a library of special purpose programs which will effectively and

economically satisfy their anaiysis needs.
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7. The special purpose program can be readily adapted and modified to

one's own special needs; that is a very important consideration. Special

purpose programs form excellent building blocks by which one progresses

from a linear problem to a nonlinear problem and so forth or from a static

problem to a dynamic problem and so forth. They are less costly to debug

and can be carried out by personnel within the same organization without the

need to rely on other organizations to develop slight or major modifications.

MCCORMICK: I want to make several remarks concerning large

general purpose computer programs. Most of what I have to say here today

is based on my exper'ience in the development of NASTRAN. I regard myself

asi kind of an analytical tool maker and it's my feeling that in this role I must

try to make the most available to the most people. Large general purpose

computer programs are a good way to accomplish this. NASTRAN could

actually be considered a collection of programs although not in the same

sense that was previously discussed. If you were doing a static problem,

the computations performed in the computer are really in no way influenced

by the computations which would be required if you were doing vibration

problems or transient response problems. The same matrix routines and

certainly the same input-output routines would be used, but I really don't

believe that the efficiency of the static computations are adversely affected

by the fact that the program also has dynamic capability. In fact, I thInk they

are aided b, the fact that they are all a part of the same family. I think I

would prefer to call NASTRAN a large general purpose system which is

really a collection of programs which exists in executable form in a library.

The load time is essentially zero and you start an execution immediately.

The fact that it is a large system meana simply that it takes more library

space. But as far as executing a statics problem is concerned, the fact

that other capabilities such as transient response or flutter analysis exist

in the program has essentially no effect whatsoever on the execution of the

statics problem as far as the core you use or anything else.

I view developing a program such as NASTRAN as a job of looking at the

available computer hardware and looking at the problems you have to solve

and figuring out the best way to go about it. The hardware as you all know
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changes very rapidly and NASTRAN had far too long a development period.

I guess almost five years, and we practically have gone through another

generation. We are now in the third and if we're not careful we are liable

to get to the fourth generation bei..ce NASTIAN becomes fully operational.

Documentation of these large general purpose systems, of course, is

extremely important and itts never done very well according to anybody

except the guy who wrote the documents; maybe even he won't think it's

very good. We have considerable documentation for NASTRAN and we've

certainly made efforts to make it at least reasonably complete and accurate.

I believe I'll refrain from further comment at this time since I had an oppor-

tunity to talk at some length earlier when I presented my paper.

MELOSH: The advantages and disadvantages of special and

general pu. pose programs have been well covered. However, I'd like to

add that one role that the general purpose program serves better than the

special purpose is the role of communicating technology. General purpose

program developers are forced to adopt a unified approach to all structural

analyses. Thus approximations for special cases must be identified,

classified, and regimented for orderly program development and use. In

the special purpose program the technology transmitted may involve black

box approximations. Unaware of the approximations, the user may apply

the code when it is inappropriate.

Now, I'd like to say a few wcrds about SAMIS; the oldest nonproprietary

general purpose program. It has a thoroughly debugged capability and most

of the program inefficiencies have been eliminated. Because it is u.e of

the first general purpose structural analysis programs, it is the simplest.

It does all the things that McCormick mentioned this morning that a genera:

purpose code should do with respect to packing of data, management of

core, etc. Moreover, these housekeeping tasks are done in a straightfor-

w-3rd way. An engineer can modify the logic without the help of a systems

programmer. Finally, it's responsive. There's no black magic in the pro-

arM. the uer has complete control over every macro-operation. He con-

trols disposition of data, management of the sequence of calculations, and
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the approximations and error checks. This, in turn, imposes a responsi-

bility upon the user to understand his problems solution steps. Bearing

this responsibility makes the user better prepared to in:terpret and verify

solution results.

With respect to accuracy, let's take a quick survey of the state of the art.

Table I delineates the major error classes in any numerical analysis. The

principal errors we will discuss are quantification and manipulation errors.

Quantification error includes idealization, discretization and mapping errors.

Idealization errors are the most important of these because errors may be

unbounded and are not well understood. Manipulation errors involve either

gradual erosion of the mantissa (from the right) due to the sequence of

arithmetic steps (mantissa distortion error) or rapid deterioration of accuracy
due to an operation which destroys vital information contained in the lower

bits (critical arithmetic). These errors are important whenever low precision

arithmetic is used relative to problem size.

As program developers, we have a responsibility with respect to idealization

error. We must include low error guaranteed operators (finite element models);

guaranteed in the sense that Sam Key discussed earlier. We must guarantee

that the included operators will yield correct answers when the mesh is made

sufficiently fine. We have a responsibility to provide generality in the material

modeling; a responsibility to insure that the representations lead to bounded

error in representing the geometry of interest; and a responsibility to simu-

late simple common boundary conditions- -uniform distributions of pressure,

temperature, and mass, for example.

With respect to the state of the art, available programs are remiss primarily

with respect to operators. Many programs contain operators that are not

guaranteed. Some are even known to be unacceptable. Emphasis should be

placed on assuring that guaranteed operators exist in all general purpose

codes both to avoid structural design calamities and to fulfill responsibilities

as technology dissenninators.

With respect to manipulation errors, the program developer has thcee
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Table I. Numerical Analysis Errors

Error Claus Error Order Eror Family

oModelling.. Maping(Idealization) Discretization
1. quantificati 2aTransritio

Transcrit tionS Citation [Transmission
SI Truncation

Number bass
Conversion I Nu'n-e;r format

2. Input-tput Algorithm
Rendition 

Truncation
'ranats ion

Iteration . Convergence
3. Process 1•Accuracy criterion

Ap.roximation Prootess

•. anpu~tonE xponent exceedance Ovrlw

~4. Manipulation nefo

Mantissa distortion Attrtion
Critical arith-metic

5. Interpretation Unrnodelling Unmoothng
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responsibilities: (1) he must include low error algorithms; (2) he must

include meaningful error reports; and (3) for the sake of efficient utiliza-

tion of the computer, he should strive for consistent precision manage-

ment.

The state of the art indicates deficiencies in meeting the last two responsi-

bilities. No current program has meaningful error reports; although we are

addressing ourselves to attaining them in SAMIS. In this regard, a Goddard

study stimulated by Tom Butler shows that equilibrium, reaction, and Max-

well Reciprocity checks ar'e often meaningless. To my knowledge, no pro-

gram developers other than those involved with NASTRAN have attempted

consistent precision management. The failure to attain the goal cannot be

severely criticized.

This review indicates that existing general (and special) purpose programs

are deficient with respect to measuring idealiza,.on and manipulation errors

and noting implications on the accuracy of solution results. These deficien-

cies impose upon the engineer the burden of being a numerical analyst; a

burden which belongs on the program developers and which the engineer is

often unprepared to assume.

JORDAN: A good measure of the reliability of a general purpose

computer prograin, or any program for that matter, is the confidence that

the user can place in the results which are generated through his day to day

applications of the particular program.

The reliability spectrum is made up of many components; some of those which

apply to a General Purpose Structural Analysis System are shown in Figure 2.

One of the first measures of reliability is the type of element library contained

in the program. Figure 3 shows the element library available to MAGIC

users. It must be adequate to attack the class of pr)blem which you would

like to solve. The way I view it, it's the heart of the analysis system, and

even the most sophisticated software and graphics or similar things will

produce less than acceptable results without an adequate element library. A
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SUMMARY

SOPHISTICATED ELEMENT LIBRARY

ADEQUATE ELEMENT MATRICES

LIBRARY OF SPECIALIZED COMPUTATIONAL PROCEDURES

STATIC SUBSTRUCTURING

DYNAMIC SUBSTRUCTURING

CONDENSATION

0 PREPRINTED INPUT DATA FORMS

INTERNALLY GENERATED TRANSFORMATIONS

0 INPUT DATA CONFIRMATION PHASE

PLOTTING

* READABLE OUTPUT DATA

DISPLACEMENTS, STRESSES, ELEMENT FORCES,
REACTIONS

INTERNAL ERROR CHECKS (DIAGNOSTICS)

NEGATIVE MAIN DIAGONALS

MATRIX, POSITIVE DEFINITENESS

USE OF NON COMPATIBLE ELEMENTS

MODULAR CONSTRUCTION OF SYSTEM

DETAILED AND EASILY UNDERSTOOD DOCUMENTATION

Figure Z. Reliability Summary
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set of element matrices can be associated with the library as shown in

Figure 4. These are basically consistent matrices and can at the option

of the analyst be generated internally at the element level in the program.

These provide considerable flexibility in the type of operations that can

be performed.

When you want to handle large scale problems on the order of over 1000

degrees of freedom, you need a library of specialized computational pro-

cedures such as static and dynamic substructiring (Figure 5). Substructur-

ing allows you to handle the data which may beccnme unmanageable with large

degree of freedom systems or to more readily interact with design groups

within your organization if a change in the structure were to come about.

Furthermore, condensation techniques (e. g., Guyan reduction) in conjunction

with substructuring are also very useful. Condensation, however, needs a

logical rationale for selection of degrees of freedom which are to be con-

densed in any particular application. The use of energy based methods or

simple interrogation of the diagonals of the stiffness and the mass matrix,

examination of the ratios, and then using these values to decide which degrees

of freedom to keep or condense, is under investigation.

Reliability, is also related to how the input and output data is handled. From

my experience, preprinted input data forms (Figures 6 and 7) are very im-

portant. Furthermore, you need an input data confirmation phase so that.

you are able to check input data before you execute your problems. Output

should be in a condensed form, if possible, and if it is to be meaningful, it

should inclade at least displacements, stresses, element forces and system

reactions. I guess this last point is disputed somewhat by Bob Melosh.

Some programs don't give you reactions and it has been our experience at

Bell Aerospace Company that after we solve the problem the first thing we

turn to are the reactions for examination. Internal error checks such as a

negative main diagonal checks or a check on positive definiteness are a very

simple thing to implemnent and can save a lot of wasted time. Checks to

assure that the user has not linked two incompatible elements or failed to

define certain elements are also quite useful.
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I• I

COMPUTATIONAL PROCEDURES UTILIZED

TO SUPPORT ANALYSES

* STATIC SUBSTRUCTURING

* DYNAMIC SUBSTRUCTURING

* CONDENSATION TECHNIQTUES

0 AUTOMATIC DATA GENERATION AND

REDUCTION

* LARGE ORDER EIGENVALUE PACKAGE

Figure 5. Computational Procedures
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Another very important reliability factor is modular construction of the

system. The main reasons for the modularity is that if the finite element

program is to be a viable tool you have to be able to take advantage of ad-

vances in the state of the art very quickly. With the use of modular con-

struction in the MAGIC system, we at Bell nave been able to implement

new advances in the program very quickly.

Finally, and this point has been discussed previously, detailed and easily

understood docurnentation is a must. I feel that the more a computer pro-

gram is used, both within an organization and by otLar interested users, the

more reliable it tends to become. Documentation is probably the first key

step toward extended usage.

WARREN: I'd like to talk for a moment about my favorite program,

FORMAT. It is organized distinctly different than most other general pur-

pose programs (Figure 8). Basically, it is a thre- part program consisting

of a matrix abstraction package with interpreters at the front and back. User

oriented input data is processed loy Phase I which includes an elaborate file

data/edit capability and a matrix generation capability. The output of this

phase is a system of matrices on tape; these matrices are used as input to

Phase 2. The Phase 2 processing is completely controlled by the user and is

stipulated ir. a matrix abstraction sequence. The available operations in-

clude processes for solving simultaneous equations, matrix multiplication,

pseado matrix operations and some special operations. A "structure-cutter"

is included primarily for the force method of analysis and provides for con-

current solution of the equilibrium equations and automatic selection of

redundants. It is usable for other purposes, one of which is to determine

the optimum location for strain gages for a flight test article. There are

currently three ways to determine eigenvalues and eigenvectors, including

one for 2000 order systems. There are also operations such as print

matrices, save matrices, etc. Results of Phase 2 are more matrices on

tape which are translated by Phase 3 into a form directly usable by the

engineer without any auxiliary tables. Final output options are report pages

and pictorials, including isometrics cf structures and plots of matrix data.
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"MATRIX ABSTRACTION SEQUENCE

j PHASE I PHASE II PHASE III

Input-. Edit Case Dzttt Solve Matrix Print and Report

Tables and Problem Plot Results -Pages

7_ Gene rate CtePictorialsS~Matrices

Structure Cutter

Jnverse

-multiply

-Add

Eigenvalues /Vectors

atrix Print/Save

tc.

Figure 8. Operation of the FORMAT System
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One of the objectives of FORMAT is to eliminate the delays associated with

communications between special purpose programs. The idea is to take

maximum advantage of the generality and flexibility of matrix abstraction

tecaniques and the creativity of skilled engineers to appl.y the latest techno-

logy and most efficient approach to each analysis problem. This may not be

optimum use of machines but it is best use of calendar time, technology and

manpower in system development. We are currently adding other interpreters

to provide for the aerodynamic influence coefficients and static aeroelastic

solutions.

Figure 9 summarizes application of FORMAT in a production operation.

Three large analyses are included: approximately 22, 000 unknowns or

equations in the aft section, and 12, 000 unknowns each in the center section

and the forward section. Each one of these major sections was analyzed as

a series of substruztures and at no time did we solve 12, 000 equations at

one time. The forward section, for example, was done in 9 substructures.
Symmetry was accounted for in every substructure where it was applicable.

A rather unique idea was used in the aft section: multiple layer subst-uctur-

ing and joining. There are 16 substructures altogether; each one required

approximately 2/3 of the FORMAT 7094 capacity. Eight substructures were

joined to form a super-substructure A. Another 8 structures were then

formed to join a super-substructure B. Then A and B were joinedto form

the final solution. The complete solution was developed for unit loads on

'he structure because final external loads were not determined at that time.

All of this information is on file as part of a library of 30, 000 tapes for use

in analysis of future variations of this structure.

Figure 10 is the basis for some remarks regarding the economics of large

general purpose programs. Everyone emphasizes machine costs and I

find myself very frustrated because I don't believe that is really our prob-

lem. The big problem in my job is to design airplane., and it is very frus-

trating to see all of the available talent apparently dedicated -- lely toward

reducing computer t'Lme. In any case, there are two completely different

views of machine casts. One is the cost algorithm; the other is the rental

agreement. The two are completely different but related concepts. Two
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families of algorithms are it- use, and presumably they reflect the actual

performance of the available hardware and software systems. The first

algorithm includes a product of two binomials. The result includes coupling

terms that don't exist in the other system. The implication of the coupling

terms is a charge for resources which are not actually in use but held in

reserve during various other activities. The meaning of the cost computed

from the algorithm is complicated further by the fact that each term con-

tains an arbitrary factor. The primary criterion in determination of these

factors is that total algorithm "cost" for an accounting period must be

greater than the actual operational cost.

The rental agreement is the basis of actual machine costs. The most popular

agreement is depicted by the solid line. There is a fixed base cost for utili-

zation up to point "Al" which represents prime time for a month. Beyond

that utilization is an increment of cost based on a rate equal to 10% of the

rate indicated by the line QA. Most computer installations operate more than

one shift and the marginal cost rate applicable for "one more job" is indicated

by the line -B_. For simplicity in allocation of costs, large companies esta-

blish the factors in cost algorithms correspc ling to the rate indicated by

the line G'B. It is interesting to note that the ,arge general purpose computer

program is typically run on Saturdays, Sundays, and at night. This means

that the user is served in a manner corresponding to the rate -B_ but "charged"

at the overall average rate UB. This inequity compensates for the "service

•Y•" given to the user of special purpose programs at the "bargain rate B."

An integrated view of the idiosyncracies of the current machine cost pro-

cedures is provided by the following example. We found recently on our

latest implementation of FORMAT on the IBM 360 that we could revise

the JCL and very significantly alter the apparent cost. In reality we did not

change the amount of time that the company was billed for computer utiliza-

tion, however the algorithm cost that appeared at the end of the output was

reduced by 75%. This value certainly cannot be construed as an actual

cost savings.

Figure 11 shows data that are more basic to the economics of large computer
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program utilization. First, it should be noted that these values are indi-

cated with one significant figure. This degree of precision is per! aps an

optimistic description of their accuracy, however, there are somre very

definite trends. In general, these values are an estimate of the cost to

develop and use a large general purpose program on an actual production

system, and in addition, to provide rationalization for these large expendi-

tures. The FORMAT system development costs were of the order of $500, 000

over a period of three years. Training costs for introduction of this system

into our office were of the order of $50. 000. Application of this capability

to the first version of the DC-10 involved up to 150 engineers for design

analysis and documentation at an approximate cost of $5, 000, 000. The

computer cost during that same time for all analysis work was approximately

$500, 000. The 10:1 ratio applies to every project that we have evaluated.

This ratio is my objection to the preoccupation with computer costs. It
suggests that we could better invest our efforts by attacking the problem of

high manpower cost.

For the sake of perspective regarding computer cost rates in general and

the $500, 000 computer application cost above, it is worthwhile to compare

unit payoff values to other high rate development considerations. The most

significant system consideration is a possible delay in delivery schedule.

As indicated, the time value of a DC-10 at current investment rates is

approximately equal to the total operating cost rate for a third generation

machine.

As a further comparison, an estimate of the relative cost for one test condi-

tion on the DC-10 is WOO0 computer hours. These comparisons show that

computing probably is not the most significant cost consideration in system
development. Further, they suggest that method development objectives

should give at least equal emphasis to system development schedule ýŽ-Id pro-

duct reliability.

From the viewpoint of overall economics, generality and flexibility in the

computer code are intangible but significant. People are the most valuable
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resource of an organization and if you provide them with programs that

have flexibility and generality, they will find ways to save money and to do

better analyses. This reservoir of capability is wasted if they are provided

T Ionly a black box with restricted input and output slots.

RASHID: I'd like to ask Mac two questions. First, what level

of skill and degree of training is required for NASTRAN users; and second,

since NASTRAN is not complete, what are the plans for NASTRAN's future

development?

MCCORMICK As far as level of training required to use NASTRAN

is concerned, that depends a lot on what you're trying to do. I have trained

a lot of people at NASA centers and a few people in inaustry to use NASTRAN

(somewhat limited because NASTRAN is not yet widely distributed). My

limited experience has been that people can learn to use NASTRAN fairly

easily up to the level of their ability and by this I mean that you can't get

away from the need for engineering judgment in order to model the structure

and understand what you're doing. But as far as learning to use NASTRAN

itself, I have really not seen any serious difficulty. NASTRAN is not com-

pleted, and never will be of course, since continuing development is envisioned.

As far as NASA's plans for NASTRAN I, it was released last December (1969)

to a limited number of primary government agencies and aerospace contractors

for the purpose of evaluation. The evaluation is now complete and a new level

is being prepared which I presume will be released sometime this fall (1970).

Recently, Langley Research Center has agreed to accept the management of

NASTRAN and I presume it will continue to be distributed by COSMIC in the

usual way for NASA programs.

Earlier today Bob Melosh commented that no computer programs make de-

cent checks on whether the answers are any good. What checks should be

made to insure that the answers are meaningful?

* MELOSH: With respect to the checks that should be used, let

me say that there should be sufficient checks to perform three functions:
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(1) to identify magnitudes of the errors due to the various source of the

error; (Z) to identify from the user's point of view the magnitude of the

errors of displacements and the magnitudes of errors in stresses, eigen-

values, eigenvectors, etc; and (3) there ought to be error measures that

provide some information for future correlation regarding the errors which

may be found in future problems. That Is, some kind of measure which

tells you that if you solve a problem of such and such order of such and such

complexity that then you can expect, based upon a statistical study, that the

errors will be of such and such a magnitude based upon the precision that

you are using in your installation.

The checks I like are energy checks for displacements, and a combined energy

and generalized force precision check for stresses. The effectiveness of

these checks is reported in a Contractor's Report to NASA/GSFC to be pub-

lished soon.

Well, now I think I'd like to ask a question of Steve. How should structural

input be organized to minimize user errors?

JORDAN: In the MAGIC system we felt that input data should be
organized on the concept of preprinted or permanently labeled printed input

data forms. Figure 1Z shows the kind of concept that I mean. I might

note that the keypunchers punch directly from these forms. This particular

form is used for input into our material library and I'll just go through it

real quickly. It's prelabeled at the top MATER. The slash next to that

block and these blocks down here are what indicate to the keypuncher to pro-

ceed to the next IBM card for punching of subsequent data. The sheets are

permanently layed out in this manner and the analyst has an exact position

in which to delineate each input item. The computer output for this particular

form is shown in Figure 13.

I have a question which Dale has partially answered already. In your

experience have you found that FORMAT in effect has a major impact on
design or something like the DC-10 and really does it sa-v. money for the
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company or is analysis still done to a large extent after the fact?

WARREN: I'm glad you asked that question. Yes, the analysis

work that we are doing on this system does have a direct impact on the design.

Every piece of the gtructure has bean analyzed at least twice: the first time

with a rough grid system to make very basic design decisions, and a second

time to make refinements such as selection of material gages. For ex, am-

ple, the rough grid case on the aft section of thie DC-10 determined the

number of vertical irpars in the vertical stabilizer which corresponds to the

numbei of rings in the inlet tube; thiE was a very fundamental decision in

the structural design. The wing fuselage intersection was btudied in de-

tail using a rough grid system prior to the decision to proceed on the pro-

gram. Using the method of subsequent modifications, 46 configurations

were studied parametrically to optimize the detailed framinig of the fuselage

intersection,.

I have a question for Joe. I would think that as a consultant that occasionally

you have a customer asking for a capability outside the family of special

purpose programs that you have. Don't you on t.,ese occasions wish that you

j had a general purpose program handy so that you could grind out some num-

bers rather than write a program on the spot?

RASHIM: If I don't have among the family of programs in my

possession a special purpose program that handles the problem, then I

must do with what I have using my engineering judgment and intuition. More-

over, if such a problem occurs very often, then I must develop a special

purpose program for the class of problems, in which that particular problem

belongs.

WARREN: I thir±K it's time to open the discussion to the floor.

QUESTION: We operate in the environment most of these gentle-

men in the room operate in and it's been our experience to have programs

running today and they won't run tomorrow because we have a system change.

What problems do you have getting a big code like NASTRAN from one system
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to another?

COMMENT: NASTRAN is written almost entirely in FORTRAN IV.

You need to do something like this just to be able to operate on the number

of computers that we r'un across. W'. use a subset of FORTRAN IV actually.

We had to do that in order to get across the machines. Furthermore, we

tried to hold down mac.-'ne dependent FORTRAN operations that programmers

like to use so that we would have minimum effect from changes of one sort

or another when they change levels. Not only do operating systems change,

the FORTRAN compilers change too. We looked at this very carefully in

the beginning and we've had minimum difficulty with it in NASTRAN, but it

coald cause you trouble. Originally, I felt that we needed more aasembly

language in NASTRAN than we currently have. There is no assembly language

in any of the functional modules in NASTRAN. The only machine language in

NASTRAN in the released versions from NASA are in places where we have to

interface with the resident operating system for such things as the date aiid
• time, availability and kind of secondary storage, and so forth. On the other

hand, I have found that, while it isn't necessary, you can certainly improve

the efficiency of the program if you're willing to do one or two other things

in assembly language. For instanct;, in the 360 version, -he 10 package is

all FORTRAN and the packing is all FORTRAN. We have recently been play-

&ng around with some assembly language for the 10 package and it substantially

improves things.

QUESTION: I wanted to ask Mr. Warren a question. How can you

sleep peacefully knowing that you have 30, 000 tapes that you might have to

read tomorrow? And what are the chances that just one of these tapes won't

read and all your two months effort is wasted?

WARREN: We have a calculated risk procedure that we use on

tapes and when w-4 do update tapes we use the same concept that is used by

systems people; that is we maintain a father and grandfather according to a

standard plan. We do this as a calculated risk based on how much it costs

to generate a tape. If it's not too much, we may not maintain backups. To

my knowledge, the only times we have ever suffered were because a tape was
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lost in the library system, not because it was unreadable.

QUESTION: I have a particular question for Bob Melosh. I want

to congratulate you, Bob, for spending a large part of the day in making a

lot of people feel nervous about what they have been doing in the past. Many

who have been more or less deluding themselves are exposed in a certain

way. I feel a little bit exposed about a comment that you made earlier about

the reaction check in general not being a worthwhile thing put into a general
or special purpo3e program. I've found it to be a pretty valuable tool myself

so I'm one of those who has been deluding himself for quite awhile. Would

you explain why?

MELOSH: The central idea is that when you calculate the reac-

tions you are differencing displacements that. are generally small because

those are the displacements near the reactions. Essentially you are doing

something comparable to an estimation of strain by differencing displace-

ments, or if you like, you are predicting a stress even though it looks like

a generalized force. Take a simple problem like a cantilevered beam. When

you consider the differencing of displacements at the root, these data give

you no idea what the accuracy will be when you differentiate displacements

at the tip. It is much better, ui course, to take a complete residual check

and check it over the whole structure. Unfortunately, that doesn't test

whether the displacements are meaningful or not, it only tests whether there

is any meaningful data for differentiation. You can have very accurate di3-

placements and still get very poor stresses.

QUESTION: Regarding the element library and a general purpose

program being as general as possible, I would like to know why so many

general purpose programs wind up with fixed numbers of degrees of freedom

usually built into the coding?

MCCORMICK: In NASTRAN it's going to be changed as soon as pos-

sible in order to accommodate the newer elements.
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COMMENT: Earlier the question was raised as to how much effort

is required to train a nm.an to use NASTRAN. I guess I'm one of those who

attended a two week class with others having levels of sophistication ranging

from very experienced people to people who had never used a general pur-

pose program. Within the rigid format part of NASTRAN, they all now use it

with reasonable success. It's a good self-teacher too. When you do make a

mistake, the diagnostics generally guide you to the correct input. I would
say it teaches rather easily on the superficial level and people are now be-
ginning to get more aggressive and have begun rearranging it themselves.

QUESTION: I want to direz: a question to Dr. Melosh. In the

beginning I was almost in agreement with you not to check the reactions,

however, I think this story has gone a little bit in the wrong direction. My

understanding of any problem of structural analysis is that one of the very

first prerequisites that must be satizfied in order to have at least a chance

for a unique solution is the equilibrium of the entire system. Now if you

don't go through the equations, don't compare them to applied loading, then

you really don't know anyt•hing about the solution. I think the first prerequi-

site for a solution to be unique is the equilibrium, so I consistently check it.

I wonder why you insist that we don't have to check reactions?

MELOSH: Well, reaction checks may be good confidence builders

but they don't necessarily correlate with accuracy. You can satisfy reaction

checks very well and have very bad results and the converse can be true. So,

if you want a reliable indicator that sometimes will make you feel happy, then

stay with reaction checks. Reaction checks are checks on your ability to

predict strains, not your ability to predict displacements, and if you'r-

interested in displacements you may throw out a good analysis because you

made a reaction check that you didn't like.

COMMENT: I disagree for the reason that the finite element method

for each joint actually solves equilibrium equations. If you turn to your

original stiffness matrix, put in displacements, then compute the reactions

based on discrete equilibrium, it has nothing to do with the strains. Strains

are the consequences of tha&. As a matter of fact, if your compute strains
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near the boundaries where these reactions are computed, they are worthless

because you almost never predict stresses correctly except some place in

the middle of the element. Yet the reactions very correctly satisfy the

equilibrium at each of these nodal points. Therefore, they are not related

to strains at all at their particular boundary.

MELOSH: Since reactions are calculated by differencing deflec-

tions, they are comparable to strains in a numerical sense. It is in this

sense that I have used the term strain. It is true that the "closure" of the

analysis does not depend on approximations used tk relate strain (or stress)

to the generalized forces (reaction) of the e~ement.

JORDAN: f thib.k we're missing one important point. Regardless

of the accuracy check Ppects, reactions are very useful information to the

stress analyst along with element forces, and it doesn't hurt him to point

!! them out. In fact in most cases, they serve as viable equilibrium checks.

I don't feel that we should throw them out just because they might be inaccurate

in some cases.

MELOSH: We shouldn't upe that for our criterion for accuracy.

That's what I'm saying.

JORDAN: I agree; however, they can act as a criteria for accuracy.

"WARREN: I'd like to briefly summarize. You should be aware that

most of the members of the panel have mentioned privately that they believe

that this issue of special purpose versus general purpose computer programs

is a fabricated one. There is a place for each kind uf progra'n, and there is

a place for each kind of analysis work. From my point of view, in the final

analysis it's all based on cost effectiveness of the whole system and that

means the people, the available computers, and the problem at hand. This

certainly puts the demand on the special analytical approaches t ha provide

more guidance for the user in modeling his problems to analyze them eithper

by special purpose or general purpose programs. I'd like to close the meet-

ing and thank the members of the panel.
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The following statement was prepared by Dr. Neil Prince of Gulf General

Atomic to support the position of Dr. Rashid and to demonstrate some of

the benefits of special purpose programs.

Statement by N. Prince on

Special Purpose Sheli Program SHELL-3D

The production version, SHELL9, of the special purpose finite element
shell analysis program SHELL-3D developed at Gulf General Atomic is
operational. Very briefly, SHELL9 is particularly well suited for intersecting

three-dimensional thin shells with any desired loading distributions. The
basic element is a triangular plate with cubic membrane and cubic bending
polynomial displacement fields. SHELL9 results in 3 displacements,
3 rotations, and 3 membrane strains computed in the nodal surface coordinate
directions.

Some interesting and informative analysis results have been obtained
with SHELL9. Fig. 1 shows the computer graphics generated finite element
mesh for a qua--ter of a nozzle-to-cylinder intersection structure that has
been experimentally investigated at Oak Ridge National Laboratory for an
internal pressure of 50 psi. The idealization consists of 291 nodal points
and 493 elements.

Comparison of the SHELL9 model inside and outside surface axial and
circumferential stresses with experimental data in the vicinity of the
intersection for the longitudinal and transverse planes are shown in Figs.
2, 3, 4and 5.

These plots are useful for observing the stresses as a function of one
parameter but they do not show the distribution of the stresses throughout
the shell. The capability of visualizing the surface stress distribution, for
instance, in the vicinity of an intersection, is a very important consideration
in fully utilizing a special purpose three-dimensional shell program. For
this reason, orthographic projection plotting of the surface stress contours
has been included ae a necessary adjunct to the SHELL-3D program.

Typical examples of computer generated plots for the nozzle-to-cylinder
problem are shown in Figs. 6, 7, 8 and 9. The projection of different
viewing planes, magnifications, and removal of hidden lines allows a wide
variety of options for the analyst to use in viewing the numerical results at
critical regions of interest.
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T.PERFECTION SENSITIVITY OF ELASTIC STRUCTURES:
THE SECOND APPROXIMATION FOR UNIQUE MODE BUCKLING

Gerald A. Cohen
Structures Research Associates

Newport Beach, Ca~iiornia

Abstract

It is shown that the usual Koiter-type expansion relating the load
fartor to the amplitude of the bifurcation mode contribution to equilib-
rium displacements becomes ambiguous when higher order terms are
retained. In order to obtain a ýcond approximation for limit loads
associated with small finite impeffcections in axisymmetric structures
with unique harmonic bifurcation modes, a relationship between the load
factor and the work deflection, valid for imperfect structures at loads

* in the vicinity of the bifurcation load of the perfect structure, is
derived. Since the work deflection has physical meaning, this relation
is unique and can be used to obtain the limit load as the maximum value
of the load factor. The resulting expression for the limit load factor
is of the same form as that obtained in a previous paper in iVnich a
second imperfection parameter 0 was introduced but was obtained without
consideration of all the contributing terms. Thus, the present 'esult
"corrects the formula for B given previously. An interesting aspect of
the result relates to the special case of a linear prebuckling state
with negligible prebuckling deformations of the perfect structure, and

* imperfection displacements proportioiv-1 t its buckling mode displace-
ments. In this case, the parameter 0 reduces to zero, so that the
second approximation coincides with the first approximition. in contrast,
the generally accepted result for this case, given by Budiansky and
Hutchinson, implies a 0-v.lue of unity. In light of the present result,
their result does not appear to be a self-consistent approximation.

I. Introduction

In a previous paper (Ref. 1) Koiter's asymptotic imperfection theory
for unique mode buckling was rederived using the series expansion approach
of Budiansky and Hutchinson(Ref. 2). This theory allows, through an
analysis of the perfect structure, the approximate calculation of limit
buckling loads of geometricall/ imperfect structures in the vicinity of
simple bifurcation loads of the corresponding perfect structure. The
first-order results presented there for the limit load [Eqs. (37) and
(38) of Ref. 1] are included in Koirer's somewhat more general formulas
[Eqs. (45.21 and (45.10) of Ref. 3]. In on attempt to improve the

To be presented at the Conference on Computer-Oriented Analysis of
Shell Structures, Palo Alto, August 1970
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accuracy of these formulas when the limit load is not in the immediate
vicinity of the bifurcation load, a second imperfection parameter 8 was
introduced in Ref. 1. Hovever, as noted there, this did not constitute
a consistent second approximation, since terms tacitly neglected in the
assumned displacement expansion contribute to this approximation. On the

other band, ccmputer results (Refs. 4 and 5) based on the 0-formula of
Ref. 1 suggest that for many shells, for imperfections large anough ýo
produce realistic buckling load knockdowns of 0.6 or less, a second
approximation is necessary for an accurate calculation of the limit load.

In this paper, a consistent second approximation for limit loads
due to imperfections in axisymmetric structures having unique harmonic
bifurcation modes is derived. In the usual Koiter theory only the
dominant terms are retained in the equilibrium relation between load

| I factor A and expansion parameter t, where C is the amplitude of the
contribution of the perfect structure buckling mode to equilibrium
states of the imperfect structure, and the maximum value of X with
respect to C defines the limit load. When higher order terms are re-
tained, the X-C relation becomes ambiguous, since the coefficients of
these terms are not uniquely defined, and therfore cannot be used direct-
ly to obtain the limit load. Instead, the mathematical parameter C is
eliminated in favor of the "work deflection" A, defined so that the area
under the A-A curve represents the work of the external loads. The A-A
relation, being a relation between physically meanin!!ful quantities, is
unique, and the limit load can then be determined as the maximum value
of A with respect to A.

VT-- -alysis of this paper is divided into five pares: 1) Develop-
ment of a consistent second approximation A-C relation, by a straight-
forward extension of Koiter's original method; 2) Rederivation of this
approximation by extending the series expansion method of Ref. 1;
3) Reconciliation of the results of parts 1 and 2; 4) Derivation of the
corresponding X-A relation for axisymmetric structures; and 5) Calcula-
tion of the limit load and deflection from this relation.

II. Koiter Theory for Unique Mode Buckling

As in Ref. 3, the potential energy H of an impertect structure is
expressed in terms of the potential energy P of a model or perfect
structure as

H(U) - P(U) + Zq(U) + (()2)

Here U reprqsents the displacement field of the structure due to load,
z is an ivperfection amplitude, and Q is a functional of U which alse
d4p.rds nn the imperfection chape U. For an investigation of eouilibrium
states for which the displacements differ only slightly from the prebuck-
ling displacements u0 of the model, it is convenient to express U by
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U• -uo(A) + U (2)

where A is the load factor for a proportional load system. As discussed
in Ref. 3, the integrands of the functionals P(u 0 +u) and Q(u 0+u) may be
expanded to give

ll(O()-.A -P(u0 (A)) + !Q(:±a(A)) + Ph[u] + P Eu] + Pxru] + Pl~u]

+ l{Qi[u] + Q2[u] + Q3[u] + Qu](3)

where P •u] and O%[u] are homogeneous functionals of degree m in the
displacements u and their derivatives. The dependence of these func-
tionals on k is indicated by the superscript X; henceforth the symbols
P and Q without the superscript X will denote evaluation of these
functionals at the bifurcation load A - A of the model.c

According to the principle of minimum potential energy, of all the
kinematically admissible displacement fields u, those which extremize H
at a constant value of A determine equilibrium states of the structure.
Since for a given value of A, the first two terms on the right-hand side
of Eq. (3) are constant, they do not affect the extremization of H and
can therefore be disregarded. Furthermore, since uo(A) is an equilibrium
state of the model, the first-order change in its potential energy, viz.
A

Pl[u], vanishes. For au investigation of the equilibrium states at loads
in the vicinity of A - Ac, the remaining terms of Eq. (3) are expanded in
a Taylor series about A - Xc, to give

F Xr] - (uo+u) - (Uoo

- P21u] + (A-Ac)P2[u] + (l/2)(A-A )2p''[u] +

"+ P3 [u] + (A-Ac)P3[tt] + .. o + P4 1[uJ + ".' + Z{QI[u]

"+ (A-Ae)Qj[u] + .". + Q2 [U] + ... + O(U3 )) + O(Z2U) (4)

where the omitted terms are higher degree in (-A C).

Following Koiter, the extremization of FA[u] with respect to u is
performed in two steps. For this purpose, u is decomposed into a
component proportional to ul, the buckling mode displacements of the
model, and a kinematically admissible component u orthogoaal to u1 in
some sense but otherwise arbitrary, i.e.

u - + (5)

Thc orthcgon•Uty of u and uI is expras.ed in terms cf a b-l.•.nza-
functional T1 1 [u,v] by

T 3 ([uj,;] - 0 (6)
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The quadratic functional T2 [u] from which Tl.1 [u,v] is derived is supposed
to contain all the arguments of P2[u] and should be positive-definite but
is otherwise arbitrary. In general, doubly-subscripted functionals are
defined by the expension

rM-1
"S•M[u+v]m Staiu] + Sm[v] + k S Muk,k[UV] (7)

U ii m k-i

which implies the relation

S ukk[Uu] - (M)Sm[u] (8)

where (U) are the usual binomial coefficients. Note also that S [u,v]
k: m,n

is homogeneous of degree m in u and its derivativee and of degree n in v
and its derivatives. With this notation the variational equation for
the buckling mode ul takes the camnacL form

Pii[ui,6u] - 0 (9)

where Su represents arbitrary kinematically admissible displacement
variations. Setting 6u - u1 in Eq. (9) gives

P2 [u 1 ] - 0 (10)
For unique mode buckling, Eq. (9) is not satisfied by any kinematically
admissible function orthcgonal to ul and further

P2 [rl] > 0 if T11[ui,n] - 0 (11)

In the first step of the extremization process, F Ju] is minimized
with respect to u for an arbitrary constant value of the coefficient •.
The resulting function FIF;X) is then extremized with respect to E to
give the desired equilibrium relation between X and &. Introduction
of Eq. (5) into Eq. (4), expansion according to Eq. (7), and arrangement
of the result in ascending degree in u gives
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Fý[gujru] - 2 {(A-Ac)Pj[uj1] + (1/2)(X-) '[ul] + ..
+ &3{P 3[u1] + (A-AC )p[ul] + -.. + &4 fP[u1] + '..

+ 4jQJ[uj1 + (X-) Q1•["•] + ... + { 2[u 1 3 + '"I

+ O(Zt) + O(Z2t)

+ E{(X-X )Pjj[uj,;] + (1l2)(X-X '1p{•[u1,Z) + ..

i{+ P+2 {P 2 1 [u 1 ,u] + (X-A c)P 1 [Uli] -j .. }+ &3{P 3 1[ul,U] +.']

+{IQ[u] + (X-x)Qi[•] + ... ) + {fQx[uiu] + ---}

:+ o(Z2) + O(Z2;)

+ P2[;] + (A-A dP1[u; + ... + {P12 [ui,U] + ---I

+ {•2 P22[ul,;] + ".-- + Z{Q[21u + "."} + O(Z&;2)

+ P3[• ] + ... + {P 13[ul,u] + ... I + O(Z 3 ) + P4[;] (12)

In obtaining Eq. (12), use has already been made of Eq. (10) and Eq. (9)
with 6u - u. In the approximation to be obtained it 'b unnecessary to
retain terms following P 2 [u] in Eq. (12). The neglect of these terms
will be justified after obtaining the minimizing solution for u. For
this purpose, it is noted that the dominant terms following P2 [u] are-
for sma±± vawlues of •'.A-Ac' F' and ( - (-c)P•[•u], 0Piaui921, ZQ2 [u],
and ? 3 RuJ. The remaining expression is the same as that used by Koiter
[Eq. (43.7) of Ref. 3] with the exception of the two additional terms
underlined in Eq. (12). To minimize F [Cuj+u] with respect to u, one
computes the difference

F A [tuj4:ii+n] - F A[CU1 L7u] = {(X-X c)Pil~ul,t]+(l/2)(X-X )2pj'u1n+w

+ { 221 ul,n] + (A-A )P21 U1,rn] + ... } + f{P3 1[u 1 ,r] + '"I

+ ZfQih]l + (ýX-AX)Qlih + ...) + 4{Qii1ui,n) + ..

+ O(Z&rn) + o(Z2n) + P1 1 1[,n] + P2 [TI (13)

For ; to be the minimizing solutien, the terms of Eq. (13) which are
first-degree in n must vanish for all kinematically admissible n orthog-
onal to ul. For if tiere exists such a di.splacement field, say n*, for
which these linear terms did not vanish, then the difference given by
Eq. (15) wuu!d be negati•e fur eiuher n - ,% or -nt• for sufflciecLly
small n*. Furthermore in view of Eq. (11), u satisfying this condition
does indeed minimize F^[gu1 +U]. To obtain a variational equation for
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with an unconstrained variation 4 Su, i-tul is substituted for t.

Because of the condition T.1 [u1,,n] 0, it follows that

t T 1 [(uj,•]/2T 2 [uj] (14)

After substitution, the resulting equation for u is

( c){Pjl[U1,4] - 2tP[(ul]1 + (l/2)4(X-;LC) 2{Pi[ui1,;] - 2tP•'[Ul]}+...

+ •2•[P21(uP.z - 3tP 31u1]} + 42 (-Xc){fPj[uj.ý] - 3tP3[u1 ]} +

+ A3{P3 1[u1,t] - 4tP4[u•]} + ... + 1 4 - tQi[u1}

+ 1(X-•y{•I[• - tQl[u]} + ... + { - 2tQ 21u1]} +

+ 0()12t) + 0(12C) + p11iir;i - 0 (15)

wihere use has again been made of Eq. (9) with Su - u.

Equations (151 and (6) uniquely determine ;, since the difference of
two solutions for u would satisfy Eq. (9), contradicting the hypothesis
of a unique buckling mode. Because of the linearity of Eqs. (6) and (15),
the solution for u can be written as

u - (A,-A),) + (1/2)&(x-),) ' + ... + 2 + 2 +

+ f3 + ' + + + W(kX-c)4I + ... + W-1 +

+ o(j2) + 0(Z2) (16)

For E - u, Eqs. (6) and (14) show that t - 0, and hence Eq. (15) shows
that the sum of the terms of Eq. (12) which are linear in u is equal to
-2P 2 [u]. Making this substitution in Eq. (12) gives the following
expression for the minimized function F(Q;X)

p(t;X) =- t 2 [(X-Xc)P([u1] + (1/2)(X-A ) 2F2'1[u] +

+ &3 {P 3 [ul] + (X-Xc)P•[ui] + ... } + t"4 P41u 1] + "-I

+ Z{Q1(uj] + (X-X )Q-[u 1 ] + ... I + 2{Q2 [U1  +

+ O(I3) + O(Z2,) - p21u) (17)

where i is given by Eq. (16). From the terms of Eq. (12) which were
neglected and Eq. (16), it may be seen that the lowest order terms
neglected In Eq. (1?) are those whilh are fifth degre. _n r an.4- -[i.e., C2(X-X c)3. 3 (X-X )2, &4(X-X ), and C5], those of order wh ch

are third degree i anf A -X (i.e,-, &2(-c), and 3
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those of order Z2 which are linear in E and. A-At [i.e., Z2& and Z2 (X-AX)],
and those of order Z3. Therefore, upon substitution of Eq. (16) into
Eq. (17), terms of these orders should be consistently neglected. As a
consequence, the only terms of Eq. (16) which contribute to this approx-
imation are &(X A-c)f, t2 2, and &00; tha corresponding result for

F(WA) - (A-X )A& 2 + (X-A c) 2 A2'& 2 + A3C3 + (X-Xc)Aj 3 + A4 t 4

+ ZBB + Z(X-Xc )BSI + ZB2&2 - Z2P2 [* 0] (18)

where

AV (l/2)Pj'[uj) - P2eW[4

A3 P 3[u1]

Aý - P.[uj] - P11[*ji 2]
(19)

Ai4 - Pa4ul] - 22

B, - Qj[uj]

B2 " Mull - P11LO0,ý2]

Variational equations for the functions 00, *•, and h2 are, from Eqs.
(6), (14), (15), and (16).

P11[fO,4] + QI[t] - Tjj[Uj,c]Qj[ul]/2T2 [u1] - 0 ; Tj 1 [u1 ,ý0 ] - 0

P1[4,d] + Pil[ul,f] - T11[u1,C1P'[uj]/T 2 [u1] 0 ; T11[uj,$1, 0 (20)

P11[2,4] + P2 1 [uI1 4J - 3Tjj[u1 ,1]P3 [u1]/2T2[u1] 0 0 ; T11 [uj,* 2] a 0

Equilibrium states at the load A are determined by stationary
values of F(&;X) with respect to E. Thus: the equilibrium X-ý relation is

3F/a = 2(A-XC)AE + 2(A-Ac ) 2Aj'C + 3A3•2 + 3(A- c)AE 2 + AA• 3

+ jB1 + Z0X-X )B' + 2ZB 2& - 0 (1

The lowest orders neglected in this relation are ý(A-Ac) 3 , t2(A-A C)2 ,

C 3(X- c ), 4 Z(AAc)2 , z _c ), Z2, and Z2. In Ref. 3, Koiter retains
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only the three dominant terms on the right-hand side of Eq. (21), viz.
2(A-A )A•, 4I, and the lowest degree monomial in 4 with a nonzero
coefficient. However, ir should be noted that Eq. (21), with all terms
retained, is a consistent approximation and is developed further in the
remainder of this paper.

From Eqs. (19), the coefficients in Eq. (21) are seen to depend on
the three functions *0, 01, and *2, in addition to the buckling mode ul.
Equation (21) can, however, be reduced to a simpler form depending on
only two additional functions in place of the above three. Rewriting
Eq. (21) slightly, one has

(A--c -- B1/2AI - 3A 3 42 /2A2 .... (22)

Substituting Eq. (22) back into Eq. (21) and neglecting terms of the
orders already neglected gives

(h-X c )4 - aAc 2 - bA J3 - 4t[c + O(A•-c) + YXc(] (23)

where

a = -3 A3/ 2) cAl

b - -[4A4 + 3 a cA' + 2(aXc) 2 AI']/2XcAl

a - B1 /2A A (24)

(L- - 2acXA2)/2AI

y (2B2 -3ctA A' - 2aaA~2Aj')I2X Al

Similarly, substitution of Eq. (22) into Eq. (16) and retaining only
those terms which contribute to this approximation gives

Ur W 2 u2 + Zu 0 1  (25)

where

+ c (26)

U0 1  O- a

From Eqs. (19), (20), (24), and (26), the equations which determine u2
and u0 l are

S+ Da tul-C "(27)

Pullucd + QMC] - cP11[ufl,V] 0
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and

T1j[u1 ,u 2 ] Tai[Ul,U01] - 0 (27a)

In contrast to the functicns *0, 0i, and 62 [see Eqs. (20)], the
dependence of 12 and u0j on the choice of T2 [u] is only through the
supplemental conditions (27a). Given the functional T2[u], these
conditions would make u2 and u01 unique. However, u2 4nd u01 will in
general change with the choice of T2 [u]. From the fact that, for
unique mode buckling, Eq. (9) had only solutions proportional to ul,
it follows that Eqs. (27) alone determine u2 and u01 to within additional
functions proportional to ul. Since the choice of T2 [u] cannot affect
results of the analysis with physical meaning, it will be of interest
to verify that such results are not affected by this degree of arbitrar-
iness in u2 and u 01 .

In order to show that b, 8, and y depend only on u2 and u01 , in
place of 00, of, and 02, several auxiliary relations derivable from
Eqs. (20) by choosing C = *0, ý*, and 02 are useful. These are

P2[01] - P1u,1/

S- -P21  UI, 2]/2

P1110,- 2] -Pi[ul,02] -P2 1 u•,U1 4] (28)

P1100,11 -Phl u1 ,0o]

0 -

Using Eqs. (19), (24), (26), and (28), one obtains the results

a - -3P 3 [ul]/2X P'[u1 ]

C 2b"-{04P[uI] + 2P21[Ul,U2] + aA (3P'[Ul] + P1l[UlU2])

+ (aXc) 2Pj'[ul]j/2 cP'[u1]

a - Qi[uj]/2X cP2[u] (29)

0 - {Qj[u1 ] + P 11[u1 ,u01] - aXe P'[u 1]}/2P•.(uj]C

y - {2Q2[Ul] + 2P21 [ul,U 01] - aXc (3PI[ul] + Pj11U 1 ,u 2])

- aX 2p' (u1 }/2X Pj[uj

An alternate expression for y, independent of u0 j if a 0, can be
obtained by setting • =u 01 in the first of Eqs. (27), - u 2 in the
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second of Eqs. (27), subtracting the resulting equations, and using the
result to eliminate P2 1 [ul,u 0 1 ) from the above expression for y. This
gives

y - {2Q2 [,.] + 2Q1 [U2] - 3aX (Pi[Ul] + P11[UlU2]

- 2aX P11[ul,u01] - aaX~pj'Eui]I/2X Pl[ul] (30)

As noted previously, the functions u2 and u0 1 are only determined
to within additional functions proportional to u 1 , and consequently
Eqs. (29) do not uniquely determine the coefficients b, 8, and y. In
particular, if in Eqs. (29) u 2 and u0 1 are replaced by u2 +C2u, and
u0 1+C0 1 u1 , respectively, then b, 0, and y change by the amounts C2 a,
Col, and -(2C0la + C20), respectively. The consequent ambiguous nature
of Eq. (23), when all terms are retained, makes the determination of

* limit loads from it unfeasible. This problem is treated in Section V
of this paper.

III. Series Expansion Method

As a prelude to the determination of buckling loads of imperfect
structures, equivalent results to those of the preceding section are
derived in this section using the method of Ref. 1. It may be noted that,
although the notation used in this method is somewhat less abstract than
that of Section II, this development is somewhat less general J.A that it
is based on the assumption of small strains.

A displ:zement ei:-;nsion is ass,'-, 1- the form (cf. Eqs. (2), (5),
and (25)]

U= u0(X) + u1 + • 2u 2 + U3u + .-. + Z[u 01 + (A-Xe)uo

+ +ull + ... ] + O(Z2) (31)

In contrast co Eq. (25) of Section II, it will be necessary to retain all
the terms shown in Eq. (31), since the equations for the coefficients
a, b, ... , *, a, 0, ... of the expansion corresponding to Eq. (23), viz.

(A-Ac ) -aX c&2-bX c ...... --[ax c+B(-Xc)+YX c+.".]+O(1 2 ) (32)

are to be derived from the compatibility conditions for the functions
u2 , u 3 , ... , u0 1 , u~h, ult, -.. , respectively. These compatibility
conditions are necessary since the homogeneous forms of the equations
for these functions are identical to the cigenvalue equations for the
buckling moue and therefore have the nontrivial solution ul.

If the strains are small compared to displacement gradients (as is
consistent with a small strain, moderate rotation shell theory), then
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7:-

the strains of an imperfect structure may be expressed in terms of the
strai-s of the model byt

£ €- L1 (U) + (1/2)L 2(U) + •L1 (•,U) (33)

Substituting Eq. (31) into Eq. ý33) and using Eq. (32) and the Taylor
series expansion of the prebuckling displacements about A - Xc

uo 0  u0* + (A-A )u(0l)* + (]/2)(X--A)2U( 2 )* + (34)

give the strain expansion

C -0 + + t2C2 + g3C 3 + "" + [1COI + (X-Xc)cbi

+ t + ... ] + o(1) (35)

where expressions for c1, e2, and £3 are given in Ref. 1, and

col = Ll(uol) + Lll(uo*,u 01 ) + L11 (uo*,U) - aAL LI(o(l)* ,u)

£01 - L," (u') + L*l(uo*,ubi) + L1l(uo )*,U) + L*i(uOl DUO

- OLl 1 (uo(1 )*Pu) - (1/2)•c• 1A (u (2 )*'ul) (36)

c], - LI(uI1 ) + LIl(uo0'ul) + Lll(ul,u 0 1) + L1 1 (ul,u)

-) Y~Lll(u~l)lktul) - QIA Lli(u~l)*,)- (/2aAL(u2)*u1)

Substitution of Eq. (35) into the const.tutive relation

a - H(c) (37)

gives the stress expanaion

U - 0 + t, + &2U2 + t30 + ... + Z[aO0 + (A-Ad)•

+ &al + ... I + O(Z2) (3b)

"where each stress component in Eq. (38) is related to the corresponding
strain component in Eq. (35) through Eq. (37). Substituting the
variation of Eq. (33) and Eq. (38) into the equation of virtual work

a"•c - A[q 0 + ql(U) + Eq1 (U)].6u (39)

using the expansion (34) (and a similar expaasion for the prebuckling

t Note that the definition of the operator Lll(u,v), viz. ½2(u+v) =
L2 (u)+2L1 I(u,v)+L2 (v), differs by a factor of 2 with the definition,
Eq. (7), of doubly-subscripted functionals.
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stress ao) and Eq. (32), then equating to zero coefficients of , ,

tI(kX )k , and 1k for k 1, 2, -.- give the variational equations
satisfied by the stress components of Eq. (38). These equations for
01, 02, and 03 have been presented as Eqs. (8c), (13c), and (14c) ir
Ref. 1. in addition, one obtains

o01. 6 o* + o0*.LII(u 01+U,6u) - Acq 1 (u0 1+U).6u -aeE()( = 0

obi.-6cO* + o0*.Ljj(u'1 I,6u) - Xcql(u')l)ou- (l(u 1),6u)

- (l/2)a)XcE( 2)(ul,6u) + E(I (u01 ,6u) + o)*.L11(U,6u)

- ql(U).6u = 0 (40)

011.60" + O0*.Ljj(ujj,6u) - Xcql(ull).Su + Oo1.Ll 1 (u1 ,6u)

+ o01 .L1 1 (u 01+U, 6u) - yXE (1) (ul, 6u) - aXcE(1) (u2, SO

- (l/2)aaX2E( 2) (u,6u) = 0

Equations (36), (37), and (40) constitute the field equations for
the displacement states u 0 1, ubi, and u1 j. Comparison with Eqs. (8) of
Ref. 1 shows that the homogeneous forms of these field equations, as well
as the equations for u2 aad u 3, are satisfied by the buckling mode ul.
Just as the compatibility conditions for the functions u2, u3, ... yield
expressions for the postbuckling ccefficients a, b, ... , the compatibil-
ity conditions for u 01 , ull, u1j, -.. yield expressions f'r the imper-
fection parameters a, B, y, -... For example, setti,,; 6u = uI in
first of Eqs. (40) and 6u - u0 1 in the corresponding buckling mode
equation [Eq. (8c) of Ref. 1], and subtracting the results give

GO0.cI - O1 *.Lj(u0 1 ) + Lii(uc*,uo0)] + v4*.L 11 (U,u1 ) - Xcq1(U).uj

- aAcE 1 )(ul,u 1 ) 0 (41)

Replacing o01.cl by a) "o01 and elimination of £01 through use of the
first of Eqs. (36) give, upon collection cf terms, the result [cf.
Eq. (34a) cf Ref. 1]

a [0*.L11 0(U,u) + Oi'Lj 1(U,u 0*) - Aq1 (U).u 1]/XcF(l)(uj,uj) (42a)

In a similar way, one obtains for a and y the following expre~sionst

The e::-rcssicn for 8 given ir Xef. I is that part of Eq. '1.2b'
which is independent 4f u 01 , which was tacitly neglected In Ref. 1.
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S[Col),*.L11 (U,u1 ) + crj-Ljj(Uu0 * ql) -u-

- (i/2)aXcF( 2 )(U1,uj) + F(1)(u 0 1 .uj)]/F(1 ) (u 1 ,ui) (42b)

y [2c 1"Lii(uOj,uj) + 2aj"Lj1(U,uu) + o01 "L2 (ul)

- cF(1 0(U1 ,U2 ) - (1/2)aa)F(2)(ul,ul)]/XcF(1)(ul,ul) (42c)

An alternate expression for y, dependent on u0 1 only if a is inonzero,
can be derived through use of the field equations for u01 and u2 . This
expression is

y = [2o 2 .Ljj(uO*,U) + 2o 0*.Lll(u2 ,U) - 2Xcq((U).u 2

+ 2cijFL1)(ulU) - 3,U FM 1 0 2) - 2aX F(UlUO1)+ 22a'LlF(U'U)u- 3uOc)

(1/2)actX2F( 2 ) (ul,ul)]/XcFM1(ui,ui) (43)

IV. Reconciliation of the Results of Sections II and III

In Section II variational equations (27) for the expansion states
u2 and u01 and expressions (29) for expansion coefficients a, b, a, R,
and y were derived in terms of potential energy functionals. Upon
specialization to a small strain theory, as in Section III, these results
should reduce to the corresponding formulas derived in Section III. This
reduction will serve as a check on both sets of formulas.

In order to accompilsh this reduction it is necessary to expand the
potential energy, expressed in terms of the variables of Section III, in
terms of a displacement increment u about the prebuckling state uo(X).
In terms .of the variables of Section III, the potential energy R of an
imperfect structure may be written in the form

S- (I/2)e.H(c) - A[q 0 + Zqj(U) + (l/2)qI(U)]'U (44)

where the strain c is given by Eq. (33). Substituting Eq. (2% for U in
Eq. (33) and expanding in terms of functions which are homogcneous in
u gives-

C(uo+u) - ED + LI + C + &no + Eni (45)

where

t In order to avoid confusion with the already defined variables
cl and £2, the roman numeral subscripts are used to indicate degree of
the straiu operators L,n Ln tne displacements u and their aerivatives.
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ce-Lj(u 0 ) + (1/2Th12 (UO)

C, Lj(u) + L11(u0,U)

-C (1/2)L2(u) (46)

no L11(u0,U)

-L11(u,B)

Substituting Eqs. (2) an6 '%45) into Eq. (44), expanding, and comparing
the resulc with Eq. (3)ý give

PI[N] - CO-C 1  XI- + q1(U0)].u

21[u] m +0 (1/2)Ez.H(c1 I (1/2)Xql(u)*u (7

P31u] mCI

Px4[u] - (1/2)c 1 1 .H(e 1)

and

Q1[u] M no.H(eI) + 0o-n1 - Aql(U).u

x~u n1( 1) + n11H(cjQ21U]- n0H(CI I 1(48)

Q3ru) n1i.Hz 11-)
A

Q4(U] = 0

where use has been made of the relation co - H(ca).

Doubly-su~bscripted functionals are obtaii~ed from Eqs. (47) and (48)
through the definition Eq. (7). From Eqs. (46), one has

C I(u+v) C I(u) + C I(v) (9

C~~ II( 11) C I(u) + C 1 1(v) + L~l(u,v)

A
Forming P2(u+v] from the sici.nd of Eqs. (47) *and using Eqs. (49) give

P2(u+V] P2IU] + P2fv] + ao0 Lll(u,v) + c1 (u).Hfc1 (v)] - Aql(u)-v (50)

*- Comparing 11q. (50) with the definition

21v - P2 [uj + k12 VJ + P1UV
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gives

P 1 1 [u,v] - o0*Lll(u,v) + e 1 (u)*H[cI(v)] - Aql(u)'v (52a)

In a similar manner, one obtains

PX [u,v] - en(u).H[c (v)] + L1 1 (u,v) .H[e(u)] (52b)

Primed functionals are obtained by taking derivatives with respect
to A of the corresponding unprimed functionals. Noting that the A-
dependance of these functionals arises only through the prebuckling
state variables u0o(), ao(A) and A itself. one obtains from Eqs. (46),
(47), (48), and (52)

P2 '[u] (1/2)ao -L2 (u) + L11 (uo ,u).H(e 1 ) - (l/2)ql(u).u

A,, = (2). (2)P 2X'[uj (1/2)a2 *L2 (u) + Lli(uo ,u).H(Ce)

(1) (1)+ L1 1(U•u1 ,u).H[(1 1 (U0- .u)]
piLUv] ,o).Lll(u,v) L11 (uo ,u)-H[c 1 (v)]

+ Ljj(uOl),v)-H[eI(u)] - ql(u).v (53)

P3 [u- L1 1 (u(1),u).H(c1 )

QXI[u] - Lll(u(I),U).H(eT) + L11 (u•) ,u).H(n 0 )

+ .•)L 1i(u,U) - q1(U).u

Finally, the corresponding functionals without the superscript X
are obtained from Eqs. (47), (48), (52), and (53) sim,*.y by setting

X a X and uo, oo and their derivatives uop), O(p) to do*, OO* and
u4p)*I aýP)*, respectively. Using these expressions for the P, Q-

functionals, it is easy to show the equivalence of the results of
Sections II and III, viz. that Eqs. (27) reduce to Eqs. (13) of Ref. 1 for u2 ,
and to Eq. (37ý a.id the first of Eqs. (36) and (40) for u 01 ; Eqs. (29)
reduce to Eqs. (22) of Ref. 1 for a and b, and to Eqs. (42) for a, 0,
and y; and Eq. (30) reduces Zo Eq. (43).

V. The A-A Relatiowship forýa.xsymmetric Structures

As noted previously, the X-C relatisn, Eq. (32), is not in general
a unique relation, since, f'om Eqs. (29), the coefficients b, B, and y
change by thc amour-t- C2 a, C0 1, and -(2CCIa + C2a) when u2 and unj
change by C2U1 and CGru, reapectively, where C2 and Co1 are arbitrary

-4 constants. This cl~ange corresponds to a transformation of the co-
ordinate • and can be verified independently cf Eqs. (29) by noting

* - •, - *". 4 . . .. . ~



that both Eqs. (31) and (32) must be invariant with respect to such
transformations. First, note that the above changes in u2 and u0j imply
through Eqs. (14) of Ref. 1 and Eqs. (36), (37), and (40) certain
changes in u3 and ull (and higher order states). Thus, consistent .1ith
the transfoimations

U2 0 •2 + C2 u1

U0 1  ( 10i1 + COlul

are the transformations

u3 0 3i, + 2C2 0 2 + C3u 1

u'1 - + Chu1  (55)

U1 1 - 011 + 2C02 + Cl1ul

where C3 , C61, and C11 are additional arbitrary constants. Substituting Eqs.
(54) and (55) into Eq. (31) and collecting terms give, upon comparison
with Eq. (31) for the tilda system,

- • + C2 t 2 + C3 &3 + C01• + C6IZ(X-X C) + C11 (56)

and

12 &2 +2C 2 &3 + 2C + ... (6a)

which is consistent with Eq. (56). If Eq. (56) is substituted into Eq.
(32) for the tilda system, comparison with Eq. (32) gives the stated
changes in b, 8, and y, previously obtained from Eqs. (29), viz.

b - S + C2a

8- + Co1  (57;

y - - (2C 01a + C2 0)

Since the coefficients in the X-& relation are ambiguous, it cannot
be used, beyond Koiter'a first approximation, to deter.ine the maximum
value of A, which is the buckling load of the imperfect structure. On
the other hand, the relationship between A and the work deflection A
must be unique, since both X anJ A have physical meaning. This relation
is derived in this section for the techtically impnrtant case of ar.i-
symmetric loading of axisymmetric structures with a unique harmonic
bifurcatio:, mode. It will be further assumed that the distribution of
imperfection displacements U is also harmonic with the same circuiu-
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ferential wave number n as the b.furcation mode.t In this caseC

a =_ 0 ()

and it can bc deducec by consideration of the nonhomug-.neous terms in
the equation:t for u 2 , u 3 [Eqs. (13) and (14) of Ref. 1] and u0 1 , uo,
(Eqs. (36), (37), and (40)] that a tilda coordinate system may be
chosen such that

612 contains only the harmonics n = 0 and 2nc
u3 contains only the harmonics n = n and 3n (59)

f00 and i6, contain only the harmonic n = nc

It follows that, for this coordinate system,

t. a 0 (60)

since tbn numerator of Eq. (42c) reduces to the sum of integrals of the
form

f211 P2ki(cos n ý, sin n c)dý = 0 (61)

where P2k.l (x,y) is a homogeneous polynomial of degre. 2k-i and k is a

positive integer. Thu equations for ull [Eqs. (36), (3/), and (40)]
then determine, in view of Eqs. (58), (59), and (60), that

iL.s contains only the harmonics n = 0 and 2n (62)
c (2

It should be noted that 02 is a unique state since it does not contain
the harmonic nc of ul. On the other hand, the states u01, 0,. Q61, and

0i, are themselves ambiguous by virtue of the facts that u01, u3 , and
015 contain the harmonic nc, and Q11 contains the same harmonics as 02

[cf. Eqs. (54) and (55)]. It will be convenient in the following to
make all calculations in the tilda system and then to verify that the
results (after elimination of 0) are invariant with respect the arbi-
trarineas of these states in the tilda system. This arbitrariness Is
characterized by Eqs. (54), (55), and (57) with a - C2 = C11 - 0.

The work deflection b is defined by the following relation ex-
pressing conservation of energy

ý(d/d;-) - a.(dc/dZ) (A)

- - This is clearly tne critical case since other harmonics do not
contribute to the value of the first imperfection parameter a.
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The right-hand side of Eq. (63) can be calculated f'-m Eqs. (35) and (38).
Taking the derivative of Eq. (35) gives

dc/di C ,) + (X~-X )c (2)* + (1!2)()X-) )24(3)* + *.-]WdXýd + Cldc/dc

+ 2ý92 + 3t2Z3 4 -'" + -;%1 ldX/dd + Ell + "") + "." (64)

(1)where de 0 /dX = co has been expended in a Taylor series about X X e
3imilarly expanding c0, Eq. (38) may be written as

S-00* + (X-X-)oal)* + (1/2)(X-Xe)20 2 )* + ... +

+ ý
2
6 2 + "' + Z(001 + ... ) + 0.. (65)

Forming the inner product from Eqs. (64) and (65) givest

(+ (X)), ([), +(2-•)* oo*'•)* + C o o c(o *

+ (1/2)(X-X c )23o 2 )*. )* + 0 d/d

"+ t(2oa0o*2 + o 1 "Cl) + [2t(X-c ) + &2dk/d•]0o )*-92

"+ Z(o0'*'1 + ao1"el) + --- (66)

The lowest orders omitted in Eq. (66) are Z3, &2 (XA_ ), Z(X-X )2

(k-I) 3 , E, M(X-X ), and •2. Equation (66) can be •Im-'2P4e• somewhatc e

making use of Eq. (32), which may be written for the tilda system as

.X -C -c X-c )Z + b 3 + ... (67)

Differentiation of Eq. (67) with respect to t, multiplication of the
result by t, and elimination of (X-X '#Z by substitution of Eq. (67) gives

&2dX/dt - cX J + ýZ[(A-c ) - ýdX/dUj + .'. + 2bX C3 + ... (68)

Only the first terms on the right-hand sides of Eqs. (67) and (68) should
be retained upon substituting these equations into Eq. (66). since the
remaining terms are of irders already neglected. The resul of this
substituzion is

dc l * 2+* + c X 2)*

+ 1[2Oo*.92 + 01-E 1 ] + (0[o0*.11 + d 00* 1. - ..001*4C2I+"* (69)

t It is not Aecessary to use the tilda system in deriving Eq. (66).
If an expression for a.de/dt is derived in a general noordinate system
aud the transformations (54), (55), and (56) are made, Eq. (66) will
result.
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of Equations (63) and (69) suggest that A may be expressed as the sum

of several power series, viz.

A - Ac = A11
2 + A2 Z4 + *." + BI(A- 1c) + B2 (-Ac )2 +

+ Z[C1M + C2M 2 + ... + DI(X-X) D2 (X-Xc) 2 + + 0(e)

where A is the value of A of the model (for which Z - 0) at the
bifurcation lcd X . For the class of structures considered, it may be
inferred, by consiaeratiun of higher order terms of Eq. (69), that the
power series in t shown on the first line of Eq. (70) is, in fact, a
power series in &2. Taking the derivative of Eq. (70), forming the
product Xd&/dý, and using Eq. (67) to eliminate (X-)c )t give

dA/d = [IX c + (X-X c)]dA/dZ

- 2A1 A c + ... + Bxc dX/dý + (BI+2B2 Xc)(-X c)dW/d +

+ Z(C1Ac - 2A~cXA + -.. + DX cdX/d& + -.. ) + O(Z2) (71)

Comparison of Eq. (71) with Eq. (69) gives the formulas

2XcA1 A 2 oo*0.2 + 0l1c 1

A c El 0 o0, l)

2A = o0'c )* + uO 0 B1  (72)

X C1  0 o0*.11 + d0l1Ie - axcO -'*.2 + 2acXAi

D1  = 0

The coefficients Al, B1 , and B2 given in Eqs. (72) can be expressed
in termsf of the prebuckling and postbuckling stiffnesses of the model.
The prebuckling stiffness K0 is given by [see Eq. (25) of Ref. 1]

=/o.(1)
K0 - O (73)

Differentiation of Eq. (73) with respect to I gives

S- l - Ko[oo.J 2 ) + G~l).4l)j1KOX (74)

The initial postbuckling stiffness K* is given by [see Eq. (31) of
Ref. !It

K* - Ko*/[i + (K0*/2bX2)(o 1.C 1 + 2o0*"'2)I 5)

t Note that o0*"C2 - o00.2 since o0*-c1 - 0.
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From Eqs. (72) through (75), one obtains

A, - bX (K0 * - K*)/K 0 *K*
C

(76)

B2  -K 2

In order to derive the X-A relation, Eq. (70) is rearranged slightly
to the form

S^~IZ2 + A2•' + c Ce(• ) 4-c)+ A - A... - B(A - B25A- )2. .

- . .(77)

If the right-hand side of Eq. (77) is denoted by n, reversal of the
42 -acrice gLvenJ

&2 I n/Al - A2 n2 /A, 3 + ... (78)

Since the term A2 n2/A 1
3 in Eq. (78) contributes a term of order (A-Ac) 2 ,

it would be inconsiticcnt to retain the term 12 (A-A )? in Eq. (77) when
neglecting thc term A2 ý'. Therefore, a consistent'approximation relat-
ing T, and A is

AlZI + CF - [A - Ac - B4)Q-xc)] - 0 (79)

EquatJc.. •.7ýC is a qu"&d'atic equation in [ with the solu'..on

-(Cl/2AI) t+ [K:,'bAc(K *-,(*)]1/2[KO*(A-A ) - (A-A)] 11/2  (80)

where, in accordance with Eq. (70), the order of ,2 has been neplected
as compared to the quantity [A - Ac - B1 (A-A )], and Eqs. (76) have been
usied. It may be noted that, in the case of interest, viz. b < 0, both
rg-dicals in Eq. (80) are real, regardless of the sign of K* or A-Act
Rearranging Eq. (67) to the form

Z[x - Ac - bxcZ2 - - c + ý(A4xc) + "'.. + O(Z2) (81)

and substituting Eq. (80) for •, Eq. (79) for ??, and neglecting O(7j,2)
-as is consistent with Eq. (81), gives the resUlt

K[K0 *(A-A " (X-X d]1/2[x c - K*(A-Ac) -[/xc + W'c) (82)

where the + sign has been absorbed in 4 and

- [K 0*/(K 0* - K*)][K*/bA c(K 0 * - K,)]1/2

-- c/2AI (83)
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As noted previously, although the 02 -state is uniquely defWneW, the
remaining states upon which A is dependent [see Eqs. (42b) and (72)],
viz. O01 and 011, are not. From Eqs. (5/6) and (55), G0! and 611 are
only determined to within the amounts C0 lul and 2C0 102, where C0 1 is an
arbitrary constant. Cor3equently, from Eqs. (57), is only detrrmincd
to within Lhe arbitrary constant C0 1 . On the other hand, the coefficients
in Eq. (82) must be invariant with respect to these changes, since the
quantitiew A and A have physical meaning. The only coefficient which
needs to be checked is A, since the others are obviously invariant,
being independent of O01 and alp, Equations (72) show that when 001
and 01, change by C0 1 ul and 2C0p0 2 , respectively, Cl changes by

C0 1 1[2 0 ".q 2 + O1 .c]/A c 2C0 1 Al (84)

so that A - I - C1 /2Al changes by C01 - 2C 0 1A1 /2A1 = 0, that is, A is
invariant. This result serves as a qualitative check of the validity
of Eq.,(82).

VI. Bckling f Imperfection Sensitive Axisymmetric Structures

If the coefficient b is negative, the structure will buckle, for
sufficiently bmall imperfections, at a limit load A smaller than the
bifurcation load A of the model. This limit load Sis the maximum value

Cof X for equilibrium si.tes at loads in the vicinity of A , and there-
fore can be dctormined from Eq. (82). Differentiating Eq. (82) with
respect to A and setting dX/dA = 0 give, after simplification,

As - A (As - .•)(Ku* + 2K*)/3K0*K' 'Y5)

whaou A io the value of A at the limLt load. Substituting Eq. (85) into
Eq. (82• evaluated at the limit load, and using the first of Eq. (83) for
K give the equation for As, viz.

(1-A/A c)3/2 + 30(-3b&2) i 2 (l-A/A )/2 - 3z(-.bt,?)i/ 2 /2 - 0 (86)

Equation (86) is of the same form as Eq. (36) of Ref. 1, the only
difference being the replacement of 0 by 0. Therefore, Fig. 1 of Ref. 4,
which is a graphical representation of Eq. (36) of Ref. 1, remains valid
if 0 is interpreted to be 0. This figure is reproduced here as Fig. 1.

It is of interest to evaluate a and j for the special case of a
linear prebuckling state neglecting prebuckling deformations and imper-
fection displacements U equal to the buckling mode uI. This case was
previously treated by Budiansky and Hutchinson (Refs. 2 and 6). It is
noted that Xq. (86) would reduce to their result, Eq. (15) of Ref, 2, if,
fo" thIs coe, a ani A b'th redqce to 'sn.ty. In ths casm, the funprrrn-

1 Note also, from Eqs. (57), that U - 0 is invariant for a = C2 - 0.
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als E1)(u,v) and F (u,v), given by Eqs. (15) aid (20) of Ref. 1,
reduce to

Ac E(1 '(uv) = X cF()(u,v) - o0*'L l l (u,v) - A ql(u)'v (87)

From Eq, (42a), it is then clear that, aeglecting the term containing
the prebuckling displacements uo*, a 1 1. Setting 6u w u1 in the
variational equation for ul, Eq. (8c) of Ref. 1, gives, in view of
Eqs. (87)

A c F()(UjU) -i ac0*.L 2 (uI) - Xcqi(ul)*ul - -al'cl (88)

Similarly, setting 6u - ui in the first of Eqs. (40), and using a - 1
and Eqs. (87) give

F(1)(001ul 0*',* 11 (*j0 1,u) - AXqj(i30 1)'uj - 01"c1  (89)

Hence, from Eq. (42b), neglecling F(2)(ul,ul) for linear prebuckling,
one obtains

8- 1 + 601*C1/01.e 1  (90)

The remaining contribution to 0, C1/2A1 [see Eqs. (83)], may then be
written from Eqs. (72)

CI/2AI - 1 + (801i.: + oo*.11 - OO*.9 2 )/(o1.el + 2a 0 ,*c 2 ) (91)

However, setting 61 - u0 * in the third of Eqs. (40) shows that when the

effect of prebuckling deformations is neglected

O0**t11 W 01 1 "e0 * = 0 (92)

Similarly, one obtains from the vari3tional equation for 02 [Eq. (13c)
of Ref. 1]

00"2 - a2 .' 0* - 0 (93)

Consequently, CI/2A1 reduces to

C1 /2AI - 1 + a0 1 .oc/ao.c1  (94)

From Eqs. (90) and (94), it follows that

A - ý - Cj/2Aj - 0 (95)

giving the curious te., t that in this special case, Koiter's first
approximation includes -he second approxlmadion. SeLting a - I and

0 0 in Eq. (86) gives th-. buckling load relation
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Sis/le)~3/2 3-b21/22

(1 - /X) 32 - /2 = 0 (96)

In contrast, the generally accepted relation for this case, Eq. (15) of
Ref. 2 or Eq. (25) of Ref. 6, is

(1 - X Isd)3 / 2 
- 3(-3bZ2)l/ 2 (X s/ c)/2 = 0 (;7)

Equation (97) was obtained from the X-C relation without consideration
of terms in the displacement expansion associated with the imperfection
[cf. Eq. (31)]. It would therefore appear that the extra term (s /X )
in Eq. (97) is not justified and that no real gain in accuracy is
achieved by including it.

VII. Concluding Remarks

The essential result of the foregoing analysis is the corrected
formula for the second imperfection parameter 8. When 8 is neglected,
as in Koiter's first approximatioa, the theory is strictly valid only
for infinitesimal imperfections, and may predict erroneous or, in some
cases, even negative buckling loads for reasonable finite imperfections.
For buckling load knockdowns of roughly 0.6 or less, the curves of Fig. 1
for different values of R have diverged sufficiently to sugges£ that the
effect of 8 should not be neglected.

A digital computer program (Ref. 4) exists which computes for
stiffened shells of revolution the second postbuckling coefficient b,
the first imperfection parameter a, and that part of 8 which is given in
Ref. 1. AL Lhe present time, two imperfection shapes are treated by thL.
program - one proportional to the buckling mode shape ul and the other
being the shape which maximizes a for constant values of the mean square
angular imperfection amplitude. Both of these imperfections contain only
the circumferential harmonic nc of the buckling mcde. The comp'iter work
done in this calculation is roughly equivalent to two linear shell statics
problems of the perfect shell of revolution with pure harmonic loading,
corresponding to the two harmonic components of the i12-state required in
the evaluation of b. To complete the evaluation of A, two Aditional
displacement states, 001 and 01j, must be obtained. The state Q0, con-
tains only the harmonic n , and althuugh ill, like '2, contains both
axisymmetric and 2n harmonics, only its axisymmetric component is
required to evaluate 8. Nfte that the homogeneous forms of the equations
for all the perturbation states contributing to the physical equilibrium
state, i.e., ul, 12, 0 1 , 011 , etc., are identical. Thus, components of
these states in the same circumferential harmonic differ only by virtue
of different nonhomogeneous trrms. Consequaently, relatively little
extra work is required to compute ill, over and above that already re-
quir=d tw ...,..:pate i-. Fc, e.:ample, if thzcz at•ec are being cor,.tn!
by a superposition of complementary and particular solutions, only the
particular solution need be recomputed for all, since the complementary
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solutions consputed for a2 apply to 01, as well. Although O01 and 611
depend on the imperfection shape P assumed, changes in this shape also
require only the recalculation of the particular solution. Thus, the
calculation of b, a, and A for a given buckling mode is roughly
equivalent to that required for the solution of three linear shell
statics problems with pure harmonic loading.

Since such problems are executed very rapidly with modern com-
puters, the determination of a limit load, once the bifurcation mode
of the perfect structure has been obtained, will require a relatively
small amount of computer time. On the other hand, the unique mode
theory employed does not account for the interacticn of bifurcation
modes, which can be important for closely spaced elgenvalues or in

case of a higher mode being much more sensitive to imperfections than
the fundamental mode. it may be feasible to Include in the computer
program the calculation of the extra coefficients involved when two
modes are assumed to be active. However, there is clearly a practical
limit to the number of interactive modes one would want to treat with
this approach.

An alternate approach to the problem of computing limit loads of
shells of revolution is the direct nonlinear two-dimensicial finite
difference (or finite element) approach as in Ref. 7. In contrast to
the Koiter-type approach, in this method the imperfection is included
in the shape of the shell numerically treated, so that, in general,
the structure input to the computer is nonaxisymmetric. This
wnproach, has the advantage that it automatically accounts for the

nonlinear Interaction of bifurcation modes and also imperfections of
finite size. On the other hand, the basic simplicity of the Koiter-
type approach, which requires only one-dimensional numerical calcula-
tions is lost. Programs based on direct solution of the nonlinear
equations require very much mcre computer time and storage, and
therefore although in principle applying to a larger class of problems,
in practice the complexity of axisymmetric structures treatable may be
more limited. Inclusion of the A-calculation in the Koiter-type
program should serve to reduce any discrepancies attributable to
finite imperfections found in a comparison of numerical results of
these two different methods.

The basic idea employed in this paper, namely that of obtaining
a physically meaningful load-defle,.tion relation, can be employed to
obtain still higher approximations with., the context of Koiter's
theory. For cxamp!E, consideration of tie third and fourth post-
buckling coefficients should give some insight into the behavior of
those structures which have a very shallow postbuckling load drop-
off. in such cases, a real structure with small but finite imper-
fections may exhibit nc limit load behtavior, but rather a
monotonically increasing load-deflection Lurve.
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QUESTIONS AND COMMZNTS FOLLOWING COHEN'S PAPER

BALL: At the Wednesday morning session I talk .2d briefly

about this particular problem of determining imperfection sensitivity of

shells and I agree with Dr. Cohen that his program is 1-D and that the

STAGS program is Z-D. I'd like to classify mine as maybe several I-D

programs in which I do essentially what Dr. Cohen has talked about here,

but I am not restricted to any one mode or two modes. I could select a

number of modes and take into account the full coupling betweci these modes

with no approximations. If these modes in themselves excite other modes,

they could also be taken into account. So the complications that you men-

tioned, I feel, have been overcome in my particular program. I will have

to admit, however, that my particular program does not handle the stringers

or other features present in more practical shells. I will also say that the

present program as such does not contain provisions for inserting geometric

imperfectioý.s of a measured shell. However, this is very simply done.

COHEN: Well, I don't believe that you' re obtaining a stress-

free imperfection in your approach.

BALL, No, I mentioned I could. I agree that at the present

time the program does not contain a mechanism for inserting geometric

imperfections. However, this is a simple matter to do and slip them on

the right-hand side.

COHEN: Okay, but then you've got the probl,.m of coupled

harmonics.



BALL: I've already taken that intc account.

COHEN: It's clearly a more complicated approach. It's like

you say, two or three one-dimensional problems.

NACHBAR: This past year, R. T. Haftka, R. H. Mallett and I

have been working on application of Koiter's theory to finite element analysis

of structures. We have shown that the principal limitation of Koiter's

method, which is the restriction to snap-through only in the imperfection

neighborhood of bifurcating structures, can be eliminated. We can take

general structures which do not necessarily have any adjacent bifurcating

structure and apply Koiter's asymptotic expansion method. Moreover,

our method can be used in conjunction with a linear finite element analysis;

it need not be a nonlinear program.

One difficulty with asymptotic methods, however, is that it is possible to pre-

dict an effect which in practice isn't there because the expansion is valid in

too restricted a regime. In otlher words, if the expansion is really valid

only for such extremely small imperfections that have no practical meaning,

we can actually lose this effect in the experirnmnt. A resolution of this,

we think, is to use the Koiter analysis as a warning signal. With our method,

we can attach the Koiter analysis to a linear finite element analysis and use

it to show a flag as to where trouble can occur. Then we go to a direct nan-

linear anaLysis to actually plot the load-deflection curve and see the post-

""::See Technical Report AFFDL-TR-130, November 1970; also "Adaption of
Koiter's Method to Finite Element Analysis of Sanp-Through Buckling
Behavior," by R. T. Haftka, R. H. Mallett and W. Nachbar, in press,
Int. J. Solids Structures.
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buckling portion for finite imperfections.

I :ring this up with reference to the graph you showed for the Koiter analysis

of the conical shell for NASA. Ther- were no dimensions shown on this

graph, but I assume that little dip there is actually a very small one if

plotted out on a nonlinear analysis and, as you stated in your talk, with

any sort of a finite imperfection this dip was just bypassed in the direct

nonlinear analysis results. You just saw a little increase in deflection; that

was it. Well, for this case, I rather doubt that you can do anything with the

Koiter analysis with high-order terms. You said that the term ($/a) (X-.X)

may be of order 1 e;en though (X-Xc) is presumed to be small. Thi- is a

dangerous assumption, because there are no error estimates on asymptotic

expansions. These terms are neglected cumpared to I regardless of the

coefficients, no assumptions are made as to the rel.ative order between (%-X

and § itself. We expand in them independently.

If you are going to include the term (0/cy) (X-•Xc), this may have meani.ag

experimentally. In other words, you can try cases in which it does have

meaning, but your example of the NASA cone appears to show that improve-

ment of the prediction for finite imperfections is not likely. I would like

your comments on this.

COHEN: I think that the excellent agreement for the stringer-

stiffened cylinder obtained by Frank Brogan using the STAGS program and

myself using my program shows the usefulness of the Koiter analysis to ob-

tain quantitative results. As you know, STAGS is a nonlinear response pro-

gram, and in the comparison the knockdowns obtainied, although not great,

are as much as 0.8.
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NACHBAR: The Koiter analysis can be extremely accurate. I'm

saying that it also can be misleading for finite imperfections. In other

words, from one example to another you can have different results.

COHENJ: In his thesis, Koiter does show the order of the error

t.r:ns that ire being neglected and the expanded X-§ relationship that I showed

is a consistent relationship. That is, all the terms that have been neglected

are of higher order than the terms that have been retained. I feel that if this

is done consistently and a careful tracking maintained of the order of the

terms that are neglected, then one can go to higher approximations. The

proof of the pudding seems to me to lie in this example involving a compari-

son with STAGS. I purposely took a small imperfection so the effect of high

order terms is obviously negligible from the results. What we intend to do

is take increasingly large imperfections and we shouid show a greater diver-

gence between the results when just the a approximation is included. What

I'm hoping is that by including the corrected , we'll -;how that reduces

the difference between the results. To me that will be some form of a num-

erical verification of inclusion of the ý parameter. I would like to say one

other thing. From your discussion, it appears that you have extended a

Koiter type analysis to limit load buckling and Koiter ana)ysis shows a

drastic reduction in bifurcation load to a limit load for very small imperfec-

tions, but I doubt whether the same thing would occur in going from a limit load

to another limit load.

BUSHNELL: I think in considering this question of whether the Koiter

theory will ever be able to predict the initial post buckling instability and

subsequent stability, it might be a .dea to look at the physics of the prob-
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lem. For instance, if we try to relate this to buckling of an oval cylinder

under uniform end shortening, what happens is that the low curvature areas

buckle and the stresses are redistributed in the shell. It seems that the

Koiter theory is tied to the prebuckling state at the bifurcation point and this

problem is changing drastically as the loading continues. The oval cylinder

carries load above the bifurcation load because the prebuckling problem has

changed. I think it's probably a little bit optimistic to hope to predict this

with the Koiter theory.

COHEN: It seems to me to be a question of how far away you

get from the bifurcation point. If a shaliow post-buckling dropoff is close

enough, the theory may predict it, but clearly there must be a limit. You're

not going to go way out into the post-buckling range with the Koiter theory

and maybe you don't have to.
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THE APPLICATION OF "RADIENT MINIMIZATION
METHODS ANI HIGHER ORDER

DISCRETE ELEMEN1 ,1 TO SHELL BUCKLING
AND VIBRATION EIGENPROBLEMS

Edv-'A, d L. Stanton
and

De:.nis J. McGovern

Mcbu,..-._: i..'ouglas Astronautics Company - West
Huntington Beach, California

ABSTRACT

Gradient minimization methods have been successfully applied to the discrete

element analysis of shells with geometric nonlinearities and to plates with

maLerial nonlinearities. More recently, the feasibility of using such methods

for the lower buckling and vibration modes of large eigenproblems has been

established. The present investigation extendf. this work by developing scal-

ing criteria and rescaling strategies based on the second variation of the

uiscretized Rayleigh quotient. The importance of scaling to the efficiency of

the conjugate gradient algorithm is found to be similar to that reported for

potential energy minimization. Several shell vibration and shell buckling

problems are ther. analyzed using the forty eight degree of freedom Bogner

cylindrical panel element reformulated to include an incremental stiffness

matrix. This element is based on bicubic Hermite polynomials for which

discretization error bounds indicate 2apid eigenvalue and eigenvector con-

vergence in certain elliptic boundary value problems. These convergence

rates are numerically tested in both shell buckling and vibration eigenproblems.
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INTRODUCTION

Plate and shell discrete elements using "(A 4) bicubic interpolation polynomials
for the transverse displacement, w, are now widely available (References 1-4)

and several also use the same poiynomials for the in-plane displacements, u

and v (References 1 and 2). The stress and displacement results obtained with

these elements in stdndard reference problems exhibit rapid convergence to

the true solution.i. In the case of the 16 -parameter plate element (Refer-

ence 1), convergenice rates of 0'(A4) for displacement and '(A 2 ) for stress

have been obtained (Reference 5). This element has alpo been evaluated in

buckling applications (Reference 6) and the results obtained indicate excellent

convergence for the lowest eigenvalue. Recently, shell vibration (Refer-

ence 7) and shell buckling (Reference 4) results have been obtained using

cylindrical panel elements of 48 and 24 degrees of freedom, respectively.

The large size of the associated element matrices results in rather large

eigenproblems, even for coarse idealizations. Thus, while improvements in

discrete element technology permit more accurate analysis of many shell

vibration and shell buckling problems, these analyses require the solution of

eigenproblems near, if not beyond, the state of the art. In some cases, the

size of the eigenproblem can be reduced without serious loss of accuracy by

introducing constraint equations among the displacement variabLes. This is

possible in vibration problems, more often than with buckling problems,

although the technique was use-l to advantage in Reference 4. When the

assembled structural matrices for a particular discrete eleme!nt idealization

are tightly banded, it may be possible to efficiently compute the lower modes

by inverse iteration. This method has been used very successfully to com-

pute the lower vibration modes of a cylinder %ith a cutout analyzed by the

finite dife,,nce method (Reference 8). When the assembled structural

matrices are sparse but not banded, a gradient minimization method has been

suggested for the structural dynamics eigenproblem (Reference 9). A similar
approAch has also been applied to plate bucklinp eigenproblems (Refererce 1i

The present investigation extends this work to include scaling and appli .s the
method to shell vibration, and buckling analyses, using the 48 degree of free-

dom cylindrical panel element of Reference 1, reformulated to obtain first and

second order incremental stiffness matrices. A linear bifurcation buckling

analysis is employed with the prebuckling displacements obtained from a
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efficiency of the scaled gradient minimization algorithm for the eigenproblem

are compared with solutions from a Househol-'ler matrix eigenvalue routine

and An inverse iteration eigenvalue routine. The latter routine uses a non-

sclua re - root CholOsky dctcomposit Ion procedure (Refe rence 1 1) that takes

advantage of any banded sparsity in the stiffness matrix. After evaluating

eigenvalue routines, the cylindrical panel element convergence properties

for buckling problems is evaluated and several analyses that include bending

effects are presented.

AN ENERGY FORMULATION OF CONSISTENT ELEMENT MAIRICES

The phrase "consistent element matrix" will be used to imply (1) that the

assumed displacement functions used to discretize strain energy are also

used to discretize kinetic energy or any other physical quantity present and

(2) that the quadrature scheme used to generate these matrices dc !s not

change the order of the discretization error. Consistent first and second

order incremental s-'ffness matrices are derived for a cylindrical panel

discrete element originally formulated in Reference 1. The original

formulation accounts for geometric nonlinearities through quartic terms in

the strain energy in a consistent manner but not in a way that lends itself to

a bifurcation buckling analysis. The present formulation may be used for

either bifurcation buckling or nonlinear load deflection analyses.

Stiffness Matrices - K: K3, YK4

Several discrete element formulations of geometric nonlinearity are possible

(References 1, 2, 12, 13, and 14). The present formulation is simil-ir to

"that in Reference 12 and mathematically begins with the selection of strain-

displacement equat~ons and a stress-strain law for the material. These are

used to define the potential energy which is then discretized, using assumed

"displacement functions defined locally over the middle surface of a discrete

element. The local element displacement functions are linked at nodes toobtain

a global displacement function that satisfies the admissibility (i.e., smoothness)

requirements of the energy derived variational principles. These variational

principles are then used to define discreLized equilibrium equations and

stability criteria. Since the stability criteria used is in terms of the second

variation of the potential energy it is convenient to define the K2 , K 3 and K 4

matrices in terms of second partial derivatives.
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Let U2 be that portion of the strain energy quadratic in the displacements,

U3 the portion cubic in the displacements and U4 the portion quartic in the

displacements. If X denotes a nodal displacement parameter in the assumedI

displacemert function where i z 1, 2, . , N then

22

K2  aXax u 2 (Xl, X2 , ... , XN) (2. 1)

24 ~-.-~u 2 1  X2 # ... , XN)23

m n

This Ud (Xon Xof seea XNt (2a2)
m' .11

a2K4 = ax dRX U4 (Xl, X2, ... XN) 23
m n

This definition of Kz2 is one of several equiv'alent ways of expressing the usual

linear elastic stiffness matrix. The K3 and maKrices are equivalent to Nl

and N2 of Reference 12 in the present analysis. [",ing the vector, X - (XI,

X2P ... , XN) the discretized potential energy i3

lX - XT[K ÷K(X) + K XXTF (2.4)

with first variation

Vr.(X)T . 6X = [K2 +g K3 (X) + - K4 (X)] X- FT 6X (2.5)

and second variation

6XT . V2T(X) 6X = 6XT [K 2 + K3 (X) + K4 (X)] 6X (2.6)

These equations assume a linear elastic stress-strain law. The stability

criteria assumes a conservative holonomic system and specifies an equili-

brium position, XE, as stable if [K2 + K3 (XE) + K 4 (XE)) is positive definite

(Reference 15). This formulation will now be used to derive specific K3 and
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(K4 matrices for the cyliudrical panel element of Reference 1. The

strain-displacement 7,,p,.tions used are repeated here"

=u + z w (2.7)
,s 2 ,S ,ss

C IV + W)e +e-Z(w ee'V (28

I U.,•-]e + +w, w -Z (W -v, (2.9)
s 1,3 r Zr0 r SO V£se >'S s W..-We - sI5 0 v 5  (29

and the -train energy functions U3 and U for a linear elastic material are

D f01 rA& 1 [w2 + 2l+s kw 2 +vw 2,

00 0 J h._ sV P. +~ Ol, elLll

(2. 10)

+(1-v)(u +v )w ".v +a [w2 + vwd- dldsP,1 ,S ,S 1,1 r 1 ,I ,sj

U4C 0 0 2 4  +w 4,Jd 2W 2, s (2

where D is the flexural rigidity, Eh /3 (1-v 2), and r rO. The quadratic

term, U2 , is not repeated as the K2 matrix is unchanged from the formulation

in Reference 1. The displacements u, v and w are each app-oximatcd usingH(1) (1)H

16 parameter bicubic Hermite polynomials 1kj (s)Hi )(zj); k, 1 = 0, 1 for i, j = 1, 2.

The component polynomials, H.kj)(s), are simply the beam functions and are

tabulated in Reference 1. Let P m(s,T1) denote a component of the 16 degree

*The comma notation denotes differentiation with respect to the coordinate

variables indicated by subscripts to the right of the comma.
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of freedom vector P(s,i) generated from the Hkj (s)HH )(rI) by varying

k, 1, i and j in that order through their respective ranges. Then

* 16T

u(s, j) zU Pm(S, ( ) =U P (2. 12)
1

* 16 T

v(s,V T E V ( ) P v p (2. 13)
1

* 16 T (2. 141
w(s,T) = ZW P (s,r1) = ( 4

1 mm

where Ur, V and W are the 48 scalar nodal parameters of the discreterl n

element. These nodal parameters are U, U,so U, , U, srl, V, V, s V, I

V W, W W and W at each of the four element nodes. Substi-, S TI ' , S t P 11 1 S TI

tuting the assumed displacement functions into Eq (2. 2) and differentiating

gives the K3 matrix

0 0 KW fl

K3  0 0 K (2. 15)

hWU KWV K3 _

where

W3 LD 1 rAO(K ij j f (2;UkPk, s) (P. P. + vP P.,)
0 3 i, s 3 , s i, TI J,T

(2. 16)

+ (IV Pk+ i .WkPk) (P. P. + vP. P
k (;V ~k, i r ki 7,11 j, s j,,

*(l/r) (LW 1P k,) (PiP., + P. P.)

+ (v/r) (EWkPk, s) (P.i P.j, s + P'i, s P.)

+/Z(-v)(EU k Pk, + EVkPk, s)(P, 5P. 1 + P. P. j) dnds
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4Mi

(KW U 2-D JE 1 rA P.

1 I

h+- (-1P.1WP S P. (2. 1

(l-v) P. P. d s2, •,k, 
i, ,

1 I

(lI-v) P. P. n] dnds

(KWV j 12D (E01 .rA0P0 0o

+ - (l-v) P. P. s+ (WkFk s)(vP. P. (2. 18)
2i, s i sk k, s i, s ,•

+I(I-v) P. P., id2, Ti i s]d s

The K3 matrix is a linear function of the nodal parameters as these equations

demonstrate explicitly. In a linearized bifurcation buckling analysis, these

nodal parameters are assumed to increase linearly, X -= %X'o, until buckling.

However, even in this case, the prebuckling solution, Xo, produces non-

uniform membrane stresses and bending displacements within each elem~ent.

These are accounted for in K3 , using X0 to make the integrations in Eq (2. 16-

2. 18). The integrations can be made economically by observing that they are

always a linear combination of a relatively small number of reference integrals

that can be made once and stored. The K4 matrix is derived using the same

assumed displacement funcL.ons as

K4 = 0 0 (2. 19)
0 0 K

14W
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where

(KW 18D f ~ rA (2 V P~ (P. P.
•! ~ ~ KWij 278 0 f IA [(•Vk I k, s l, s lP',s " s)

+ (Z Z WkWlPk nP, (P P,) (2.0)
k I k Tj , TI i, rJ j, Ti

+(+?WWP P.(P. P.nds
+ (1 Z WkWIPk, s Pl, r) (Pi, s' r 1 j,) ,dnds

The K 4 matrix is a quadratic function of the nodal parameters, as this equa-

tion demonstrates explicitly. Although this second order incremental stiffness

matrix could be included in a generalized bifurcation buckling analysis

S+ XK3 + X2K4) the results prŽsented later are limited to the first order

incremental stiffness matrix K The formulation of K 3 in Eq (2. 16-2. 18)

was used to generate this matrix in numerical calculations presented later.

These equations (2. 16-2. 18) can be written in a more compact form using

Eq (2. 12-2. 14) in reverse and the linear membrane stress displacemaent
equations. Let s n' -0"s denote the linear membrane stresses

a-m E--u + (v/ r)(v t w)] (2.21)•s -v 2 [us ,0

m £
TO -•O [ 0 + w)/r 4 v u, s (2.22)Sl-~v'

m E .v +u inr (2.23)
sO 2(l-v) s ,0

u4•5



then the KW matrix can be written
3

(KW) h .I rL, a'e( . +a, P. )( P P
(K)ij s i, s s ) m ( JP 11 , s )P.,5

+ P. P. )+ E [NV(W /r) (P.P. + P. P.) (2.24)
1, s 3, -V2 ' I l 13,11 q 1, 3

+ v(W /r) (P.P. + P. Pj)I dnd-I 1 3,S , s 3 I

The stresses and bending rotations in Eq (2. 24) must be obtained from the

assurred displacement functions if this form of K is to be consistent with

Eq (2. 16). The present analysis uses Eq (2. 16-2. 18) and, for bifurcation

buckling, obtains the prebuckling displacements, hence stresses from a

linear bending theory solution. Reference 16 defines a conventional analysis
W

as one using membrane theory for the prebuckling stresses. To obtain a K 3

for this case, Eq (2. 24) can be used with the bending rotation terms omitted.

To perform a nonlinear load deflection analysis, the equilibrium equations are

obtained from Eq (2. 5) where, unless the structure is loaded into the post

buckled region, the K4 (X) term can usually be omitted.

Mass Matrix - M

The kinetic energy expression for a body

~2 +2 + .2
T -Jpu +v +w ) dVf p

V

(using the dot notation for time differentiation) and the displacement variations

through the thickness implicit in the strain-displacement equations, Eq (2. 7-

2. 9), result in

1(f01 0AG 1 *2 h3  2 2
S- f ph(u + v + wz) + IL[wI + r)

0 0 (2. 25)

+ (v/r) - 2v w 0 /r rdOds
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Neglecting the rotary terms associated with ÷ and substituting the assumed

displacement functions in Eq (2. 25; gives

T (UTMUU + VTMVV + WTMWW] (2.26)

where

(M U) (MV)ij rA p h(Pi P Jrds (2.27)

(M W)i f01 rAe 2
( PhIPiP. + -(P. P.

"" 1 1,s j,s (2. 28)

+ P. P. ) 1 is

This is the element mass matrix used for the vibration results presented

later. It is identical to the one defined in Reference 1.

A SCALED GRADIENT MINIMIZATION METHOD FOR VIBRATION AND

BUCKLING EIGENPROBLEMS

Several recent investigations (References 9, 10, and 17) have applied modern

f'inction minimization methods to a matrix Rayleigh quotient formulation of

discrete vibratior and buckling eigenproblems. These studies demonstrate

the feasibility of using numerical minimization methods for computing the

lower modes. References 9 and 10 suggest that very large discrete element

eigenproblems arising from displacement formulations can be solved for the

lower modes, using the conjugate gradient algorithm. In part this is a result

of taking advantage of sparsity in the displacement method c,:efficient n.atrices

when computing the gradient of the Rayleigh quotient. Using such procedures

and the conjugate gradient algorithm, a 281 degree of !rzedorn vibration eigen-

problem is solved in Reference 9 and a 400 (legree of freedom buckling eigen-

problem is solved in Reference 10. .-he size of these problems is large by

most standards (Reference 4), although small in comparison to a recent inverse

iteration solution of a 4, 029 degree of freedom shell of revolution vibration



I
problem (Reference 8). This rather remarkable solution was obtained by

virtue of the coefficiert matrices being tightly banded, which is typical of

shells of revblution. In structures with less geometric regularity, the

coefficient matrices may be equally sparse but have considerable variations

in bandwidth. It is for such structures that minimization methods offer
possible advantages, in that they are not directly influenced by bandwidth.

Rayleigi Quotient Formulation of Vibration and Buckling Eigenproblcms

Linear elastic matrix vibration and buckling eigenproblerns are of the form

AX XBX, where both A and B are independent of X, both are symmetric and

at !Last one of the coefficient matrices is positive definite. The minimizing

properties of the eigenvectors, Zk# for such coefficient matrices are well

kn(.wn (cf. Reference 18, pp 317-331) and are briefly summarized here for

reference. Let the eigenvalues be arranged in non-decreasing order,

SX . X ... X., then
1 2 N

Min XT A X
k X T (3. 1)

X B X

subject to the constraints

X 1 0 (3.2)

XT B e.. - 0 ; j = 1, 2, .... k-1 (3. 3)

where A and B are symmetric inld B is positive definite. The vibration
2

eigenproblem is directly A = K2# B = M and X w . The linear buckling

eigenproblem from Eq (2. 6) has A = K2 , B = -K 3 and Eq (3. 1) does not

directly apply as B is not positive definite. The buckling eigenproblem

may also have both positive and negative eigenvalues. To obtain the smallest

positive cigenvalue, Act of K + A K_ take A K and B - K which gives
2 13 2 hc ie

A = (-I/x). This is the Rayleigh quotient formulation of the bucklingc I

eigenproblem used in the numerical work presented later.
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Scaled Coniugate Gradient Minimization of the Rayleigh Quotient

The minimization problem posed in Eq (3.1-3.3) is a constrained minimization

problem for a function that :5 not convex. This usually implies a difficult if

not intractable computational problem especially when X contains many degrees

of freedom. Fortunately this is not the case for Eq (3. 1-3. 3) and the lower

modes which involve few constraint equations. Let R(X) denote the Rayleigh

quotient

R(X) T AX (3.4)
XT 13X

which is indeterminant at the point X z 0 giving rise to the first constraint.

This constraint can be implemented in many different ways

" XT B X 1 (3.5)

"xTx 1 (3.6)

Max Ixil 1 (3.7)
i

and the particular form the constraint takes corresponds to a particular

normalization cc the eigenvectors. The relative merits of Eq (3. 5-3. 7) are

discussed in Reference 17 and Eq (3. 7), recommended for its computational

simplicity. This constraint and the eigenvector orthogonality constraints,

Eq (3. 3), were appended to the Rayleigh quotient in Reference 9, using

Lagrange multipliers. Reference 10 uses the previously found eigenvalues

to append the orthogonality constraints. This latter procedure results in

quadratic terrrs, (xTKzzZi)Z, which may adversely effect the conditioning cf

the minimization problem. Using the Lagrange multiplier approach, Eq '3. 4)

becomes

k-I T T
Lk(X, i) R(X) - 1, a X Y. - ak (X e. ) (3.8)
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where the a. are Lagrange multipliers, Y. B Z. and e. is the unit vector

associated with using Eq (3.7) for normalization. The Euler-Lagrange

equations associated with variations in X

k-1
VR - Z a.Y - ak e. 0 (3.9)

i-i1 i

expressed in matrix notatie'n

VR - Nk a = 0 (3. 10)

can be used to express a in terms of VR

a T N 1 NT VR 13. 11)
L14k k] k

giving

V L VR - N [NT Nk1 NkVR 1[Pk VR (3. 12)
X k k k kR kV 'k]

This projection matrix formulation was successfully used in Reference 9 to

minimize R(X) in the subspace defined by the constraints. The procedure

used was to first obtain a starting vector, X0, in this subspace and then use

the conjugate gradient algorithm to minimize L (X, ai) which is identically

equal to R(X) in the subspace defined by the constraints. Each step, i, in

this minimization requires a one dimensional minimization

Min R (X. + t S.) (3. 13)
1 1t

where S. is the direction of travel determined by the conjugate gradient

algorithm. The non-convexity of R(X) could make this a formidable com-

putation if R(X) were not the ratio of quadratics. This property was used

in Reference 17 to s3lve the one dimensional search problem in closed form.

This solution was used in References 9 and 10, and also in the present work.
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Use of the conjugate gradient algorithm to minimize other functions has

demonstrated that scaling can significantly improve the convergence of the

algorithm (References 19 and 20). The scaling used in these References is

based on the diagonal elements of the matrix of second partial derivatives.

The objective of this scaling is the improvement of the conditioning number

of the matrix of second partial derivatives which directly influences the con-

vergence of the conjugate gradient algorithm (Reference 21). In the case of

the Rayleigh quotient, this matrix is

1721, - V R 2 [bA - aB - 2A X XTBT 2B X XTATx "7
b

a T T+ 4(,3) B X X B 1(3. 14)

where

a XT A X (3.15)

b =X B X (3. 16)

It is important to note that AX, BX, a and b are available from the computation
of the gradient. As a consequence, the computation of the diagonal elements

of the V 2 R matrix is simple. This matrix is of course a function of X so that

any scaling procedure based on VR is itself dependent on X. The diagonal

scaling suggested in Reference 19 uses the square root of the diagonal elements

which may be negative in the case of V 2 R. A simple modification that avoids

this is the use of the absolute value of the diagonal elements Ps in Reference 20.

The rationale for this is the same Gerschgorin circle argument advanced in

Reference 19. Instead of the Gerschgorin circles having one common center
2 2at 1/c , they now have two possible centers at *I/c , where the scaling trans-

formation D is

d..
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Another consequence of V R not necessarily being positive definite is that the

radii of the circles cannot be bounded as in Reference 19. However, the sub-

matrix of V 2R associated with the N- 1 independent Xi in the first mode search

is positive definite near ZI. This submatrix is obtained by deleting the row

and column of V 2R associated with the Xi prescribed to unity for the constraint
given by Eq (3. 2). At least for the first mode then, the scaling criteria of

Reference 19 is appiicable. In addition to a scalin-, criteria it is also neces-

sary to decide how often to scale, as V2R may change considerably during the

minimization. Experience with the scaling criteria of Eq (3. 17) in a weight

minimization problem (Reference 20) indicates that frequent rescaling helps

"4 in the beginning but not at the end of the search. A rational strategy based on

the current V2R, tempered by this experience is presented in Reference 20.

The results of the present investigation indicate an ad hoc procedure that

rescales at cycles 2, 4, 8, ... 2 M is effective in both vibration and buckling

problems. The choice of a good starting vector Xo can also significantly

improve convergence. The unit vector e. asso-iated with the minimumJ
(a ii/bii) as suggested in Referenct 17 worked well for buckling problems.

Even with this starting vector, however, it was necessary to change normal-

izing components and restart the search at least once in most problems. The

normalizing component need not be the maximum magnitude, Xi, but for best

convergence it should be.

A COMPARATIVE EVALUATION OF GRADIENT MINIMIZATION AND

MATRIX EIGENVALUE PROCEDURES

The potential of gradient minimization methods for structural eigenproblems

was discussed in Section 3 and a scal:ng procedure suggested that should aid

in realization of this potential. Taking the conjugate gradie..t algorithm with

this scaling as representative of the current state of the art, this section

makes a comparative evaluation of gi Adient minimization and matrix eigen-

value procedures. Specifically, a matrix transformation method using

Householder's reduction to tridiagonal form and a banded matrix inverse

iteration procedure are used in the comparison. A simply-supported,

cylindrical panel serves as a representative structure for the vibration and

buckling eigenproblems. The panel is ideaiized, using the consistent element

matrices of Section 2 so that neither the A or B matrix is diagonal.
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Panel Vibration Mode Comparisons

The first three symmetric modes of a simply supported panel were computed,

using a standard matrix eigenvalue routine based on Householder's reduction

to tridiagonal form (BIGMAT) and using a Rayleigh quotient minimization

routine based on the conjugate gradient algorithm with scaling. The four

element idealization of the panel and the u, v, w boundary conditions are shown

in Figure 1. This idealization required 48 degrees of freedom. A symmetric

matrix eigenvalue routine like BIGMAT requires transforming the AX = XBX

problem to DY = XY, where D is symmetric. This was accomplished as in

Reference 7, using the positive definite property of B. The frequency com-

parisons shown in Table 1 indicate agreement through five digits for the first

three symmetric modes. The computational difficulty in obtaining the mini-

mization results increased appreciably after the first mode, although the

number of cycles actually decreased between modes one and two. The

increased computations w.re required to purge the search vector of lower

mode contamination before every function and gradient evaluation. If this

was not done, Rayleigh quotient values slightly below the mini,-um were

obtained with a relatively large gradient, indicating a poor eigenvector. How'-

ever, the eigenvectors obtained with purging were far superior to those found

by BIGMAT and will be discussed later. These results were obtained using

the scaling criteria of Eq (3. 17) for all three modes with rescaling every ten

cycles. The convergence improvement achieved by this scaling procedure is

illustrated in Table 2 for the first two modes. These data demonstrate that

the importance of scaling for eigenproblems is similar to that reported in

Referenc, 19 for systems of linear equations. It is interesting to note that

Table 1

FREQUENCY COMPARISONS

!_-X AX - kX xTAX/XTBX

2947.750 2947. 732

w2 6051.968 6051.937

-3 7792.212 7792.200
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Table 2

FREQUENCY CONVERGENCE COMPARISONS

2 10-7 2 0- 7
1 xw2

Cycle Unscaled Scaled Unscaled Scaled

10 1.90273 1.68612 7.89168 5.58873

20 1.18910 0.87181 4.97172 3.66284

30 0.99351 0.86892 4.24870 3.66259

40 0.91413 0.86891 3.90426 ---

50 0.88957 3.76853 ---

100 0.86909 --- 3.66411

the second mode convergence is improved even more than the first. This is

somewhat surprising, since the criteria of Eq (3. 17) do not reflect the con-

straints of Eq (3. 3). Unfor'unately, comparisons are not available for the

third mode to determine if the trend continues. The Rayleigh quotient function

values during the scaled minimization for all three modes are graphed in

Figure 2. The cycles at which rescaling occurred and the cycles at which the

search was restarted with a new normalizing component are also shown in

Figure 2. The first mode search found the frequency to eight significant

digits in 41 cycles, while the unscaled search was aborted at cycle 151 after

converging to only six places. The second mode search found the frequency

to eight places in 33 cycles, while the unscaled search was aborted at cycle

108 after converging to only four places.

The third mode search found the frequency to six piaces in 58 cycles and was

not attempted without scaling. The influence of the constraints of Eq (3. 3)

may have appeared in the third mode search when unscaling was required at

cycles 21 and 35 to reduce the Rayleigh quotient. Reference 5 indicates that

constraint equations should be included in a scaling criteria for potential

energy minimization to avoid this type of behavior. In the present situation,

a projection matrix like Pk that transforms an arbitrary X vector into one

satisfying the constraint equations might be used to congruently transform

V 2 R into a metric that reflects the constraints.
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The eigenvectors found by minimization can be computed to any desired

accuracy by continuing the iteratimn using sufficiently precise arithmetic. In

practice, this could be inefficient if an accurate eigenvector required many

addittonal cycles after the eigenvalue converged to the desired accuracy.

Error analyses (Reference 22) indicate bounds on eigenvLctor accuracy can

be established from the norm of the Rayleigh quotient gradient. The Euclidean

norm of the gradient is a convenient mathematical measure that approaches

zero as the trial vector and associated Rayleigh quotient approach the eigen-

vector and eigenvalue. The relative change in this norm during the minimiza-

tion is a practical measure of the approximate number of significant digits in

the current trial eigenvector. Table 3 lists this norm at several cycles during

the minimization for each eigenvector in scaled coordinates.

The missing entries in the listing for the third mode are cycles for which only

the unscaled norm is available. A closed form solution for the cylindrical

panel vibration problem (Reference 23) indicates that the eigenfunctions for

W(s, 0) are sin(rjr0/P)sin(mTrs/1. This solution neglects in-plane inertia so

that slightly higher frequencies are obtained (Reference 7), however, the

W(s, 0) eigenfunctions change little, if any.

Table 3

EIGENVECTOR CONVERGENCE

IIVR(Xl1)II E IIVR(X2)II I MR1(X3)1I ECycle 1 E IIRX)I

1 1.3 x 10+4 3.1 x 10+4 4.0 x 10+4

10 3.0 x 10+3 1.0 x 10 7.4 x 10+4

20 7.7 x 10+1 9.8 x 10+1 1. 1 x 10+

30 8.5 2.2 ---

40 2.5 x 10" 4.7 x 10 ---

50 8.7 x 10.4 4.3 x 10.4 5.2 x 10+1
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Table 4 shows the comparison of the trigonometric eigenfunctions with the

minimization and BIGMAT eigenvectors.

Table 4

EIGENVECTOR COMPARISONS

-~O W(sQ W(s, 0 1n m /P s / l sMnins n nr
/ s sin Minimizaeion BIGMAT

1 1 1/4 1/4 0.500000 0.500000 0. 179853

1 1 1/4 1/2 0.707107 0.707107 0.421944

1 1 1/2 1/4 0.707107 0.707107 0.393.65

1 1 1/2 1/2 1.000000 1.000000 1.000000

3 1 1/4 1/4 0.500000 0.500000 0. 179853

3 1 1/4 1/2 0.707107 0.707107 0.421944

3 1 1/2 1/4 -0.707107 -0.707107 -0.393165

3 1 1/2 1/2 -1.000000 -1.000000 -1.000000

The poor quality of the BIGMAT eigenvectors was not investigated, althcugh

the transformation from AX = XBX to DY = XY is probably involved.

The CDC 6600 time required to generate all macrices and compute one mode

was approximately 10 seconds for both BIGMAT and Rayleigh quotient mini-

mization. To compute three modes by minimization required over 40 seconds

while BIGMAT used less than 12 seconds. This difference would increase

progressively with additional modes. Pecalling the dimension of the matrices
in the problem, N = 48, this indicates that for small vibration problems

minimization may be practical fo" no more than the first mode. However, as

the dimension of the problem increases, a transformation eigenvalue routine

like BIGMAT is slowed by a full D matrix. Gradient minimization routines

are able to take advAntage of the sparsity in the A and B matrices (Refer-

ence 10) and to avoid even assembling these matrices in discrete element

vibration problems. Using such procedures, a 16-element idealization of the

panel with 192 degrees of freedom was analyzed for the first mode. The

eigenvalue converged to eight significant digits in 76 cycles and the eigenvector

converged to eight significant digits in 97 cycles. The problem was run on the
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CDC 6500 computer, a change from the previous cases which were run on the

CDC 6600, and the solution times were 186 seconds for 76 cycles and 230 sec-

onds for 9 cycles. A BIGMAT solution would have required 1, 200 seconds

and was not ru,, for this reason. These results indicate that large shell

vibration problems (N >100) can be analyzed accurately and efficiently by con-

jugate gradient minimization for at least the first mode. Several modes beyond

the first can also be computed accurately but the efficiency drops off with

present meti..ds for purging the search vector of components from previously

computed eigenvectors. The state of the art regarding scaling for the higher

modes may also require improvement to reflect the constraint equations.

Panel Buckling Mode Comparisons

The critical buckling load for a simply supported cylindrical panel was com-

puted using BIGMAT, an inverse iteration routine and Rayleigh quotient

minimization. The same boundary conditions were used for the prebuckling

solution and the buckling analysis. These boundary conditions and a four-

element idealization of the panel requiring 55 degrees of freedom are shown

in Figure 3. Several other grid idealizations of the panel were also used ana

the buckling results are summarized in Table 5.

Table 5

BUCKLING LOAD COMPARISONS

Grid N Buckling Load N. (lb/in.)

Inverse
BIGMAT Minimization Iteration

2 x 2 16 -1735. 064 -1735. 064 -1735. 064

4 x 4 55 -869.030 -869. 030 -869.030

6 x 6 118 --- --- -810. 194

8 x 8 205 ..--- -809.859
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The eigenvalues from the three solution methods agree to at least seven

significant digits for the lowest root. Convergence of the minimization

routirne and inverse iteration both were slowed by the presence of a second
root very close to the first. In the case of the 4 x 4 grid, the second root

was -885.72 lb/in, or less than 2 percent greater than the critical buckling

load. The inverse iteration procedure at first missed the lower root and

converged to -885.72 lb/in. It was necessary to shift the origin five times

to obtain the first mode. The conjugate gradient minimization routine

converged to two places in less than 40 cycles but then required another

84 cycles to converge to seven places. This behavior and the eigenvector

convergence are illustrated in Table 6.

These computations were made using rescaling at cycles 2, 4, 8, ... , on

a CDC 6500 computer. The cycle times were, on the average, one second

which compares with a BIGMAT solution time of approximately 30 seconds

and an inverse iteration solution time of approximately 38 seconds. The

BIGMAT eigenvectors were, again, poor in comparison to the minimization

and inverse iteration eigervectors as Table 7 demonstrates. The comparisons

were, however, slightly better than the vibration eigenvector comparisons in

Table 4. The small differences between the minimization and inverse iteration

eigenvectors is partly the result of different equation solvers being used for

Table 6

MINIMIZATION BUCKLING MODE CONVERGENCE

Cycle Ns (lb/in. ) llVr(Xi)ll E

1 -1083.060 1.0

10 -887. 575 5.5 x 10"

20 -879.667 2.7 x 10"

30 -876. 101 2. 1 x 10"

40 -873. 390 2.7 x lo-2

50 -870. 677 3.6 x lo"2

70 -869. 244 4.8 x 10-3

90 -869. 033 1.0 x 10-

110 -869. 031 1.3 x 10-4

130 -869. 031 4.0 x 10-5
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the prebuckling solution. This resulted in differences in the f.; place for

some of the smaller components of the prebuckling displacement vector.

The finer grid idealizations of the panel in Table 6 were analyzed by inverse

iteration and the 6 x 6 grid problem was also partially solved 6y minimization.

The minimization run was aborted after converging to three places which

require 57 cycles at slightly over three seconds per cycle. Considering the

convergence behavior shown in Table 6, another 100 cycles or more would

have been required for eight place eigenvalue accuracy. The inverse iteration

procedure converged to eight places after three shifts of origin and approxi-

mately 75 seconds. This would indicate minimization is not efficient in

comparison to inverse iteration when the second mode is very close to the

first. The only mitigating factor in favor of minimization (at least in tht. case

of the conjugate gradient algorithm with the present scaling) is the guarantee

that it will converge to the lowest buckling load. The performance of the

minimizatio, routine was improved for cases with well separated roots but,

in no buckling case, was it better than inverse iteration.

AN EVALUAP7rON OF THE CYLINDRICAL PANEL ELEMENT IN

VIBRATION AND BUCKLING PROBLEMS

The accuracy of higher order discrete elements in vibration and buckling

eigenproblems has been noted in several recent studies (References 4, 6, 24,

and 25). A basic reason for this performance is the interpolation accuracy

of the assumed displacement functions used for the elements. In the case of

displacement functions based on Hermite polynomials, H .(N)(s), sharp

interpolation error bounds have been established (Reference 26). These

Table 7

BUCKLING EIGENVECTOR COMPARISONS

W(s, 0)
W(s, 0) Inverse W(s, 0)

e/P s/I Minimization Iteration BIGMAT

1/4 1/4 0. 158484 0. 158588 0.057323

1/4 1/2 -0.101409 -o.101656 -0.054522

1/2 1/4 -0.262733 -0.262811 -0.213848

1/2 1/2 0.109157 0.109600 0.151487
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bounds can in turn be used to bound the accuracy of eigenvalues and

eigenvectors found by Rayleigh Ritz approximaticns of elliptic boundary value

problems (References 27 and 28). To cite a speciiic example from Refer-

ence 28, the rectangular membrane vibration problem

SV2 W(X, Y) + X W(X, Y) n 0 in A (5. 1)

W(X, Y) = 0 on 8A (5.2)
H. ()(x Hk(N)Y

approximated using discrete eiements with H..(N)(X). Hk ()(Y) displacement

functions results in eigenvalues ,.v-'h error 0'(A& -) and eigenvectors with
A error O(AZN+ 1) where A is the grid size. These bounds have also been con-

firmed numerically for the rectangular membrane; however, as Reference 28

shows, they are not valid for membranes with rpentrant corners. The reason

they are not valid is because the eigenfunctions have singular derivatives at

the reentrant corner. F-'Žn in this case, Reference 28 shows that, by the

addition of certain singular functions to the polynomials, Hij(N) (X) HkI(N)(Y),
the convergence rates for smooth eigenfunctions can be retained. Plate and

shell structures, unlike membranes, must have eigeniunctions with continuous

first derivatives in W(s, 0) or the bending strains, are undefined. The second

derivatives may be discont-nuous, in which case, the error bounds in Refer-

ence 26 can not be used for N-:I. The present investigation of the cylindrical

panel element is limited to problems with eigenfunctions that have continuous

fourth derivatives. In this case, order A4 eigenvalue convergence is expected

for vibration problems. The buckling problem with prebuckling stresses and

displacements dependent on (s, 8) is not of the form considered in Reference 27

and the convergence rate of the present consistent incremental stiffness matrix

formulation is uncertain. Empirical results are presented for both these

problems in this section and the panel element is then applied to a cylinder

buckling problem.

Panel Vibration Mode Convergence

The cylindrical panel vibration problem used to study eigenvalue solution

procedures will b'e used to evaluate the discrete element. The solution in

Reference 23 neglects in-plane inertia and gives a first mode frequency

1. 3 percent higher than the present. A Rayleigh-Ritz solution in Reference 29
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includes in-plane inertia and uses Fourier series displacemen, functions.

Truncating the series at six terms, this solution gives a first mr)de frequency

0. 13 percent higher than the present. As more terms are added, this com-

parison indicates that the two solutions will have vanishingly small differences,

as they theoretically must. To empirically test the discrete element converg-

ence rate with grid size, the data in Table 8 were computed. Since no exact

Table 8

FREQUENCY CONVERGENCE WITH GRID SIZE

Grid N W

2 x 2 12 2949.80

4 x 4 48 2947.73

6 x 6 114 2947.65

8 x 8 192 2947.64

solution is available, the 8 x 8 grid results were used to estimate convergence

rates with logarithmic ratios as in Reference 5. These calculations indicate

an exponent of 3. 6 between the 2 x 2 and 4 x 4 grids which is compatible with

A4 convergence. The frequency from the 6 x 6 grid is too close to the
frequency frorn the 8 x 8 grid to consider the latter as referenceý in computing

a convergence rate between the 4 x 4 and 6 x 6 grids. Eigenvector conver-

gence rates werc not estimated because of the lengthy calculations required.

The w(s, 0) components of the eigenvector were converged to at least six

places in the 4 x 4 grid solution, as Table 4 indicates. The smaller compo-

nents of the eigenvector, such as the slope variables, are !ess accurate but

should converge at the same rate. To illustrate this, the derivatives

w (0, P/2) and w (1/2, 0) are given in Table 9 for each grid. The corres-

ponding derivatives of sin (nnrG/f3) sin (mTrO/I) for this problem are both equal

to 7r/ O.
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Table 9

VIBRATION MODE CONVERGENCE WITH GRID SIZE

Grid N W s(,P/2) W (1/2,0)

2 x 2 12 0.316431 0.316431

4 x 4 48 0.314175 0.314321

6 x 6 114 0.314160 0.314176

8 x 8 192 0.314159 0.314162

As these data demonstrate, the smaller components of the eigenvector also

converge rapidly and, even for a coarse grid, are accurate enough for most

applications.

Panel Buckling Mode Convergence

The panel buckling problem previously analyzed is considered here in more

detail to describe the prebuckling displacements and stresses and to inves-

tigate the discrete element convergence characteristics. The boundary

conditions, as shown in Figure 3, result in local hoop compression near each
end, =* (0, e) I V (0, 0), which decays very rapidly away from the loaded

edges. The axial membrane stress varies between - 15, 600 psi and - 15, 000 psi

which is within 2 percent of being constant. The membrane shear stress is

less than 100 psi everywhere except near the corners of the loaded edges where

it reaches 700 psi. The bending and axial displacements are shown in Figure 4

.Ialong the cent rline of the panel. The maximum bending stresses occur on the
1 oaededeswhreoB . B ,

loaded edges where a- = 2, 500 psi and a- 750 psi at the top surface. The
8

bending shear stress has a maximum of asB -2,580 psi in each of the fourSO
corners and is approximately zero elsewhere. These prebuckling stresses

and displacements were computed using the 8 x 8 grid idealization of the panel

under a uniform axial load of N. = -758 lb per inch. The buckling load from

Table 5 is N - 810 lb per inch and the buckled shape in the axial direc-

tion is shown in Figure 4. There appear to be 9 half waves in the axial direc-

tion with their amplitude decaying away from the ends. The magnitude of the

buckling load is about 7 percent greater than 0. 6 Eh 2 /r and was obtained using

consistent (i. e., the same) boundary conditions for the prebuckling and buckling

analysis. The convergence with grid size of the buckling load is indicated in
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Table 5. Using the 8 x 8 grid results as reference, logarithmic ratios between

the 2 x 2 and 4 x 4 grids result in an exponent of 4. 0 which is A4 convergence.
This indicates that the convergence rate for the cylindrical panel element in

buckling analyses may be the same as in vibration analyses. However, even

though the convergence rate may be the same, the vibration modes for a given

grid size are considerably more accurate than the buckling modes.

Cylinder Buckling Results

A cylinder with a non-axisymmetri: critical buckling mode (n=3, m= 1) for the

bcaz•dary conditions shown in Figure 5 was analyzed under a uniform axial

load. Since consistent boundary conditions are used in the present analysis,

the u boundairy conditions do not correspond to the classical simple support

conditions. The classical buckling load for this cylinder is Nc = -9, 960 lb/in.,

with the w portion of the mode shape given by sin 30 sin irs /1. The discrete

element analysis was made using eight elements around the circumference and

either two or fnur elements along the length as shown in Figure 5 where axial

symmetry has been used. These idealizations require 112 and 208 degrees of

freedom, respectively, while the same idealizations with classical boundary

conditions require 96 a.,d 192 degrees of freedom. Resulti from the discrete

element bending theory solution are shown in Figure 6 and comparisons with

* the membrane theory solution are presented in Table 10.

The bending results are lower than the membrane and both discrete element

solutions are slightly higher than classical. The bending theory results aljo

increase slightly with grid refinement. A possible cause for this is an

appreciable change in the prebuckling bending dispiacements between the 8 x 2

grid solution and the 8 x 4 grid colution. The eigenvectors from the bending

theory solution are in excellent agreement with classical, as Table 11

demonstrates.

Table 10

CYLINDER AXIAL BUCKLING LOAD COMPARISONS

N N N Nc c

Bending Theory Solution -10,277 112 -10, 339 208

Membrane Theory Solution -10, 364 96 -10, 357 192
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Table 11

CYLINDER BENDING THEORY AXIAL
BUCKLING MODE COMPARISONS

mros

sin ne sin --•---WB(s,e)) W (s,e)
nl m B/It s/11 1B 8xZ B 8x4

- 10 1
3 1 0 1/2 0 0(10" ) 0(10"l11

3 1 1/4 1/2 0.707107 0.707107 0.707107

3 1 1/2 1/2 -I.COOOOO -1.000000 -1.000000

3 1 3/4 1/2 0.707107 0.707107 0.707107

3 1 1 1/2 0 0(10"10) 0(10"11)

3 1 5/4 1/2 -0.707107 -0.707107 -0.707107

3 1 3/2 1/2 1.000000 1.000000 1.000000

3 1 7/4 1/2 -0.707107 -0.707107 -0.707107

3 1 2 1/2 0 0(10"10) 0(10"11

These results were obtained using inverse iteration and there was no problem

with close second mode roots as in the panel problem.

CONCLUSIONS

A Rayleigh quotient minimization method for structural vibration and buckling

eigenproblems was shown significantly improved by scaling. Results from a

cylindrical panel vibration eigenproblem demonstrate that first and second

mode convergence in less than N cycles, is possible. Vibration modes higher

than the first required frequent purging of the search vector to satisfy ortho-

gonality constraints and appreciably increased the cycle time. When the

"dimensior, of the vibration eigenproblem was small (N<100) minimization was

competitive with Householder's matrix transformation method for no more

than the first mode. However, the ability of the minimization method to take

advantage of sparsity in the K2 and M matrices produced a 5 to I time reduc-

tion for the first mode of a 192 degree of freedom panel vibration eigenproblem.

Application of the minimization approach to buckling eigenproblems was not as

efficient and usually required more than N cycles to converge. The complexity

of the prebuckling displacements appears to adversely effect the condition of

the K3 matrix. The accuracy of the minimization buckling modes was excellent

but, in comparison to inverse iteration, it was not efficient, even for large
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buckling eigenproblems. These conclusions are to some extent dependent Ln

the particular shell element used and the test problems; however, it seems

clear that minimization is better suited for the vibration, rather than the

buckling, eigenproblem.

The vibration mode shapes and frequencies determined using the cylindri-

cal panel element were accurate without requiring many degrees of freedom.

Even a coarse 12 degree of freedom idealization was within 1 percent of

Rayleigh-Ritz solution in Reference 29. Convergence with grid size indicatesSA4
that the frequency is approximated with error order a , as predicted by

mathematical error analyses (Reterence 27) where this higher order con-

vergence rate applies only if the continuum mode shapes have continuous

derivatives through order four. P-•anel buckling results also suggest order

A4 eigenvalue convergence for the consistent incremental st."fness matrix

formulation. However, the buckling accuracy for a given grid size was

significantly less than the frequen( . accuracy for the corresponding vibration

problem. The most noticeable effect of linear prebuckling bending displace-

ments on the panel demonstration problem was a decay in the amplitude of the

axial waves, away from the loaded edges. In the case of an axially loaded

cylinder (0/r - 4, r/h = 64.6) there was little difference, with the membrane

discrete element solution, or classical. The mode shape in w was the same

as classical with the buckling load 5 percent higher than classical. Although

the applications presented have been for linear bifurcation buckling, the

element formulation presented can be used for nonlinear stability analyses,

and such applications are in progress.
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QUESTIONS AND COMMENTS FOLLOWING STANTON'S PAPER

QUESTION: Do I understand correctly that you really don't have

to form these matrices KZ, K3 and K4?

STANTON: That's right. What we do is take advantage of the

fact that the assembly transformation for the element matrices is Boolean

in locally consistent coordinates. The transformation associates a parti-

cular system degree of freedom with an element degree of freedom for each

element matrix using a string of integers (in this case there are 48). It

makes it rather easy to manage your data and very easy to avoid working

with zeros in this fashion.

QUESTION: It wasn't clear to me whether in your scaling criterion

you were using your normalization technique considerirg just the original

stiffness matrix or both the incremental and the initial stiffness matrix.

Could you answer the question I've implied by that statement?

STANTCN: The scaling criteria was based on the second deriva-

tives of the Rayleigh quotient which does include both the A and B matrices,

one of them being the incremental stiffness matrix.
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STRESS, BUCKLING, AND VIBRATION ANALYSIS OF
SHELLS OF REVOLUTION

By M. S. Anderson*, R. E. Fulton*,
W. L. Heard, Jr.*, an.. J. E. Walz*

NASA Langley Research Center
Hampton, Virgini a

SUMMARY

This paper su marizes the major computer programs in existence for the
analysis of shells of revolution by numerical integration and finite difference
procedures. The report describes programs for (1) linear and nonlinear
analysis of shells subjected to axisymmetric and asymmetric static loads,
(2) buckling and vibration behavior including effects of axisymmetric nonlinear
prestress, and (3) transient response. Extensions of these programs which azse
currently underway and some of the primary assets of both the numerical
integration and finite difference procedures are discussed. In addition, a
summary of the shell theory formulation, the numerical approximation, and the
solution techniques of a set of programs denoted SALORS (Structural Analysis
of Layered Orthotropic Ring-Stiffened Shells), developed at the NASA Langley
Research Center, are described. Stress, vibration, and buckling results from
the SALORS program are given for several shell configurations having a
variety of structural complexities that illustrate the current capability of
shell of revolution programs.

INTRODUCTION

A substantial capability has been developed over the last 10 years for the
numerical analysis of shells of revolution. Computer programs are now
available, which are based on accurate shell theory, and are efficient in
computer storage and computational speed, and are applicable to general shell
shapes. Numerical analysis of such shells based on solution to the appropriate
shell equations by numerical integration (e.g., see refs. 1-27) and finite
differences (e.g., see refs. 28-59) have been developed. Fi-nite element
methods have also been used, but wtll not be discussed in this paper. Figure 1
shows a sketch of a shell structure and indicates some of the structural and
load complexities that can be considered. The structure is an orthotropic
shell of revolution having general meridional shape, s ;ructural rings, and
discontinuities along the meridian and supported at the boundaries by a
general elastic restraint. This type of shell can now be analyzed for a
variety of loading conditions for stresses, buckling, free vibrations, and
transient response. The purpose of the present paper is to summarize some of
the major computer programs in existence for such analyses, to indicate the
capability that is now general3y available, and to identify areas of needed
research. In addition, a summary of the shell theory formulation, the

*Aerospace Engineer, NASA Langley Research Center, Hampton, Virginia.
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numerical approximation, and the solution techniques of a set of programs
denoted SALORS (Structural Analysis of Layered Orthotropic Ring-Stiffened
Shells), developed at the NASA Langley Research--Center, are described and
several example problems are presented. These examples indicate the structural
detail which can be analyzed by numerical shell-of-revolution programs.

SUMMARY OF THE DEVELOPMENT OF NUMERICAL ANALYSIS
OF SHKhLS OF REVOLUTION

The numerical analysis of general shells of revolution has developed
along three different lines: Methods based on numerical integration of the
governing equations, methods based on finite difference approximations, and
methods based on finite element approximations. Finite element methods are
important tools in structural analysis, but are not discussed in the present
paper. A survey of general shell computer programs is given in reference (60),
and numerical analysis of shells of revolution is summarized in reference (61).
A brief historical development and comparison of the numerical integration and
finite difference methods will be given in the following sections. Table 1 is
a listing according to programs which are in use or under development. The
uumbers in parentheses indicate the references associated with the programs.
The programs listed generally have the capability of analyzing a ahell of the
type shown in Figure 1. However, in the more advanced analysis areas (asym-
metric stiffness and dynamic stress analysis), there are no programs with this
general capability, and the programs listed for these advanced areas are
representative of the capability that is available or is under development.
All the programs listcd in Table 1 depend on a Fourier decomposition o' the
variables for the circumferential direction.

Numerical Integration Procedures
The earliest formalized procedure for solution of the differential

equations for sh.ells of revolution appears to have been presented by
Goldberg(l), and was based on the numerical integration of a system of first-
order shell equations as a two-point boundary value problem. This work was
siibsequently extended by Goldberg for numerous applications (see, e.g.,
refs. 1-3 and summary given in ref. 4).

The exponential growth and decay of the influence coefficients required
in the two-point boundary value solution can lead to numerical difficulties
for shell-of-revolution equations; thus, reliable solutions using this
method require breaking a shell into an aesemblage of shell segments. These
modifications to the integration procedure, which have sometimes been denoted
as the "multisegment integration procedure," were suggested by Goldberg(3),
Kalnins(5), and Cohen(6). This integration procedure was s•.bsequently used by
the latter two authors and their collaborators to develop systems of
computer programs for segmented shells of revolution for buckling, vibration,
linear asymmetric stress analysis, and nonlinear axisymmetric stress analysis
(see refs. 7-13 and Table 1).

A similar system of programs for linear and nonlinear stres6 analysis of
shells of revolution denoted STARS was developed by Mason and his
associates(14-18). References (14) and (16) were the first to outline (but not
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program) a combined Fourier series - numerical integration procedure for
nonlinear analysis of shells of revolution subjected, to asymetric loads.
Swartz(19) developed a program similar to that con-dned in reference (14),
and Thurston(20,21) developed a lesser known, but efficient nume:ical
integration procedure for axisoynetric shell behav'Aor wherein integration by
parts ir carried out prior to the numerical integ~ation.

The above i-itegmration procedures for a linear asymmetric shell a.;alysis
require the calculation and storage of the particular solution and eight
complimentary solutions for each segment. A rAjor advance in the numerical
integration procedure was made by Zarghamee And Robinson(22-24). Their
approa, .t requires calculation and storage rf the particular solution and only
four complimentary solutions for each shrl segment. This numerical integra-
tion procedure appears to be the most 'fficient computational method developed
to daAo for shells of revolution, an.a requires approximately half the computer
storage cMd time of other intep.aion procedures. To the writers' knowledge,
however, this p, __ h oeen used only for selected applications with
classical boundary conditions and has not been incorporated in a complete
system of general purpose programs for stress, vibration, and buckling
analysis of orthotropic shells of revolution. In Appendix A the method
presented by Zarghamee and Robinson is extended to the most general set of
equations and boundary conditions that are currently being employed. Although
these generalized equatiois have not, as yet, been programed, the advantages
in computer time and storage demonstrated in references (22-24) appear to be
retained.

Finite Difference Procedures
Procedures based on finite difference solutions to the shell equations

were developed simultaneously with the development of iumerical integration
procedue.es. The basic method of approach was presented by Radkowski, Davis,
and Bolduc in 1960(28) for axisymnetric shell analysis. In this procedure
the shell equations are formulated as second order equations and approximated
by finite differences. The resulting tridiagonal equations are solved by a
Gaussian elimination method suggested by Potters (29). This work formed the
basis of a program by Hubka(30). It was also incorporated in a documented,
nonproprietary computer program by Sepetoski,et al.(31), which was
subsequently extended by Ball and Bodeen to include geometric vonlinearties(32).

A formulation of linear asymmetric stress analysis of shells of revolution
was first given by Budiansky and Radkowsoi(33). The basic approach is to
formulate the shell equations as four simultaneous second-order differential
equations in terms of four basic variables - the three displacements and the
meridional moment. Reference 133) describes the formulation of the problem for
arbitrary boundary conditions, shell discontinuities, and branching. The
Budiamsky-Radkowski approach was implemented into an operational and documented
computer program in reference (34), and similar such programs are given in
reference;. (35-37). Extension of the method to vibration and buckling problems
was carried out in reference (38), and the modification of the shell-equation
coefficients to account for orthotropic shell properties is given in
reference (39).
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,he Budiansky-Radkowski procedure also served as the basis for two
independent systems of programs for stress, vibration, and buckling analysis.
One system, denoted SALORS, was developed at the NASA Langley Research Center
and is described in Appendix B. The other system, denoted BOSOR(40-48), was
developed by Bushnell and his associates. The original BOSOR program(40), was
based on shallow shell theory for buckling and contained the effects of
material orthotropy. Updating to BOSOR2(4l-45), and finally to BCSOR3(46-48),
led to a complete system of programs which provides essentially the same
analysis capability as the SALORS system. The BOSOR2 and BOSOR3 programs
differ from the other finite difference formulations in that the difference
approximations are applied to the evergy expression rather than to the dif-
ferential equations. As a result, the finite difference equations are
formulated in terms of only the three-shell displacement variables, and this
method does not require use of the meridional moment as a fourth-basic
variable. This method is similar to finite element methods in that the
difference equations are symmetric and lend themselves to conventioizl finite
element. matrix manipulations.

Extensions to Asymetric Problems, Dynamics, and Plasticity
The above computer programs are essentially one dimensional and the use

of Fourier circumferential harmonics leads to uncoupled differential
equations. As can be seen from Table 1, less work has been done for problems
where coupled equations result, namely for nonlinear asymmetric geometry. A
documented program has been developed by Ball(49) for the nonlinear elastic
behavior of a shell of revolution subjected to asymmetric loads. A similar
program has been developed by Greenbaum(51,52), but is applicable only to
shells composed of cylindrical and conical segments. In these two programs
the circumferential behavior is taken in the form of a finite number of
Fourier terms, and finite difference approximations are used along the meridian.
Extensions of linear analysis to include aqymmetric thickness distributions
for a shell of revolution have been obtained with the program described in
references (53,54).

Some work has also been done to extend static analyses to account for
transient loads. Neither the finite difference nor the numerical integration
procedures are efficient for computing a large number of modes and frequencies
for purposes of a modal-type transient response analysis. The most efficient
application of the finite differemce and numerical integration methods to
such analyses is probably through direct integration of the equations of motion
for a set of initial conditions. The use of an implicit integration scheme,
such as the Houbolt method(62), appears to be very efficient for transient
response, and each step forward in time is essentially a single-static
solution. Programs which include transient response include one for axisym-
metric, nonlinear dynamic response of ortnotropic shells by Stephens and
Fulton, denoted SADAOS(55,56). Schaeffer's linear static program for
isotropic shells(34), has also been extended by Stephens to include dynamic
response duv to asymmetric loads(57), and the general Budiansky-Radkowski
formulation for isotropic branched chells has been extended to asymmetric
stiffness distributions and transient response in reference (54). In general,
although the technology exists, transient response does not appear to be
automated for the same level of structural complexity as exists for static
loads. Shell of revolution programs which consider plasticity include the EPS
program (ref. 58) for static loads and the GIRLS II program (ref. 59)
for dynamic loads.
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The following extensions are known to be underway and arze denoted with
dotte, lines in Table 1:

(1) Ball's program(49) has been extended to nonlinear asymmetric dynamic
response, but the program is not yet documented.

(2) Cohen is presently being funded by NASA to extend his programs to
prestressed vibrations, bifurcation buckling due to asymmetric loads, and a
bhell-branching capability.

(3) Stephens and Fulton are extending the SADAOS program to include
plasticity.

(4) R. E. Martin of Texas A & M University is extending the Ball
nonlinear, asymmetric static-analysis program to anisotropic shells.

(5) Bushnell is funded by the Navy to extend the BOSOR program to

include shell branching.

MAJOR PROGRAM SYSTEMS

From Table 1 it can be seen that four major program systems have been
developed that cover the complete range of stress, buckling, and vibration.
These four are BOSOR and SALORS and the programs by Cohen and Kalnins. The
BOSOR system is available in COSMIC*. The more complete BOSOR3 is government
property, is operational on the UNIVAC 1108 and IBM 360 computer systems in
double precision, and is available from the Lockheed Missiles and Space
Company, Palo Alto, California. The SALORS system, written in FORTRAN IV, is
operational on CDC 6000 series computers, and various portions of it have
already been made operational on most of the major computers, including the
UNIVAC 1108, and IBM 360. It is planned for distribution through COSMIC upon
completion of user documentation. Cohen's programs were originally written
for operation on the Philco 2000 series computer, but have subsequently been
made operational on the CDC 6000 series computer. They were originally
proprietary in nature but, through government funding, will soon be generally
available with distribution through COSMIC. Kalnins' programs have been well
documented in reference (11) and are available from the Solid Mechanics Branch
of the Air Force Flight Dynamics Laboratory at Wright-Patterson Air Force
Base, Ohio.

These four programs are similar in that each has a segmentation capability
to account for merilional variations and discontinuitiec in geometry, loading,
and stiffness. In addition, each program can account for orthotropic shell
properties, and thermal and mechanical loads. Some of the major differences
in approach and capability are summarized in Table 2. The shell theories arc
all sufficiently accurate to obtain correct results for the first and second
harmonics, where classical analysis using shallow-shell theory fails. The

*COSMIC - Computer Software Management & Information Center, University of

Georgia, Athens, Georgia.
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BOSOR, Cohen, and SALORS systems obtain eigenvalues by an iteration method
which converges to the closest eigenvalue to a reference eigenvalue. The
Kalnins system uses determinant plotting, which is unattractive for hardware
problems because the analyst must know a priori the approximate value of the
eigenvalue to obt• in reliable results. For a given problem, the four programs
can be expected to give the same numerical result. This ý.s illustrated in
Table 3 where the specific results for a diverse group of problems have been
tabulated. Reasonable agreement is shown between all four programs for stress
analysis, buckling, and vibration.

Comparison of Numerical Integration and Finite Difference Procedures
A comparison of some of the features in the numerical integration and

finite difference procedures can be obtained by considering a representative
program by each method. The discussion will focus on the Cohen (integration)
and SALORS (difference) programs°because of the authors' familiarity with the
two programs. Portions of the diacussion also apply to the other computer
programs in the respective categories. The discussion will consider the areas
of (1) formulation and programing of equations, (2) numerical approximation,
and (3) input and output information.

Formulation and Programing of Shell Equations. The shell equations for
the Cohen numerical integration procedure are the eight first-order differential
equations composed of the equilibrium, the constitutive, and strain displacement
equations. They are relatively easy to obtain and program. The SALORS finite
difference procedure reduces the equations to four second-order differential
equations before programing. This reduction facilitates application of dif-
ference approximations to the equations. However, the equations to be
programed are long and complicated and lead to additional terms, such as
derivatives of stiffnesses and other geometrical quantities.

Numerical Approximation and Solution. For the numerical solution of the
differential equations, the Cohen integration procedure uses standard
cWputer library integration routines for first-order differential equations.
The routine automatically selects an increment size to assure accuracy to a
prescribed input tolerance. However, the integration procedure becomes
numerically unstable for long shells, and segmenting the shell is necessary.
This requires the storage of a 9 x 8 matrix for each segment and the subsequent
solution of a tridlagonal set of equations of the order of eight times the
number of segments. Usually, discontinuities of practical structures serve tt,
form convenient segment boundaries. The treatment of segmentation and boundary
points are straightforward, since the first-order equations use edge force
resultants and corresponding displacements as variables.

In the SALORS finite difference procedure, the user must select the dif-
ference stations in such a way as to achieve satisfactory numerical accuracy.
In general, more difference stations are required than Integration intervals
for comparable accuracy. Also, fictitious exterior points, or forward dif-
ferences at boundaries of discontinuity points, are required and the algebra
and programing logic are fairly complex. On the other hand, the numerical
solution ib stable and no segmentation is required for long shells, although
in somp cases it is desirable. Boundary-layer effects which occur for very
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thin shells are adequately handled with small, finite difference increments

in the boundary-layer region.

Comparative computer time and storage requirements for analysis of the

same shells by the SALORS and Cohen programs are reported in reference (61).
These results are given in Table 4 for calculations of thermal buckling of a
cylinder and the free vibrations of a conical shell. The programs have
comparable computer requirements for these examples, and no clear advantage
in numerical efficiency is demonstrated by either procedure.

Input and Output Details. The integration procedure inherently involves
fewer input and output points than the difference procedure. Intermediate
reference points are used in addition to segment end points to describe the
merie.ional variation of quantities. This procedure may cause a loss in
accuracy or may, in fact, be inadequate for buckling or vibration problems
where the stress analysis provides the prestress input. Interpolation between
reference points is required for 'hese cases and interpolated prestress
information is not as accurate as that calculated for reference points. This
might be particularly important in the definition of the w--Aly oscillating
prebuckling deformations in a ring-stiffened shell.

In the SALORS difference procedures, this problem does not arise because
the information of interest is always defined in terms of the station
variables, and all station variables are calculated and stored during a
solution; thus they are automatically available. In a prestressed vibration
or buckling problem, the input is precisely the output, station by station, of
the stress analysis problem. This procedure gives a consistent numerical
solution for the stress and eigenvalue problem.

Summry of Comparison. From a user point of view there are two
significant differences between the two procedures; (1) an asset for the
integration procedures is that criteria are included in the routines to
automatically select integration intervals to achieve accurate results,
whereas in the difference method the user must select a priori satisfactory
station intervals, and (2) an asset for the difference procedure is that all
difference station results having been calculated are subsequently used to
advantage as point by point input for prestressed eigenvalue problems whereas
for the integration procedures interpolation between reference points (with
possible loss in accuracy) is required.

From a programing point of view, other comments can be made. An asset
for the integration procedure is the use of standard integration routines and
simpler equations inherent in a first-order formulation of the shell equatiovs.
Boundary and discontinuity conditions are also relatively easy to program,
and there can be a computer storage advantage, depending on the amount of out-
put information required. An asset for the difference procedure is that no
major numerical instability difficulties are apparent, whereas ihell segmenta-
tion is required in the integration procedure.

An improvement in efficiency of the integration procedure appears to be
possible by using the extension to the Zarghamee-Robinson procedure given in
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Appendix A. Some of the differences between the integration and difference
procedures due to equation order can be eliminated by using first. rather than
second-order equations for the difference procedure, as was done in
references (51) and (55). On the other hand, the first-order formulation
requires the storage of twice as much information at every station and the
inversion of twice as many matrices depreciating some of its conveniences.
Derivatives of stiffness and geometrical data, as well as the use of
fictitious boundary points in the difference procedure, can be eliminatedp and
a symmetric set of equations obtained by deriving the difference equations
from the shell energy, as is done in the BOSOR program. The Kalnins and Cohen
approaches appear to be very similar, and the comments and discussion generally
apply to both programs.

On the basis of all the points considered, however, there appears to be
no clear advantage to either the numerical integration or the finite difference
procedure, provided both are well formulated and efficiently programed) the
choice Is more likely to be based on personal preference, experience with a
particular approach, or the availebility of a program with certain checked-out
subroutines.

APPLICATION OF PROGRAM

The capabilities of these programs will be illustrated in the following
section where stress, buckling, and vibration results will be given for
several problems offering a wide variety of configurations and structural
arrangement. The results are obtained with the SALORS system but illustrate
the general capabilities of well developed shell-of-revolution programs. A
summary of the shell theory formulation, the numerical approximation, and
solution techniques used in SALORS are given in Appendix B.

Ring-Stiffened Cylinder
Progress in analytic capability is illustrated by attempts that have been

made to predict the buckling pressure of the ring-stiffened cylinder shown in
Figure 2. The cylinder, which was machined with 11 integral, external
rectangular rings, was bolted to heavy end bulkheads. Bodner(63) reported the
results of a theoretical analysis for this cylinder which had previously been
tested(64). The primary utility of such tests is to establish the accuracy of
analytical methods. The experimental buckling pressure and Bodner's prediction
are shown in Table 5. Bodner's prediction was based on Donnell theory and
orthotropic stiffness properties (ring area and moment of inertia were
distributed uniformly), snd resulted in a pressure of 796 psi. This prediction
is much higher than the 675 psi obtained in the experiment. In an attempt to
reduce this discrepancy between theory and experiment, he made a number of
other predictions using different shell theories and different values of
effective length of sheet acting with the rings. In the early 60's, investiga-
tors began to recognize that the eccentricity of rings and stringers could have
a major effect in shell buckling. A Donnell theory was developed in
reference (65) which accounts for stiffener eccentricity but still smears the
ring stiffness uniformly over the length of the cylinder. When this theory
was applied to the same problem, a buckling pressure of 739 psi was obtained.
This result indicates that eccentricity reduces ring effectiveness, if the
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rings are external. On the other hand, using the same theory of reference (65),
but assuming the rings to be internal, yields a buckling pressure of 8W8 psi.

A comprehensive analysis of this cylinder has been made with the Langley
shell-of-revolution programs (SALIRS). First, the nonlinear behavior under
an axisyimetric state of stress was determined and is shown in Figure 3.
Plotted is external pressure against the unit shortening (total end shortening
divided by length). As can be seen for pressures below 1000 psi, the nonlinear
effects are negligible. The buckling pressure for this nonlinear state of
stress was first calculated as 708 psi, assuming a dead pressure loading. This
result reflects that for low harmonics (in this case n - 3) the more accurate
shell theories predict lower buckling loads than Donnell's theory. However,
the experiment was under a live pressure lGad (pressure force remains normal to
surface during buckling), and for this condition a buckling pressure of 642 psi
was calculated (Cohen, in ref. 13, calculated 644 psi for the same conditions).
Thus, the effect of a live pressure loading was significant. All calculations
to date have retained the original assumption of simply supported ends. This
assumption appears unrealistic, due to the heavy bulkheads of the test cylinder
and, particularly, since the most accurate calculation (in which the wall and
discrete rings were accurately modeled with the Cohen or SALORS program),
predicts a lower buckling load than obtained experimentally. For computer
programs which handle discontinuities, it is not necessary to assume boundary
conditions at the end of the cylinder, since the whole specimen, cylinder,
plus end bulkheads can be analyzed routinely. Such an analysis was carried
out with SALORS and predicts a buckling pressure of 860 psi. The exp tmental
value is now approximately 20 percent less than the theoretical value ,he
difference probably due to imperfection sensitivity). As a result of the
above study, a paradox occurs wherein the most accurate analysis to date
increases the difference between theory and experiment. Nevertheless, it
would be unrealistic to neglect the rather large effects of eccentric stiffen-
ing, live pressure load, and boundary restraints that apparently play a major
role in the behavior of this specimen. Use of less accurate analyses in the
past, which ignore such effects, has probably led, in many cases, to a false
conclusion concerning the accuracy of theory.

Most experimental investigations of shell buckling are still restricted to
shells of revolution. It is strongly recommended that the results of these
investigations be analyzed with shell-of-revolution computer programs capable
of handling all the parameters that might affect the result, including the
supporting fixture. In many past pro&-ams, information o,, end bulkheads and
attachments has been omitted. For example, the thickness of the bulkhead
shown in Figure 2 had to be determined by scaling from a photograph. If
complete information is available, a much better undarstanding of the relation-
ship between theory and experiment can be made by using the current shell-of-
revolution computer program capability.

Riug-Stiffened Cone
The SALORS system of programs has also been applied to the design and

analysis of a blunt conical planetary-entry body loaded by uniform pressure,
as shown in Figure 4. The configuration shown is a ring-stiffened cone with a
spherical nose cap. There are two large rings) one at the aft end, and one at
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an interior location where the pressure load is reacted. Rings are of variable
size and spacing. Table 6 gives the details of the ring and stringer proper-
ties and locations. The symbols used are given in Appendix B. The conventional
analysis approach would probably consider an orthotropic cone under a membrane
prestress, simply supported between the two larger rings. The cone stiffness
would be based on average ring spacing and stiffness distributed uniformly
over the length, and the portion of the shell forward of the reaction would be
neglected. Local buckling of the skin would also be calculated, assuming
simple support between the actual rings. Such calculations indicate the pres-
sure required for general buckling is 2.9 psi, and that required for local
buckling is 2.5 psi.

Applying the SALORS system of programs, the whole shell can be considered,

and much more detailed and accurate information can be obtained. For example,
the stress analysis program revealed a region of high circumferential stress
in the vicinity of the load reaction. Longitudinal stiffeners were provided
in this region, which limited the stress to acceptable values. The aft ring
of circular cross section was sized by making buckling calculations for a wide
range of ring sizes to determine the smallest ring with sufficient stiffness
to provide the equivalent of simple support during buckling.

Calculations of the buckling pressure as a function of harmonic wave
number are shown in Figure 5. These results give a more accurate picture of
the buckling behavior than the simple analysis described above. Three dif-
ferent meridional buckling modes were observed. At low values of n, the
predominant buckling deflections were confined to the region between the
support ring and nose cap. This mode is denoted "local orthotropic buckling.,"
since it involves deflection of several rings. The expected general buckling
mode was critical for n between 4 and 10 with the critical harmonic n = 6.
As n is increased beyond 10, buckling .s of a local nature involving motion
of one or a few bays between rings. The critical bays are those in which
approximately square buckles occur for a particular value of n. The design
was based on simultaneous occurrence of general and local bay buckling
assuming a membrane state of stress. However, the computer solution shows the
minimum pressure for local buckling to be 4.2 psi, which is significantly
greater than the pressure of 2.7 psi required for general buckling. Thus, the
accuracy and detail available with sophisticated shell-of-revolution programs
provide a basis for redesign of the shel3 to closer margins, leading to a

*• lighter structure.

Apollo-Saturn Short Stack
As an example of the extensive capability of current programs, consider

the combined cylindrical, conical shell structure shown in Figure 6. On the
left is shown the Apollo-Saturn vehicle. The circled ,ortion has been denoted
the "short stack" and will be considered for detailed analysis. Because of the
structural complexities involved, this problem is proposed here as a basic
checkout problem for shell-of-revolution computer programs. It is a problem
representative of a real structure and has been studied in great detail by
several aerospace groups. A description of the structure, together with
results for selected loadings and structural modeling, are given in this
section.
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The conical part of the "short stack" (SIA) and the center, cylindrical
section (IU) are of sandwich construction with unequal face sheets. The lower
section (S-IVB forward skirt) is of skin-stringer construction. There are
six rings located along the shell meridian. The pertinent structural proper-
ties are summarized in Table 7. A major detail which must be accounted for is
the discontinuous character of the inner face sheet of the SLA sandwich just
above ring 1 where the inner face sheet does not carry the load through to the
lower structure (see detail A, Fig. 6). The boundary conditions at each end
of the "short stack" are represented by stiffness matrices obtained from an
analysis of the adjacent structure and are given in Table 8 for selected
values of n. These boundary conditions apply for both stress and buckling
analysis. The structure was analyzed for several loading conditions, and only
a portion of the results can be given here. The loading considered herein is
that described in Figure 6. There is an axisymmetric axial load of 0.764 P
applied at the top, and an additional thrust of 0.236 P at ring 1 with eccen-
tricity of -0.663 in. The reaction of these forces Is taken out-at the base.

The force at ring 1 will be considered in two different ways: First, as
an axisymuetric line loading for both stress and buckling analysis, and second,
as an asymmetric line loading applied at four points located 900 apart around
the circumference, and having a total bearing length of 1/32 of the
circumference.

The structure was analyzed with the SALORS system of programs using
436 finite difference station points. The reference surface was taken at the
continuous surface corresponding to the outer surface of the SLA, IU, and
skin of the S-IVB forward skirt. Shell segments (portions of the shell bounded
by discontinuities along the meridian) were divided into sufficiently small,
finite difference spacings for highly accurate results. For ekample, 15 dif-
ference stations were used in the short cutout region above ring 1, shown in
detail A.

For the case of axisymnetric loading at ring 1 and neglecting prebuckling
deformations, the buckling load is Pc 2 2' 865 x 106 lbs and corresponds to
seven circumferential waves. Figure 7(a) shows a plot along the m ridian of
the axisymmetric meridional and circumferential prestress resultants and
To and Fitures 7(b) and 7(c) show, respectively, the n = 0 and n =7
buckling mode displacements ug, uO, and w. The mode shapes indicate that the
primary buckling action occurs in the S-IVB forward skirt.

Figure 8 shows plots of the meridional stress on the inside and outside
surfaces of the shell for the same axisymmetric load distribution and for
P - 500 000, which approximates design limit loads. Also shown in the figure
are results for the case where the loading at ring 1 is asymmetric. The
stresses are given along a meridian through the loading point and corresponds
to the sum of the results for n = 0,.,8...,64. The stresses for the asym-
metric loading grow in magnitude near the ring, but asymptote to the symmetric
results away from the ring. The stress plots show several regions of sharp
peaks and rapid variations caused by the discontinuities along the meridian.
Thusj, the importance of realistic modeling of the structural cut above ring 1
for an acceptable analysis is evident.
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The vibration characteristics of the "short stack" are shown in
Figure 9. The lowest free-vibration frequency corresponding to each n is
shown in Figure 9(a) for the unloaded shell. The schematic mode shape shows
that the interior rings do not form nodes, and points out the necessity of
analyzing the whole "short stack" as a unit, rather than analyzing each
component separately.

The effect of stress on vibration is shown in Figure 9(b). The figure
gives the lowest frequency for n - 5 and a sketch of the corresponding mode
shapes. Note how the maximum amplitude shifts from the conical sandwich to
the cylindrical skirt of the S-IVB, as the stress approaches the buckling load.
Again,. the interaction of three separate structures is routinely handled where
conventional analytic procedures would be difficult to apply.

For purposes of making more accurate comparisons of the above data with
results of other programs, selected data on the stress, buckling, and vibration
of the "short stack" are tabulated in Table 9. The central processing unit
computer times required for the analyses are tabulated in Table 10.

CONCLUDING REMA

The characteristics of some of the major computer programs in existence
for the analysis of shells of revolution have been summarized. Four separate
systems have been developed on a comparable basis that can treat most of the
complexities that occur for a shell of revolution. Two systems, Kalnins and
Cohen, are based on numerical integration techniques, and the other two, BOSOR
and SALORS, are based on finite difference solutions. The SALORS system,
which has been developed at the NASA Langley Research Centerp has been
described in some detail, and results from the application of this system to
several practical problems have been discussed. B&sed on this work, the
following significant points can be noted:

(1) All four systems have the capability for the analysis of the stress,
buckling, and vibration characteristics of complex shells of revolution.
These systems of programs consider asymmetric loadings and permit detailed
modeling of the structure, including meridional discontinuities in geometry
and loading with little sacrifice in computing efficiency. The only restric-
tion is that the shell be rotationally symmetric in stiffness, geometry, and
prestress.

(2) The assets and liabilities of finite difference and numerical
integration procedures are compared. There appears to be no clear advantage
of one procedure over the other, provided both are well formulated and
efficiently programed.

(3) The use of the shell programs described makes possible a more
accurate and meaningful comparison of experiment and theory, and should be a
valuable tool in design for minimum weight.

(4) Stress, vibration, and buckling results for a complex shell of
revolution, which as various structural and load complexities, have been
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presented. The problem is well documented and is proposed as a checkout

problem for other programs.

(5) Major difficulties In shell-of-revolutilo analysis occur when the
behavior is not one dimensional, such as for asyuzetric btiffness and ronlineax
bresponse to asymetric loads. The most efficient means for moving into these.

areas would appear to be thlough extensions of the present four systems which

have already been checked out and which have the appropriate system logic,

rather than through the development of entirely new systems.
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APPENDIX A

A NUMEBICAL IRTERATION PROCEDURE FOR ANALYSIS
OF SHELLS W- REVOLUTION

Reference 6 presents a general set of first-order shell equations, and
solves them with standard numerical integration techniques involving eight
complimentary solutions and one particular solution. A generalization of the
method of Zarghamee and Robinson(22-24), which involves only four complimentary
solutions and one particular solution is given below for a quite general shell-
of-revolution problem. The equations are (using the notation of ref. 6):

Y -- F(Y, S) differential equation (Ala)

B •o + Do z"o = Lo boundary conditions at (Alb)

B Y +D z =L j station 0 an (Alc)

with interior conditions (required to avoid numerical instabilities and at any
points of discontinuity such as rings, abrupt changes in geometry or stiffness,
line loadings, etc.)

Bi (yi+lO - y l- yj) + Di zil = Li (Ald)

Zil = ZJl = Z i = I, u-i (Ale)

In these equationE Y is the eighth-order harmonic vector of shell forces,
moment, displacements, and rotation that Is divided into the force and moment
vector y and the displacement and rotation vector z. The first subscript
is a segment number, and the second subscript 0, 1, indicates the beginning
and end of the segment, respectively. The interior conditions include an
open-branched shell (segment J) intersecting the end of segment i. Equations
for the briAnched shell were not included in reference (6). For each segment,
one particular solution is obtained for the initial conditions,

Bi yi+i,0 + Gi Zi+lO = Hi (A2a)

"-Gi i+l,O + Bi Zi+lO - 0 iO = 0, m - 1 (A2b)

and four complementary solutions are obtained for

Bi Yi+lO + Gi Zi+lO = O (A3a)

""Gi Yi+iO+Bi Z+ l, = I i =O? m - 1 (A3b)

1192



2-

where

H L

and

[V1 -1uil vij i ~ vji

Hi Li Bi (UnlVjl Ti Si+ Uj V A T A-SjiA i1,ym- 1

For each segment the solution is expressed as

Yi = Si + Ui ci (A4a)

z£i Ti + Vi ci

where Si and Ti are four element vectors generated from the particular
solution, and Ui and Vi are 4 x 4 matrices formed from the four complimen-
tary solution vectors. The ci are fort element constant vectors which must
be determined. The initial conditions for each segment (eqs. A2a and A3a)
insure that the initial boundary condition and all interior conditions are
satisfied providing

C i= V (Vi+l, 0 ci+l + Ti+lO - Til) i = 1, m - 1 (A5)

T'he additional initial conditions (eqs. A2b and A3b) are somewhat arbitrary
and were formulated to satisfy the requirement that the system of equations
be nonsingular.

The value of cm is determined from the final boundary condition as

cm =(Bm Um + Dm Vml) 1' (Lm - B Sm, - Dm Tml) (A6)

4 and the remaining ci are determined from equation (A5).

The method involves inversion of the matrix Vil. This matrix is always
nonsingular, even for arbitrary, rigid-body displacements which require special
treatment by conventional numerical integration techniques, such as
references (6) and (11). The only other matrix requiring inversion is in
equation (A6). This matrix will be nonsingular for all correctly formulated
boundary conditions.
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APPENDIX B

SHELL ANALYSIS FORMULATION

SMbols

A cross-sectional area of ring or stringer

C Cll, C,12 C222 C33 membrane stiffness constants of shell wall (see eq. BII)

ClT, C2T thermal forces (see eq. Bil)

DI, D;2 , D22 D,, bending stiffness constants of shell wall (see eq. E1i)

DIT, D2 T thermal moments (see eq. Bll)

E Young' s modulus

E, F, GP , F, Gp 4 x 4 matrices associated with differential equations

"E*, F*., G* of equilibrium (see Appendix C for nonzero terms)

e 4 x 1 matrix containing loads in differential equations
of equilibrium (see Appendix C for elements of the
matrix for stress analysis; elements of this matrix
are zero for buckling or vibration)

membrane meridional, circumferential, and shearing

e e estrain, respectively

Sf 4 X 1 matrix used in equation (B18) (elements of this
matrix for stress analysis are defined in Appendix C)

f• shear stress resultant defined by equation (BI6)

circumferential shear stress resultant defined byf~e equation (B15)

H, J, H, p, H*, J* 4 x 4 matrices used in equation (BiB); nonzero terms
given in Appendix C

1 0 centroidal moment of inertia of stringer cross section

Ix.. I y. Ixy centroidal moments of inertia and product of inertia of
ring cross section

[I] unit matrix

3 torsional constant of ring or stringer

K], [KO] [K], $[K2] stiffness matrices
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Kll, K12, K2, K, interaction stiffness constants of shell wall (see eq. Bll).

pk9, kes, kt meridional, circumferential, and twisting changes of
curvatures

4 X 1 matrix of boundary loads

[M] mass matrix

me' Moo mte meridional, circumferential, and twisting moment
r-Bsultants., respectively

n Fourier index

P reaction at S-IVB end of "short stack" of Apollo-Saturn
vehicle (see Fig. 6)

Scr magnitude of reaction at S-IYE end of "short stack" of
Apollo-Saturn vehicle sufficient to cause buckling

Po Pto Pe surface loads in normal, meridional, and circumfer!ntial
directions, respectively

81 2' 813' 22 groupings of stiffness constants defined in Appendix C

82Y, 855

u9, ue displacements in meridional and circumferential
directions, respectively

{w) Z {z)
Vr, normal displacement

Ir' Yr coordinates of centroid of ring (measured from intersec-
tion of reference surface with a normal to the
reference surface which passes through ring attachment
point)

y 4 X 1 matrix whose elements are given by equation (P1i4)
and related to displacements by equation (B18)

Z column matrix composed of the z matrices at every
station

z4 X 1 matrix whose elsments are given by equation (B13)

zs perpendicular distance from r-ference surface to
centroid of stringer

PI
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A finite difference spacing

0 angular circumferential coordinate

eigenvslue

7%e effective eigenvalue

Ns eigenvalue shift

V mass per unit surface area

meridional coordinate, distance measured along surface

p perpendicular distance from axis of shell of revolution
to a particular point on the reference surface

o• meridional stress

Ttp Te, TO8  meridionall circumferential, and shear stress resultants,
respectively

(qi, 9g., rotations about the normal, circumferential, andmeridional coordinates, respectively

Scircular f. C7

curvatures , Ldefcrmed shell in meridional and"circumferea-l&. directions, respectively

Subscripts

max maximum value

r ring

stringer

Barred quantities refer to prestress variables.
Primes denote differentiation with respect to meridional coordinate.
Dots denote differentiation with respect to time.
Barred vatrices contain prestress variables to the first power.
Starred matrices contain prestress variables to the second power.

Equations

This section summari.:"s the formulation of a suitable shell theory and an
appropriate numerical solution for shells of revolution. The procedure and
notation follow closely those of reference (33). The equations are based on
Sanders' nonlinear shell equations specialized to the case of a shell of
revolution. These equations are incremented and linearized to obtain, in the
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usual manner, the equations for linear asymnetric motion of a shell of revolu-
tion from a general axisymmetric state of stress and deformation (see ref. 3C,.
The linear asymetric motion is assumed to vary harmonically in the circum-
ferential direction (see Table 311),

n 1 n _

nT' - n 3 - -hi27T + Ti + + " + "a) + + m" o

-n + - IN + p= 0 (Bl)

S~For stress analysis the barred variables are zero. For buckling and
•. vibration they correspond to i.'iitial stress and deformation quantities. The
S~primes denote differentiation with respect to the coordinate along the
S~meridian, and dots denote differentiation with respect to time. The quantitie3

S'r•, T 0 , T•0 , are the amplitudes of the harmonically varying meridional,
Sclrcumferentiai, and shear force resultants; m•, in0 , and m~e the amplitudes

* of the corresponding moments; and pp, Pe, p -the amplitudes of applied
S~surface loads in the meridional, circumferential, and normal directions. The

k quantities O, $e, and 0 are the amplitudes of the rotations about the
}• circumferential, meridional, and normal coordinate axes, and n is the
S~Fourier harmonic.

S~The meridional and circumferential curvatures w• and m8and theSquantity • are conveniently expressed in terms of t~ie radial distance p as

G' 7=t it+ (t+

27Ca) + 7- +t (2) (B

w 5e mepw 00 T+T)0- ( O 1+w t

-+ 01197

P o P t

+ i+ T -Vw+p.0(3



The corresponding Sanders' theory strain displacement relations for small,
circumferentially harmonic motion about an axisymmetric stress and deformation
state are

e = V + 7 (WUe U •e (B5)

eo 7U +1IU +)OW (B6)

e 2.! + ul (Oweuo + R ) (B7)

k =w uz'+ -u - w" (BB)

+ ( 2
k0 = 7 ut + P u + w -P,' (B9)

to I 5- Ng -0)0 ut + V No -od u(I + Ir 7 ug- 3w.) u. (Bo

+n w' - n

P p

The quantities eg, ee, and eg8  are the amplitudes of extensional and
shearing strains, kg, k9, and k 0 the amplitudes of changes in curvature
and twist, and up, u0 , and w tie amplitu7-es of shell displacements in the
meridional, circumferential, and normal directions.

The constitutive stress-strain-temperature relations assumed for the
elastic behavior of the shell along the meridian are the following equations
relating the force and moment resultants and strain and curvature expressions.

'T1 C~ C1  0 K.11 K.1 0 fe CT

U 12  1T0K~K
T + C C12 0 2 0 C, 2 0 -2 0 a (BTu

"" .0 0 0 0to 0
3 0 0 D33k19
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where the stiffness constants Cij, Kij, and DAj, and the thermal forces and
moments CiT and DiT are allowed to vary along the meridian. Equations (Bl)-
(B3) and (B5)-(Bll) are 15 equations in terms of the 15 unknowns Tt, Te, Tte,
mt, m e, "n el, eg, eke, kg, ke, kgo, up, ug, w. They may be combined in
man ways to eliminate some of the Intermediate variables. one such procedure
is to reduce the system of equations to four simultaneous second-order dif-
ferential equations (the three equilibrium equations and the fourth of
equations (EBl)) following the concepts of reference (33). As indicated in
reference (33) me must be eliminated in such a way that k does not appear
in order to prevent the appearance of derivatives of w higher than two.
Frcm the fourth and fifth of equations (BIlI), the necessary relation can be
obtained as

m . D1 D 12K11) D + 12~ X1 e

k +o (D-T
and up ug, w, and m are taken as the fundamental variables. The four

simultaneous second-order differential equations can be written in matrix
t•+ form as I fo, + Fz' + Gz + 1z" + Tz' + z + R*z" + Fz' + G*z- v =e (-.)

where
u• 1 0 0 0

uO 0 1 0 0
w 0 0 0 0

m t0r 0 0 0

and E, F, G, 1, V, GU E*, F*, and G* are 4 X 4 matrices. The elements of
these matrices, are contained in Appendix C. The barred and starred matrices
contain the initial stress ad deformation quantities and vanish if the initial
state is a zero state. The starred quantities reflect the contribution of the
square of the initial rotations on the behavior of the problems.
Equations (EI2) may be applied to linear stress analysis problems by setting
the barred and starred quantities to zero and letting • - 0, applied to
buckling problems by setting "z - e - 0, and applied to prestressed vibration
problem with e - 0, and assuming z harmonic in time.

Boundary conditions are specified by use of the vector L and an
additional vector y where
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IT
f

y (B14)

and

f I= .+ 1 T (B16)

W = -w'(+D u (BIT)

In matrix form
y Hz' + Jz+z + JZ + H*z' + J*z+f (Bl8)

where H, J, H, J, H*, J* are 4 x 4 matrices defined in Appendix C .along
with the vector f. Again, the barred and starred matrices contain only the
prestress quantities, and the starred quantities reflect the contribution of
the square of the prestress rotations.

For shell analysis problems, all admissible sets of linear boundary
conditions at one boundary, including ring stiffeners, can be written in the
form

+ A C )z = I (B19)

The quantities *, f, A, M, M are 4 x 4 matrices corresponding to
prescribed boundary conditions, including any ring stiffness and mass contribu-
tion and I is a vector of prescribed constants.

Numerical Procedure
Finite Difference Approximations. The governing shell equation and

corresponding boundary conditions may be approximated by the standard central
finite dift-irences. Finite difference stations are selected with uniform
spacing between discontinuities of the shell meridian. and the finite dif-
ference approximations at an ith station are

1zi (z= (- 2-1 + zi+,)(B0
0(B21)
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"z z (B22)ii

In order to compute derivatives at a boundary, introduction of fictitious
exterior points or the use of forward (or backward) differences ia required.
Points of discontinuity along the meridian, due to sharp changeS in geometry
or finite difference spacing, should be treated as shell-edge points for 0oth
sides of the discontinuity.

Application of the difference approximations to the governing equations
leads to tridiagonal simultaneous equations of the form

11K](7.)+ [CY-]{i4 [K2 ]( -7 [M](~ (P (B23)

where ELO] contains the structural stiffness, K] contains he influence
of prestress and prestress deformations to the rst power, [ i contains
the influence of prestress deformations to the second power, an [M] contains
the mass contribution. The quantity {z) is the vector of tnknowns composed
of the subvectors zi at the various difference stations, and (P) is the
corresponding load vector.

Static Stress Analysis Problems. For static equilibrium problems {
is zero, and the equations are solved by a tridiagonal Gaussian eliminat on
procedure similar to that given in referen 1(33). For the special case of
nonlinear axisymmetric behavior (n = 0), P is. a function of the Z
variables (see ref. 55, e.g.). These adde axisymmetric nonlinearity e fects
are handled by a Newton-Raphson procedure in the SAWONS program.

Free Vibration Problems. For free ;ibration problems {Z} is assumed
to vary harmonically with frequency c. A prestress distribut on, if needed,
is first obtained from a static stress analy is and thjs restress state is
then used to determine the coefficlnts in KI and LK2I. The inertial
contribution is treatad as a loati, and Ghe e genvalne proI•bm is solved
iteratively by the inverse power method as follows. Let the set of equations
be compactly represented as

[ (jz) -X [~M] (B)(214)

where

and

2
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The lowest eigenvalue of eýuat.1 on (B24 is obtained by iteration, such
that for tne rth iteration the vector ( Zr-) is assumed and ( Zr) determined
by

Again, taking advantage of the fact that [K] is a banded tridiagonal matrix
comprised of 4 x 4 submatrices, Gaussian elimination is used for each
iteration.

An initial vector is automatically assumed to start the problem, and
thereafter the previously determined {z ) is used as the guess for the next
cycle. When convergence has occurred, the ratio of the norm of the last

assumed vector { Zr-l) to the norm of the final vector (~Zr) is

-ZF
(B26)

where the superscript T indicates the transpose of a matrix. If the vector
(Zr-i) is normalized to 1 just prior to initiating an iteration cycle

(11 (B27)

The iteration procedure is continued until th'! eigenvalue determined
f'rom an iteration agrees with th-t obtrined in the previous iteration to some
prescribed degree of accuracy.

The iter.-ation procedurz converges to the eigenvalue lowest in absolute
value (i.e., the eigenvalue closest to zero). If other eigenvalues are
desired, the origin of the eigenvalue scale is shifted to some nonzero
reference elgenvalue. Then the iteration procedure converges to the closest

¶ eigenvalue above or below this reference eigenvalue.

Let
X L NO + Ne (B28)

where N. is some reference eigenvalue prescribed at the outset, and Ne
is an effective interim rigenvalue to be determined.
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Substitiltion of equation (B28) into equation (B2 14), and rearranging
terms gives

[K] I s Mý Z).. EI 7 (B29)

This matrix equation is of the form

whe'- [ ( z) = .e m] (z) (B30)
where

[K] = K] + w. [DO (B31)

The iteration procedure to determine Ne is similar to that given by
equations (B25) and (B27), and wil• converge to the eigenvalue closest to
The algebraic sign of )e can be determined from a Rayleigh quotient-type
relationship.

(z) T (B32)

Buckling Problems. For buckling problems, a prestress distribution is
first obtained from a btatic stress analvsis. This prestress state is then
used to determine tVe coefficients in [Ki] and [KF]. The resulting
equations are 

-

[zco](z} + N {Ki] (z) + ), 2 [ic2 J~z) 0 (B)3)

where N is the eigenvalue corresponding to the multiplier of the prestress
state required to cause buckli ' Fbr the case where quadratic prebuckling
deformations are neglected 0K,_= 0, and the eigenvalue solution is obtained
by the inverse power method s'i•lar to that described for free vibrations,
namely

N

It is particularly important to determine the sign of the converged buckling
eigtnvalue ), because of the possibility of negative eigenvalues. The sign
of the eigenvalue is obtained from the Rayleigh quotient-type relationships
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Z) - I*W (B35)
{z)[Kj](z)

If the quadratic prebuckling deformations are retained, the inverse power
method may still be used; however, provisions must be included for handling
the quadratic eigenvalue term. This is accomplished by introducing a new
variable

{W)z 7{z) (B36)

Equation (B33), together with equation (B36), can be written as

[~ j{:} = [ ]:
0 1 - Z

which now is in the form of a linear eigenvalue problem and can be solved by
the inverse power method as

[KL'O)j (!- Dzr) =Z-1 - [x2] (zrl)

=r ,r1 (B38)

The algebraic sign of the eigenvalue can be determined from

___ (z}T [Kp,-(z} + VwT w{z)T'( [c](z)+ ().}I[• { w -yw)T (z) (B39)

The inclusion of the quadratic prebuckling deformation terms thus requires
only minor additional calculations and the storage of two modal vectors,
rather than one. The procedure can also be eaviiy modified to include
shifting the origin of the eigenvalue scale to obtain the closest eigenvalue
to a reference value.
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APPENDIX C

NOWAERO COEFFICIENTS OF MATRICES

E, F, G, e, U, 7. G, E*, F*, and G* Matrices

E l 3. Sll2

E1, = - v S

E3B = 1

E, 7 , + 2(0 a )2 D ,

E 31E 13

E 3 = -D2345 11

F = 7 Sll + Sl
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TAPLE 2 COMPARISON OF FEATURES WITHIN FOUR MAJOR COMPUTER PROGRAMS

Computer program

Feature

SALORS Cohen BOSOR Kalnins

Novozhilov- Knowles and
Shell theory Sanders Novozhilov SieKs e ne

Sanders Reissner

Solution method Finite Forward Finite Forward
difference integration difference integration

Discrete rings Yes Yes Yes No

Classical Classical Classical Classical
Boundary Ring Ring Ring
conditions Elastic Elastic Partial pole

Pole Pole

Stringers Yes Yes Yes Not
(smeared';, automatically

Branching Under Under Yes (major
development development branches only)

Iteration Iteration Iteration

Eigenvalue (inverse power) (Stodola) (inverse power)

determination Determinant Determinant
plotting plotting

Buckling under No Under No Limited
asymmetric loads development capability

Live 1pressure Yes Yes Yes No
loading
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TABLE 3 COMPARISON OF SALORS WITH PUBLISIED RESULTS

Ring-stiffened cylinder (ref. 13, Tables 2 and 3)

Hydrostatic buckling Ring prebuckling hoop forces,
kT/r", at incipient bucklingpressures (psi), n =3 v (nonlinear) (lb/in2 )

Analysis

Prestress Ring number

Linear Nonlinear 1 4 6

SALORS 641 642 -30.61 -28.523 -28.521

Cohen 641 644 -30.62 -28.533 -28.533

Ring-stiffened 1200 cone (ref. 66, case 3)

External critical Ring prebuckling hoop 2
pressures (psi), n = 7, forces (lb) for 1 lb/in2

Analysis linear prestress external pressure

Prebuckling deformation Ring number

Neglected Included 1 8 16 24

SALORS 4.21 4.o4 4419.4 -102.48 -109.86 -119.70

Cohen 4.21 4.05 4424.3 -102.72 -110.15 -120.03
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TABLE 3 COMPAHIISON OF SALORS WITH PUBLISHED RESULTS - Concluded

Axisymmetric nondimensional frequencies of a 600-spherical cap

with simply supported edge

Analysis

Natural SALORS Cohen (ref. 12) Kalnins (ref. 7)
frequency

Ist 0.960 0.959 0.959

2nd 1.332 1.325 1.328
0

3rd 1.65o 1.646 -

4th 2.095 - 2.324

Natural frequencies in cps for various circumferential wave numbers for ring

and stringer-stiffened cylinder (ref. 43, Table 4, discrete rings)

3 5 7 9 11

SALOBS 71.3 127 246 403 590

BOSOR2 71.7 129 251 411 603
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TABLE 4 REPRESETATIVE COMPUTFR TIMES FOR EXAMPLE PROBLEMS

ON CDC 66oo COMPUTER

(coRE STORAGE = 70K OCTAL)

Number difference Approximate

Problem Calculation Program intervals or computer time
integration
segments sec

Axisymmetric
Thermal buckling prestress plus SALORS 100 28
of cylinder buckling load Cohen 3 segments 24

for one n

¶ Vibration of Vibration SALORS 100 18
conical shell frequency for

one value of n Cohen 4 segments 18

TABU 5 COMPARISON OF THEORY AND EXPERIMT FOR RING-ITIFFMED

CYLINDE LOADED BY HYDROSTATIC PRESSURE

Buckling pressure, psi
Boundary condition Pressure Method

Theory Experiment

Bulkhead Live - - 675

Simple support Dead Bodner 796

Simple support Dead Ref. (65) 739

Simple support Dead SALORS 708

Simple support Live SALORS 642

Bulkhead Live SALORS 860
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TABLE 6 STRUMPAL PI•,PERTI FOR BLUNT CONICAL PUMARYI ERY BODY

(e ing Properties

(e notation j x ndieates x 10tx

p Ar Ix Iy Ir xr Yr
________ ________ ______ ______ (n) i

(an.) (1n) (int) (i) (in) (in") (in.) (in.)

6.9000E + 01 3.76OOE - 01 7.5280E - 01 7.5280E - 01 0.0000 1.5056E + OD -1.8794E - 00 -6.8402- - 01

6.7389E + 01 3.1003E - 02 3.8938E - 04 3.4229E - 03 -2.912E - 04 2.0669E - 06 -3.8414E - 01 7.134p. - 02

6.5751.E + 01

6.4.M + 01

6.2415E + C2

6.o7o6E + 01

5.7.8 + 01

5.5395E + 01

5.3553E + 01

5.1669F + 01 3.1003o - 02 3.8938E - 04 3.4229Z - o0 -2.9ME - 0 2.o669E - 06 -3.84141 - 01 7.13421 - 02

5.00001 + 01 2.145614 . 02 3.21291 - 01. 2.1016Z - 03 -3.039'[E - o41.25140E - 06 -3.22381 - 01 7.92321 - Ce

14.e806 + o0

4.6.10 + 01

4.1065r + 01

4.19381 + 01

3.97oE + 01.

3.7354E + 01e I-
3.14822L1+01 2.1456147c -02 3.2"29- 04 Mi f 2. 6-0c3 -3.0397 7-0141.251.01-0o6 -3.22381 - 01 MW 7. 2- 02

3.2DOo + 01 6.72oOE - 1 9-.7140 - 02 3.5281E + 00 0.0OO0 3.528- + 00 -3.0935B + 00 0,o000

3.0678E + 01 2.36783 - 02 2.96181 - 04 2.736;2 - 03 -2.0602E - 04 8.8792E - 06 -3.9376i - 01 7.04%E - 02

2.9!M + 01

2.7914bE + 01'

2.65,34E + 01

2.5083 + 01"

2.3W59- + 01

2.2051D + 01

I
2.,A-"÷ o + 01

1.52731 + 01 I

1.135 +. O1 !

1.000O1 + 01 2.3M678E - 02 2.96181 - 04 2.73631 - 03 -2.0602 - a1 8.8792z - 06 -3.93761 - 01 7.04%58- -2

"D 2enotes end points of 10 equas11 "Ced lor4 stringers
"*Denotes e*d points of 10 equally "pacd short stringers

Stringer Properties I - -E. - 9.-3ý + O1 lb/in2

Ag 1 is $1 1L*:Ar'i~sO . 3 2

(^. Z) (lnh) (0.) (in)

0o.08 o.06 0.00002oo 3 -0.75
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TALE 7 STRUCTURML PROPEM]IES FOR APOLLO-SATURN SHORT~-STACK

?Ring Properties

Ring Ay 1 xy IXIir x r Ms

"~(in?) (inl I (jfin) (in4  (n 4 ) (in.) (in.) (lbm/i nY)

1 0.8090 1.2069 0.1590 0.0363 0.007927 0.3o56 -1.8832 -0.1

2 1.8050 6.265o o.6190 0.1709 0.026600 -0.6670 -1.9990 0.1

3 1.0270 1.613o 0.1691 -0.1773 0.000666 0.1765 -1.1i830 0.1

4i 0.3975 0.88149 0.0635 -0-1644 0.000530 0.7440 -2.0490 0.1

5 0.3975 0.8849 0.06)5 -0.1644 0.000530 0.7440 -2.0490 0.1

6 1.0467 0.7187 1.7261 0 0.538057 0 -1.0398 0.1

Stringer Properties of S-IV Forward Skirt

(108 stringers equally spaced around circumference)

As :8 Mass
Location C ) (i) (n 4 ) density

___________ )___ __ (in) (Ibm/in)

Inner bays 0.3293 0.08396 0.05 0.6365 0.1

Outer bays 0.3935 0.09867 0.05 0.5511 0.1

FEr _ =E =i10.5 x10
6 lb/,

2

gr . le .0,n

Mass density of' skin 0.1 ibm/in3

Mass density of core 0.003 ibm/in5

4. 
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TABT •, 8 BOUNDARY CONDITIONS FOR APOLLO-SATURN SHORT STACK

n=Oo 0 0 0 7
•" Lo 0 0oj[4

0 0 0 0
EM L -1.966E-1 4 0 -1.24~1E-3 1.088E-3

1.72OE-4 0 1.088E-3 -5.326E-3.

0 0 0

0 t tmax Symmetric 8.588E-4 -1.7oOE-41:4•03E-4

n=4

-4.27E-3 -1.635E-4 6.058E-5 2 .55E-5"
-6.223E-5 1.396E-4 -9.886E-5

[L]=0 Symmetri c -1.197E-3 7.516E-4f
-5-358E-3

4.480E-5 -2.51iE-5 9.498E-5 1.578E-6 1•_r• •ma "smmeric 1.379E-4 -5.O11E-4 - 2 .8E-5|

= Symmetric 2.590E-3 -1.1.18E-41

1 .350E-4

E-3 3.770E-5 -5.212E-4 2.72OE-31S-2.13 - 4 -. 137E-5 1. 324E-4 -i1.248E-4

A =0 -1.067E-5 7.456E-4 /
Symmetric -5.365E-3 J

3.398E-5 -2.354E-5 1.382F,4 1.161E-5 1
8L215E-5- -4.63AE-4 -2.544F-•5I

SS t5.230E-3 2.929E-51 .363E-41

n=8

F-2-053E-3 6.308E-5 -5.705E-4 2.740E-31
i-i =0 -3.988E-5 1.386E- 4 -1.346E-4l011 t 1.057E-3 7.463F4

[ Symmetric -5.363E-3_J

2.809&-5 -1-.70E-5 .1a2- 14 1.232-5
= 6.378E-5 -3.879E-5 -2.614E-•5

Smer 2.915E-3 5.717E-5
[Symmetric .1372E-2



TABLE 9 NUMERICAL RESULTS FOR STRUCTURAL ANALYSIS OF

APOLLG-SATURN SHORT STACK

(a) Meridional stresses at innermost and outermost
fibers of shell wall

t (lb/in2 )

Station t/gmax Axysymmetric Asymmetric*

Inner Outer Inner Outer

838 0 9.941 x 102 -2.199 x l04 9.770 x 102 _2.196 x lO4

0.518 6.923 x -1.371 x 104 2.336 x lo -6.760 x lO3
583

0.518 -2.324 x lO -2.272 X 10 -7.568 x lO4 -5.6,58 x 10
0.683 -1,132 x 10 -1.558 x 0 -1.292 x 1C( -1,648 x 1O4

502 

-o,683 -1.880 x 104 -7.294 x 103 -2.129 x 10 f.317 x 103

0.755 3.350 x 10 -2.043 x lO4 8.2-72 ×10 2 -2.151 x 104
466

0.755 -1,129 x 104 -1.095 x 104 -1.155 x 104 -1.121 x 104

0.813 -6,329 x 103 -6.4o1 x 10 -6.439 x 103 -6.521 v, 103
437

0.813 -7.302 x 103 -7.360 x lO0 -7.355 x 103 -7.428 x 1O3

0.878 -7,924 x lO3 -7.941 x 10l -7.890 x l0 -7.913 x 103

0.878 -7.842 x 103 -7.865 x 10 -7,767 x lO3 -7.801 x 103

0.942 -7.363 x 10 3 1-7.430 x 10k -7.216 x 10' -7.285 x 10 3

373
0.92 06.298 x 103 -6.389 x 103 -6.148 x 103 -6.244 x 103

4 4 04
344 1.00 -1.057 x 10 -1.032 x 10 -1.027 x 10 -1.002 x 10

*Results for asymmetric loading are for a meridian passing throughI
a load point.



TABLE 9 NUMERICAL RESULTS FOR STRUCTURAL ANALYSIS OF

APOLLO-SATURN SHORT STACK

(a) Meridional stresses at innermost and outermost
fibers of shell wall

a• (lb/in2 )

Station g/max Axysymmetric Asymmetri.c*

Inner Outer Inner Outer

838 0 9.941 x 102 -2.199 x 104 9.770 x 102 -2.196 x 104

0.518 6.923 x 103 -1.371 x 104 2.336 x i04 -6.76o x 103
583

0.318 -2.;24 x 10o -2.272 x 10 4 -7.568 x 104 -5.658 x 104

o.683 -1.132 x 10 -1.558 x 10 4 -1.292 x 10 -1.648 x 10.o
502

4 4

0.683 -i.880 x 104 -7.294 x 10' -2.129 x 10• -7.313• x 1O'

0.755 3.350 x 102 -2.043 x 104  8.212 x 102 -2.151 x 10466

0.755 -1.129 x 10 -1.093 x 10 -1.155 x 10 -1.121 x 104

0.813 -6.329 x 103 -6.4o0 x 10 -6.439 x 103 -6.521 x lO
437

0.813 -7.302 x 103 -7.360 x l0 -7.355 x lO -7.428 x 10

0.878 -7.924 x 10o -7.941 x 103 -7.890 x 103 -7.913 x 10o
4o5

0.878 -7.842 x 10o -7.865 x 10o -7.767 x 103 -7.801 x o10

0.942 -7.363 x 103 -7.430 x 103 -7.216 x o0 -7.285 x 10

0.942 -6.298 x 103 -6.389 x 103 -6.13 x 103 -6.244 x 103

344 1.oo -1.o07 x 4 -1.032 x -014 -. 027 x 1o4 -1.002 x 104

""Results for asymmetric loading are for a meridian passing through
a load point.
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TANAE 9 WMMUICAL RESULTS FMR STRUCTURAL ANALYSIS OF

APOLLO-SATURN SHORT STACK - Concl,ded

(c) Vibration

Lb, Frequency, wlb n tad/sec

o 0 365.1
o 2 a47.2
o 3 128.3
o 4 185.3
0 5 277.8

A 0 6 367.6
0 7 450.2
0 8 538.6
o 9 634.o

981 3",( 5 269.0
19?Q2674 5 256.7
2 k3 342 5 245.5
2 9 609 5 235.6
2 747 743 5 228.7
2 845 877 5 184.2
2 914 570 5 67.0
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TABLE 10 CDC 66oo SERIES CQMPUTE RUN TIMES FOR SALORS ANALYSES OF

APOLLO-SATURN SHORT STACK

Analysis Run time (see)

Stress

(Asymmetric analysis,•
17 narmonic numbers /04

Prestress and buckling
Calculates linear prestress 105
and buckling for n - 0 and 7)

Vibration
Frequency for nine values of 282
circumferential wave number 2
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TABLE 11 CIRCUMEYIAL VARIATION OF STRESS, BUCKLING,

AND VIBRATION VARIABLES

Circumferential
_ variation

Prestress quantities

T• Top axisymmetric

Linear asymmetric variables

Ut u02u8 mg, Me,- T) Tot ft, qý'eV e 81 k, ke0 cos ne

uo fgoe' te' M os ' To, (P k t sin no
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I QUESTIONS AND COMMENTS FOLLOWING FULTON/ANDERSON PAPER

QUESTION: My thinking is stimulated by your slide showing the

comparison of theoretical results with experiment. Here you present results

for different "theories" showing a spread of something like 15%0 in the pre-

diction of buckling. Do you believe the error lies in the theoretical assump-

tions made in each of the different theories or in the error made by the

computer in manipulating the numbers or does it Le in the different levels

of discretization used in the separate analyses?

ANDERSON: Well, I think the biggest difference is in assumption

of the bourdarv condition. Another problem is trying to make accurate models

of the whole specimen as well as any attachments and so forth that may affect

the result. In this case, we had to scale the dimension of a bulkhead off a

photograph because no information was given as to its thickness; this is a

possible source of error. We scaled the bulkhead as somewhere between

an inch and an inch and a quarter thick. We made a calculation for an inch

thick bulkhead and the buckling pressure was 800 psi; for an inch and a

quarter thick bulkhead, the buckling pressure was 860 psi.

QUESTION: Referring back to your comparison of finite difference

and forward integration, you made a statement that forward integration pro-

vided less infrmation with respect to prebuckling, prestress loading. I

don't think this is true. It might be true of a specific problem that you are

making reference to. Generally, I think the contrary is true because finite

difference provides you with information only at your selected points. How-

ever, at the forward integration you can have any number of points if you

12~47



care to compute the stresses. Would you comment on that?

ANDERSON: Well, I think you're right and admittedly the abbre-

viated comment I made was a little unfair. You can calculate as many out-

put points as you want in the forward integration method, but my point was

that for stress problems in general forward integration methods don't re-

quire nearly as many points and for efficient solution of the problems you are

likely not to use as many as you would in finite difference programs. But

while it may not be necessary, you could go out of your way and calculate all

these points and get all the information that you need using the forward inte-

grp'.ion method.

QUESTION: I have a question cuncerning the stress analysis of that

cut in the sandwich where you have that very thin section. You made a'shell

theory approximation of this joint but you really don't know, with the shell

theory, what the load path is through the sandwich, do you?

ANDERSON: That is correct and something I'm certainly aware of.

I think the load picture in the sandwich is incorrect right at the discontinuity

because the shell theory says that both face sheets are loaded right at

the end of the cut while we know one face sheet is free. So there's kind of

"a shear lag effect here which possibly could be taken into account by adjust-

ing your sandwich stiffness before you came to the cut. That might be a

little better than using shell theory alone.

QUEST'ON: Were tho se tests you mentioned the DTMB tests--

the Bloomenberg series of tests?

ANDERSON: No, these were done by Wink, I believe.
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COMMENT: I was wondering how that bulkhead was attached to the

shell. In the Bloomenberg series there was a rubber 0 ring which constrained

the shell in such a way that end rotations were not permitted but axial dis-

placements were permitted. I did a little study on the Bloomenberg tests.

It wasn't really specitied what the boundary stiffnesses in the various directions

were but it turned out that if you allowed an axial displacement in the buckle

pattern that had a very large effect and brought the thing right into agreement

with the test results. In other words, you prevented rotations but allowed

axial displacements in the buckle pattern. When you have long cylinders

under external pressure the axial displacement boundary condition is rather

important.

ANDERSON: We found the same thing. When we were looking at

simple support, we were allowing axial displacement. The bulkhead tended

to minimize theft displacement. As far as I know, the bulkhead was bolted

rather firmly through that rather heavy end ring on the cylinder and there

probably was some form of a sealer there, too. I certainly hope in the

future when we try to analyze these experiments with sophisticated programs

that all the necessary information in test programs is provided.

CO=.IMENT: I wonder whether I could suggest perhaps another reason why

you're not getting such good comparisons in some cases. Weve done several

analyses on shells similar to those tested at DTMB and we've found that

there wau plastic yielding. In fact, these shclls have been used pretty close

to their stress limits.

ANDERSON: Yes, we haven't looked at that but I'm aware that

often their tests are quite high stress levels.
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GENERAL SUMMARY OF THE CONFERENCE

Kevin J. Forsberg
Lockheed ;2alo Alto Research Laboratory

Palo Alto, California

Thank you Mr. Janik. The best one sentence summary of this conference was

provided to me by Bo Almroth when he observed that 160 reasonably intelligent

men spent an entire week arguing about wnich is the best method to determtine the

ultimate carrying capacity of a tin can. We really haven't resolved the issue,

but I think we have had a lot of fun in trying. A number of very good papers

have been presented; in fact some I consider to be quite outstanding. They have

addressed problems that are of concern to the entire engineering community and

they have pinpointed some of the difficulties in our present state of the art.

The objective of most of our research is to produce tools that can be of

use in engineering analysis and hopefully in engineering design. I distinguish

between the two in that analysis is done after the st;'ucture is really built,

while des- i consists of guiding the development of the structure through a num-

ber of parametric iterations in order to define the final configuration. The

best design tool is engineering judgement, but the kind of problems with which

we are currently dealing are highly complex and we don't have enough experience

in handling these. Hence our engineering judgement isn't always a good guide.

We must then rely on computer programs which we hope are reliable, easy to use

and z.Cficient. Many papers presented at the various matrix methods conferences

dealing with finite elements are, in my opinion, mainly addressing the question

of reliability. Whether you should use nine or twenty-four or thirty-six degrees

of freedom to describe the bending behavior of a triangular plate element is in

many ways a question of the reliability of a given formulation. We are also con-

cerned about things like aspect ratio of the triangular elements (i.e., when does

the accuracy begin to go to pot). Questions like this have been extensively

examined in other symposia. The ease of use of a program is a very important

consideration to the engineer. We have programs for which input can be prepared

in a very simple format and for which the output can be displayed without the

Asst. Director, Materials & Structures Directorate
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blizzarc of numbers referred to by 1Mianey Stein in his opening remarks. This,

however, is a problem that's totally independent of the method of solution.

The third criterion for computer program development is efficiency, I take

exception to the opinion of Dale Warren that we are concentrating on the wrong

thing when we look at the cost located in the computer run time. The ease of

use of a computer program is really addressed at minimizing engineering costs

which represent a major part of any computerized study. However the computer

costs are very important because they determine the feasibility of performing

parametric studies for detail design. I might also point out that we are mini-

mally able to handle two dimensional problems right now and thus we must develop

more efficient solution procedures if we are truely to have an engineering design

tool for modern aerospace structures.

The question of computer efficiency depends not only on efficient equation

solvers but also on the relative merits between various discretization methods.

Thus although there has been a lot of talk about brotherhood and vnity of finite

difference and finite element methods, it is reasonable to raise the issue of

whether or not there are disttnctions betweeL these methods. The distinction

between them, in my opinion, should be on the basis of relative efficiency of a

given method to achieve a given degree of accuracy. I believe that both finite

element and finite difference techniques are suitable for solving most of the

problems that we have at hand. They can be used in one-, two-, or three-dimensional

static or dynamic linear or nonlinear problems, but I think there are areas where

one technique stands out from the other.

I do not want to summarize the papers that have been presented this week

either individually or in groups. I would rather touch on some of the topics

that we have discussed and to state from my own unbiased point of view what I

think the state of the art is. I would like to make the point rather strongly

that there is a finite difference between what it is possible to do and what

has been done. This difference is very significant. In fact, the realization

of the potential of ary method requires many years and the realization of the

full engineering potential of both these techniques is still far into the

future.
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Let me start with an example of a two-dimensional structure (analyzed by

Drs. M. Marlowe and T. Geers) where I think finite element techniques hold sway

and where they will continue to hold sway for some time to come. This bastion

of finite element application is represented by the highly complex fuselage of

the Cheyenne helicopter. Figure 1 shows the triangular membrane and bending

plate elements that were used in modeling the fuselage. Figure 2 shows the in-

terior structure of this fuselage. This structure is complex enough that even

skeptics like Bo Almroth would use finite element methods to solve this particular

problem. I am appalled at the thought of trying to develop a suitable mathematical

description of this surface, even in a piecewise fashion, for use in any of our

existing finite difference codes. The deformed position of the fuselage in its

first mode is shown superimposed on its undeformed position in Fig. 3. If we

were to a.•k for tabular output for this 1200 degree of freedom problem, it is

certain we could not make reasonable interpretation out of the blizzard of num-

bers to see what is going on. However I would also contend that you cannot make

much sense out of this particular graph (Fig. 3). Even though many of the lines

from the original model have been eliminated, we need at least this much definition

to see the structure; yet when you have this much definition you cannot see what

is going on. Thus even graphic displays can become so cluttered that it becomes

a major task to interpret what is happening. For this reason we made a movie of

the modal behavior of the forward fuselage. In the moxie the behavior becomes

very clear. In this analysis we wanted to assess the effects of the flexible

access doors in the base of the fuselage. With stiff access doors the szond

mode of the fuselage is a lateral cantilever mode. Tne effect of flexible doors

on the sidesway mode is to couple the lateral bending and torsional deformation.

The pilot would be very much disturbed by this as it affects the controls of the

aircraft. This change in behavior is very difficult tc visualize in a static

display. I think this demonstrates the power of the ani.etion of a siimpple passive

graphic display. The point was made on the first day by Mr. Vinson that graphic

tools are great sales tools. You can go out and sho. them to somebody and s&,;

"wow, look what Ive done'! I thin1 Lt.at misses the point. The ani.a-ted display

is a powerful and vital engineering analysis tooi as well. In thiis instance t1'e

engineers at our Lcckheed-Ca~ifoznia Ccvnpany had a 'e: difficult time trying to

visualize what waý nappening when they vel]xeui stiffness in the lower p-•rtion of

the fuselage. The movie z.early demonstrates whb'.'s goinL un even to people vho

had never bean exposed to the analypis bedsore.
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I would like now to make c. comparison of finite difference and mnite element

techniques for other classes of problems where finite differences are more suit-

able or certainly can be used more readily. The cylindrical shell roof shown in

Fig. 4 is of particular interest because we have numerical examples provided by

our friends and neighbors in Canada. Dr. G. Lindberg and his colleages at the

National Research Council have developed solutions for this particular structure

using their 36 degree of freedom doubly curved triangular element. The plot in

Fig. 5 presents results from several solutions. As shown in Fig. 5a, the older

finite elenent analyses (by Boanes, et al.) converges slowly; it requires about

S00 unknowns to obtain the correct answer for the vertical displacement at the

mid-span of the free edge. With the improved doubly curved triangular element

(with 36 degrees of freedom per node) the answer is very rapidly obtained with

something like 200 unknowns. The STAGS code (a two-dimensional finite difference

analysis) had an even faster rate of convergence. Thus the finite difference

technique is very competitive with the f.nite element in terms of rate of con-

vergence. Fig. 5b shows the normal cisplacement at the midpoint of this shell

roof. The finite difference solution appeai.ý to be converging more rapidly

than the finite element analysis. However one should note that in making com-

parisons between methods it is ,asy to draw erroneous conclusions. In Fig. 5b

results are also shown from the same finite difference technique (the STAGS code)

where the number of points in the axial direction (9 points) were kept constant

and the number of _oints in the circumferential direction were increased. As

can be seeti the rate of convergence is much slower than it is when results are

generated by simultaneously varying the grid in two directions Since the rate

of eonvergence is sensitive to the type of grid that is used, one has to be very

ca'eful in comparing different methods. In Fig. 5c results are compared for the

mcaent .M X. I'm sure Dr. Lindberg is unhappy with this particular comparison

bec8use it shows nis method up to disadvantage. Since I could have the option

of selecting 'he varisbles for comparison here, I have presented this graph even

though th•, moment Myy happens to be about 5 times larger (and hence more sig-

nificant in terms of stresses). For M both computer programs gave essentially

the same results for a given nuider of unknowns. However Fig. 5c shows clearly

that the finite difference method is better and if you want to lie with numbers

this is the *.iay to do it.
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I want now to turn to another example, I'm trying to prove a point by going

through a large number of numerical examples because I know of no other wny to

make any assessment of the finite difference and finite element methods. The

example shown in Fig. 6 is a large cylindrical shell with many small rings, as

well as several large rings and longitudinal stiffeners. We solved this problem

with both finite difference and finite element techniques. The finite element

model here was based on an Irons, et al. noncomforming bending triangle with a

linear strain quadrilateral. The grid required to obtain a converged solution

had 25 circumferential and 25 axial points. The linite difference solution with

that grid has about 1800 degrees of freedom; the finite element grid has approxi-

mately 3100 degrees of freedom. The solution time for the finite element pro-

cedure is 6 minutes and 30 seconds for this particular case. The factoring of

the matrix took approximately 2 minutes; the rest of the time was spent forming

the stiffness matrices and then computing stresses. It also went through 3 cycles

of iterative accuracy requirement. All solutions are done in single precision.

The finite difference solution, on the other hand, took 2 minutes and 50 seconds;

less than half the run time. When we ran the same problem with jlOO degrees of

freedom in the finite difference approach, it still ran faster because the time

to form the difference expressions was less than the time required to form the

finite element expression. These comparisons, of course, all depend very much on

how well you have written your program, how good your solution prmedure is, what

computers you are running on. Thus the comparisons given here have been gent-rated

at IAMSC because this is the only way that -e can guarantee that the equation sol-

vers are the same and that the computer- systems are the same.

Figure 7 presents a comparison of the rate cf convergence for the first

eigenvalue of a 30-inch long monocoque cylinder with a 60 degree cutout 6 inches

high (similar to, but different from, the cylinder shown in Fig. 6). One set

of curves show the finite element results for a constant number of axial points

with increasing circumferential points. Another set of curves show the finite

difference results. The rates of convergence are reasonably similar for the

two methods. In fact for a given mash you have essentially comparable accuracy

for either of the techniques. However the finite element teclnique has more

degrees of freedn at a node and hence a bigger problem size; thus it requires

significantly more run time. Based on our experience to date this seems .o be

a genera) conclusion. I want now to turn to another problem. A typical configura-

A tion for the space shuttle orbiter is shown in Fig. 8. The point of presenting
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it herL is that in this vehicle we have other than circula:, cylindrical or conical

shells. A typical cross-section (nondimensionalized) is shown in Fig. 9. It is

of vital engineering importance to determine the collapse load of such a structure,

and this can only be done by performing a nonlinear analysis. To the best of my

knowledge the only code capable of such an analysis at present is the STAGS code.

Typical results are shown in Fig. 9 of 3uch an analysis at present in the STAGS

code. We have also performed e linear analysis of the pear-shaped cylinder under

uniform axial compression. Both finite difference (STAGS code) and finite element

(REXBAT code) results Cive accurate information for the linear range. However

as seen in Fig. 10 the rate of convergence of the finite difference scheme depends

strongly on the formulation. When the whole station finite difference scheme

showed such superior performance vis a :is the finite element (REXBAT) results,

we were delighted because this nmant that the finite difference method was clearly

hands down winner compared to our own finite element formulation. Then we found

the work by Lindberg and crew Jr Canada. The point is that both finite difference

and i.nite element methods are sensitive to the type of discretization that is

used.

The analysis of the Cheyenne fuselage is typical of a class of linear prob-

lems which are clearly in the danain of finite elements (and probably will remain

so since there are so many finite element advocates). However the prediction of

the nonlinear collapse of general shell structures (as typified by the problem

illustrated in Fig. 9) is clearly in the domain of finite differences. In the

example shown in Fig. 9 there is an initial linear range until the plates buckle.

Then tnere is a dramati". redistribution of stresses as can be seen in the figure.

I feel that it is the duty of a speaker summarizing a conference to avoid con-

troversal statements, so that I'll only remark that finite elements are cleally

unsuitable for solving a problem of this type.

I want to turn now to an area where we really are rushing the limits of our

capabilities. Other speakers at this conference have demonstrated clearly that

on•-dirnensional problems are in hand for linear static and dynamic problems.

For problems involving nonlinear transient response, however, things are not com-

pletely resolved even for one-dimensional problems; for two dimensional problems

our capabilities are limited indeed. Consider the problem of an isotropic mono-

coque circular cylindrical shell simply supported at the boundaries and subjected to

a pressure pulse that varies as a half cosine over the top half, unloaded on the bottom
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half of the circumference; the load is uniform in the axial direction. If we

idealize the pressure pulse as an initial velocity we find that as we continu-

ally refine the time step for integration we pick up morL and more of high

frequency contributions (see Fig. 1i). These are delightful; it's nice to pick

them up if they're really there but I suspect that they actually come from numer-

ical errors in the solution procedure. That is, a discrete undamped model of a

continuous system does not respond correctly to truly impulsive loads. Fig. 12

shows the results for the same cylinder but with the load now modeled as a tri-

angular pressure pulse rather than initial velocity. The duration of the loed-

ing is reasonably small - a fraction of the fundamental mode of this structure.

Now you see as you refine the mesh the response converges nicely. The finest

mesh (&x = 0.5h) is approximately the limit of the convergence for the explicit

scheme for this particular example. These comparisons were developed by Dr. L.

Sobel of IMSC using the STAR code (which he helped develop). He has compared his

solution t'ith results of Bill Hubka from Kaman Nuclear.

One of the interesting things that was found in the course of this study is

the accuracy obtained from different finite difference formulations. In Fig. 13
the linear response is presented for the same cylindrical shell discussed in the

preceding paragraph. The solid lines are results that Hubka developed some time

ago which .he cumpared with an exact solution. Unfortunately, since we are using

finite differences we cannot use Melosh's technique calling the finite difference
solution exact, so we have chosen to use a modal expansion and call that the exact

solution. The results from the STAR code (which is a two dimensional finite

difference analog of the differential equations with an explicit numerical in-

tegration in time) are shown in Fig. 13. With the lower order difference schemes,

whj.'h is the most commonly used formulation, we cbtained results that began to

diverge at reasonably early times; refining the mesh improved things somewhat but

didn't solve the problem. By going to higher order finite difference expressions

the results followed those developed by HubkR (he, too, uses higher order finite

difference expressions in his code). Again this is a shell subjected to an idealized

impulsive loading, and these results were generated in single precision. There are

many questions that are left unanswered regarding the necessity for the (more

complex) higher order formulation, The point I want to make is that although

finite differences are great, we haven't solved all of the problems and particularly

in the area of transient dynamic response.
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Figure 14 presents a schematic of a conical shell having u large cutout, and

indicates the kind of problems at which these codes (such as STAR) were initially

directed. In such engineering problems (e.g., antenna windows in a conical shell)

we are concerned about the early time nonlinear large deformation elastic plastic

transient dynamic response. The STAR code developed by Dr. Sobel was used to solve

such a problem. In Figure 14 a comparison between analysis and experiment is pre-

sented and I feel that this is a pretty good comparison. I must admit however

that there were 28 or so other curves there of similar response quantities where

there is no agreement at all. That's unfair to Dr. Sobel, however, because in the

experimental model there were a lot of details which we cannot really model in our

present finite difference program. And I think this is an important example

because it shows the deficiences of our present capability. Our primary difficulty

is that we cannot model rings adequately vith the equilibrium formulation. Rings

are modeled by increasing the thickness of the shell since variable thickness and

variable geometry are easily treated as part of a single set of differential

equations while discrete stiffeners require a separa"o. set of differential equ-

tions necessitating a very cumbersome matching at the boundaries. An energy

formulation on the other hand is ideally adapted to addition of discrete stiffeners.

This is the approach that has been used in the STAGS code which at present is only

i orking for statics problems (collapse of shells), It is sobering to note that

(as far as I can tell) the STAR code is the most advanced capability in the country

for solving problems involving the nonlinear transient dynamic response; yet we

are in a very primitive state of development. We must use a comparatively coarse

mesh because a refined mesh costs too much in computer ttme; the run times get out

of hand if plasticity is involved. We certainly are at the frontier of our cap-

ability with this simple two-dimensional problem.

I would like to point out some deficiencies in the state of the art. 1 think

the deficiencies of finite elements are obvious to all, so i won't dwell on those

but I 'd like to indicate some of the limitations of our finite difference techniques.

Of all of the current techniques in use these are the ones I 'm most familiar with

and can lie about most easily. Figure 15 depicts a typical example of the type of

structure thae can be analyzed on a routine basis now for linear or nonlinear

static analyses. We have curved boundaries that can be contained as an interior

boundary; we can treat partial or complete rings and stringers; we can include

eccentricity effects. In short all of the good details that the finite element

people love can be included in this type of modeling. These kinds of details
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can be included whether you use an equilibriuma formulation or an energy fo inulation,

but life is much simpler when you model these problems using the energy formulation

(as has been done in the STAGS code).

Consider a simple example of a flat plate with a circular cutout, The type

of mesh that is generated to treat the curved boundary is shown in Fig. 16. You

see immediately the tremendous di-_taaantage that- we labor under in usirng finite

difference procedures for this kind of problem at the presert time. First of all,

when the mesh is refined to get points equally spaced along the curved boundary,

one obtains a concentration of mesh lines which extend throughout thie region of

interest. Second, while we are not restricte.d to an orthogonal mesh, we aic re-

sonably restricted in the type of grid we can set up. We cannot do what the finite

element method does so beautifully; that is, concentrate points just in the region

of the reinforcement and leave other areas with a very coarse mesh since that's

all you really require for your solution.

For the stiffened shell shown in Fig. 17a, a study was made of the axial

nembrane stress and axial moment. comparing analytical results (circles in Fig. 18)

with data from a photoelastic analysi; (solid lines) done by Durelli at Catholic

University. (This work was sponsored by Rembert Jones of the Naval Ship Research

and Development Center.)

Earlier in this conference Mr. Stan Jensen talked about the use of arbitrary

grids. This is perhaps the most exciting development in improving the capability

of finite difference techniques. The thrust of his work is illustrated by the

kind of thing being done in nonlinear fluid slosh problems using finite difference

techniques with automated grid generators. Figure 19 is a finite difference grid

for a secord order partial differential equation. The problem is extending this

capability from a second order to an eighth order system; life gets tough and that

is the finite difference in capability I mentioned earlier. There is a long way

to go between the potential capability and the realized capability in this area.

Figure 19 is a model of A hemiispherical closure on a cylindrical shell. During the

the course of the solution the tank is draining and the mesh is regenerated a

number of times so that there is a dynamic rezoning of the mesh during solus:on.

All of the results that I hnve talked about today are things th'. we have

developed here at, Lockheed. This is because It is extremely hard tc make vai.ý

comparisons between various techniques unless you have a common basis of comparison.
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All too often problems available in the literature are fairly limited in the in-

formation that is given; you cannot make the detailed comparisons that you would

like to make on quantities such as displacements, stresses, and computer run times.

So what Nick Bernstein (AFFPL) and Dick Hartung (LMSC) have planned to do during

the coming year is to generate a set of 5 sample problems which we hope to en-

courage as many people as possible here today to run on their codes, Then we will

have a mach broader basl.s of comparison for problems that are typical of those

encountered in the aerospace industry. We have selected these problems because

they are of practical interest. For instance, the first problem (Fig. 20a) con-

siders a conical shell stiffened by rings and with an end closure. It is a very

simple problem because it is a shell of revolution. Many people can handle shells

of revolution very efficiently so we would like to throw in a few hookers like

changing the wall construction, adding attached .nass or cutouts, inducing non-

linear material behavior, putting a liquid iLside. We would then bsk what happens

to the solution procedure. An even simpler problem (that of a uniform isotropic

nomogeneous conical shell free or clamped at the boundaries subjected to an im-

pulsive load) will also be considered. A second problem (shown in Fig. 20) is

the pear-shaped cylinder. This ie typical of the geometry encountered in the

space shuttle. It's very important to get accurate descriptions of the buckling

loads here because the simple approximations are really quite crurmy in predict-

ing the collapse load of such a structure,

Consider again the problem of the transient dynamic response of a simple

conical shell. Figure 21 is an example of the type of data that we hope to

generate. This figure presents the response of one of the parameters in the

shell and the x's, dots and triangles represent solutions from four different

investigators. Since all soluzions agree, one has a high confidence that either

everybody's getting either the wrong answers simultaneously or else we know how

to solve this class of problems. It is this kind of comparison that we are look-

ing for in detail over a wide spectrum of problems.

The third problem we want to consider is a circular cylindrical shell with

a cutout (Fig. 22a). This is a problem encountered in all of our shroud designs

and I'm sure other people have similar problems. Figure 22b is a spherical cap

with a variable thickness. This is modeled on Apollo heatshield, again a realis-

tic engineering problem. We would like you to predict the dynamic collapse of
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such a structure. The fifth problem is the pinched cylinder (Fig. 23). This

is a very nice example for showing the deficiencies of finite element techniques;

finite differences I know will work very well for this problem (but we haven 't

tried it yet).

Now I've shown you the type of geometries. In Fig. 24 we have indicated

the different types of problems from static down through dynamic, linear, non-

linear, impulsive loads, distributed loads, etc., which we hope will be treated

in the studies. We hope to have these problems formulated in the near future

and to mail them to anybody who is willing to participate; unfortunately we can't

pay to make these runs but we're hopi; g that the information exchange which we

establish will be of benefit to the entire community in pinpointing the defic-

iencies of -nw current technology. -Our intention then is to get people together

again in a year perhaps to evaluate results cf this study.

Thank you.

16
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Figure 15 - Example of a Shell Panel with Discrete Reinforcement
and Cutouts
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